CS-210 Discrete Mathematics

Problem Set 3

1. For $A, B, C \subseteq \mathcal{U}$ Prove that

$$
A \times(B-C)=(A \times B)-(A \times C)
$$

2. Let A, B, C, D be non empty sets.
(a) Prove that $A \times B \subseteq C \times D$ if and only if $A \subseteq C$ and $B \subseteq D$.
(b) What happens to the results of (a) if any of the sets A, B, C, D is empty?
3. For each of the following functions, determine whether it is one-to-one and determine its range.
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=2 x+1$
(b) $f: \mathbb{Q} \rightarrow \mathbb{Q}, f(x)=2 x+1$
(c) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x^{3}-x$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{x}$
(e) $f:[-\pi / 2, \pi / 2] \rightarrow \mathbb{R}, f(x)=\sin (x)$
(f) $f:[0, \pi] \rightarrow \mathbb{R}, f(x)=\sin (x)$
4. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be two functions. Explain why the following are functions.

- $h: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $h(x)=f(g(x))$ when $g(x)$ is an onto function.
- $h: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $h(x)=f(x)+g(x)$.
- $h: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $h(x)=f(x) \cdot g(x)$.

5. Prove that for a finite set X any one-to-one function $f: X \rightarrow X$ is bijective.
6. Let $a \in \mathbb{R}$ and $b \in \mathbb{R}$. Suppose that $a>0$ and $b>0$. Give a counter example to show that the following are not valid equalities or show that they are valid.

- $\lceil(a+b) \cdot(a-b)\rceil=\lceil(a+b)\rceil \cdot\lceil(a-b)\rceil$
- $\left\lfloor\frac{(a-3)^{2}}{2}\right\rfloor=\left\lfloor\frac{a^{2}}{2}\right\rfloor-3 a+5$
- $\left\lfloor\frac{a-b}{2}\right\rfloor=\left\lfloor\frac{a}{2}\right\rfloor-\left\lfloor\frac{b}{2}\right\rfloor$

7. Show that for a function $f: X \rightarrow Y, f^{-1}$ exists if and only if f is bijective.
8. For each of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$, determine whether f is invertible, and, if so, determine f^{-1}
(a) $f=\{(x, y) \mid 2 x+3 y=7\}$
(b) $f=\{(x, y) \mid a x+b y=c, b \neq 0\}$
(c) $f=\left\{(x, y) \mid y=x^{3}\right\}$
(d) $f=\left\{(x, y) \mid y=x^{4}+x\right\}$
9. Prove that if $f: A \rightarrow B, g: B \rightarrow C$ are invertible functions, then $g \circ f: A \rightarrow C$ is invertible and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$
