CS-210 Discrete Mathematics

Problem Set 3

1. For $A, B, C \subseteq \mathcal{U}$ Prove that

$$A \times (B - C) = (A \times B) - (A \times C)$$

2. Let A, B, C, D be non empty sets.

- (a) Prove that $A \times B \subseteq C \times D$ if and only if $A \subseteq C$ and $B \subseteq D$.
- (b) What happens to the results of (a) if any of the sets A, B, C, D is empty?

3. For each of the following functions, determine whether it is one-to-one and determine its range.

(a) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1(b) $f: \mathbb{Q} \to \mathbb{Q}$, f(x) = 2x + 1(c) $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^3 - x$ (d) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$ (e) $f: [-\pi/2, \pi/2] \to \mathbb{R}$, f(x) = sin(x)(f) $f: [0, \pi] \to \mathbb{R}$, f(x) = sin(x)

4. Let $f : \mathbb{Z} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{Z}$ be two functions. Explain why the following are functions.

- $h: \mathbb{Z} \to \mathbb{Z}$ defined as h(x) = f(g(x)) when g(x) is an **onto** function.
- $h : \mathbb{Z} \to \mathbb{Z}$ defined as h(x) = f(x) + g(x).
- $h : \mathbb{Z} \to \mathbb{Z}$ defined as $h(x) = f(x) \cdot g(x)$.
- 5. Prove that for a finite set X any **one-to-one** function $f: X \to X$ is **bijective**.
- 6. Let $a \in \mathbb{R}$ and $b \in \mathbb{R}$. Suppose that a > 0 and b > 0. Give a counter example to show that the following are not valid equalities or show that they are valid.
 - $\lceil (a+b) \cdot (a-b) \rceil = \lceil (a+b) \rceil \cdot \lceil (a-b) \rceil$ • $\lfloor \frac{(a-3)^2}{2} \rfloor = \lfloor \frac{a^2}{2} \rfloor - 3a + 5$ • $\lfloor \frac{a-b}{2} \rfloor = \lfloor \frac{a}{2} \rfloor - \lfloor \frac{b}{2} \rfloor$
- 7. Show that for a function $f: X \to Y$, f^{-1} exists if and only if f is bijective.
- 8. For each of the following functions $f: \mathbb{R} \to \mathbb{R}$, determine whether f is invertible, and, if so, determine f^{-1}
 - (a) $f = \{(x, y) | 2x + 3y = 7\}$
 - (b) $f = \{(x, y) | ax + by = c, b \neq 0\}$
 - (c) $f = \{(x, y) | y = x^3\}$
 - (d) $f = \{(x, y) | y = x^4 + x\}$
- 9. Prove that if $f : A \to B$, $g : B \to C$ are invertible functions, then $g \circ f : A \to C$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$