CS-210 Discrete Mathematics

Problem Set 10

1. Prove that two integers a and b have the same remainders modulo m if and only if m divides $a-b$. This is actually the definition of residue classes modulo m, just work out the arithmetic, using the division algorithm to verify $a-b$ is an integer iff a and b belong to the same residual class $\bmod m$
2. In each case either prove the statement or find a counterexample.
(a) The sum of any three consecutive integers (positive or negative) is divisible by 3 .
(b) The product any two even integers is divisible by 4.
(c) The product of any four consecutive integers (positive or negative) is divisible by 8 .
(d) If $a-b$ has remainder 0 when divided by m, then a and b have remainders 0 when divided by m.
(e) If n is an odd integer, then $3 n+3$ is divisible by 6 .
3. For any integer i and $m>0$, define $A_{i, m}=:\{x \mid \exists y \in \mathbb{Z}: x=i+y m\}$.
(a) Prove that if $a \equiv b(\bmod m)$, then $A_{a, m}=A_{b, m}$.
(b) Prove that if $a \not \equiv b(\bmod m)$, then $A_{a, m} \cap A_{b, m}=\emptyset$.
4. Let p and q be two primes (with $p \neq q$). Prove that $\log _{p}(q)$ is irrational.

Hint: Assume that it is rational and draw a contradiction to the uniqueness in the Fundamental Theorem of Arithmetic.
5. Prove that for any integers a and $b, \operatorname{gcd}(a, b)$ can be written as a linear combination of a and b. i.e. $\exists s, t \mid \operatorname{gcd}(a, b)=s a+t b$. In the class we actually gave a constructive proof, i.e. we found s and t through the extended Euclidean algorithm. Now you have to prove it with the following steps.

- Make a set of all positive linear combinations of a and b.
- Apply principle of well-ordering on the above set to select an element g of it.
- Show that g divides both a and b
- Using the fact that g belongs to the above set, show that any common divisor of a and b must divide g also. This proves that all other common divisors are less than g.

6. As a corollary to the above question, prove that Any integer d divides a and b if and only if d divides $g c d(a, b)$.
7. Give at least two examples to show that the assertion of the Fermat's little theorem is not valid if we do not require the modulus to be a prime.
8. Find the values of $3^{302} \bmod 5,3^{302} \bmod 7,3^{302} \bmod 11,3^{302} \bmod 385$

Hint: Use FLT for the first three and CRT for the last one
9. (a) Prove that $a \mid b$ if and only if $\operatorname{gcd}(a, b)=a$.
(b) Let $b>9 a$, Show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-2 a)$
(c) Show that If a is even and b is odd, then $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(\frac{a}{2}, b\right)$
(d) Show that if a is even and b is even, then $\operatorname{gcd}(a, b)=2 g c d\left(\frac{a}{2}, \frac{b}{2}\right)$
10. Show that whenever a and b are both positive integers, then $\left(2^{a}-1\right) \bmod \left(2^{b}-1\right)=2^{a} \bmod b-$ 1.
11. (a) Show that the system of congruences $x \equiv a_{1}\left(\bmod m_{1}\right)$ and $x \equiv a_{2}\left(\bmod m_{2}\right)$ has a solution if and only if $\operatorname{gcd}\left(m_{1}, m_{2}\right) \mid a_{1}-a_{2}$.
(b) Show that the solution in part (a) is unique modulo $\operatorname{lcm}\left(m_{1}, m_{2}\right)$.
12. Suppose that p is a prime and $0<k<p$
(a) k is self-inverse if $k^{2} \equiv 1(\bmod p)$. Prove that k is self-inverse if and only if either $k=1$ or $k=p-1$.
(b) Prove $(p-1)!\equiv-1(\bmod p)$
13. Prove that for $n>2$ there exist a prime number between n and n !.
14. Suppose the RSA modulus $n=p q$ is the product of distinct 200 digit primes p and q. A message $m \in[0 \ldots n)$ is called dangerous if $\operatorname{gcd}(m, n)=p$ or $\operatorname{gcd}(m, n)=q$, because such an m can be used to factor n and so crack RSA.

Estimate the fraction of messages in $[0 \ldots n)$ that are dangerous to the nearest order of magnitude.
15. Let p, q be relatively prime (i.e. $\operatorname{gcd}(p, q)=1$). Prove that the system of equations

$$
\begin{aligned}
& x=a(\quad \bmod p) \\
& x=b(\quad \bmod q)
\end{aligned}
$$

has a unique solution for x modulo $p q$.

