
On the Design of Load Factor based Congestion
Control Protocols for Next-Generation Networks✩,✩✩

Ihsan Ayyub Qazia,∗, Taieb Znatia

aDepartment of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

Load factor based congestion control schemes have shown to enhance network
performance, in terms of utilization, packet loss and delay. In these schemes, us-
ing more accurate representation of network load levels is likely to lead to a more
efficient way of communicating congestion information to hosts. Increasing the
amount of congestion information, however, may end up adversely affecting the
performance of the network. This paper focuses on this trade-off and addresses
two important and challenging questions: (i) How many congestion levels should
be represented by the feedback signal to provide near-optimal performance? and
(ii) What window adjustment policies must be in place to ensure robustness in
the face of congestion and achieve efficient and fair bandwidth allocations in
high Bandwidth-Delay Product (BDP) networks, while keeping low queues and
negligible packet drop rates?

Based on theoretical analysis and simulations, our results show that 3-bit
feedback is sufficient for achieving near-optimal rate convergence to an effi-
cient bandwidth allocation. While the performance gap between 2-bit and 3-bit
schemes is large, gains follow the law of diminishing returns when more than 3
bits are used. Further, we show that using multiple back-off factors enables the
protocol to adjust its fairness convergence rate, rate variations and responsive-
ness to congestion based on the degree of congestion at the bottleneck. Based
on these insights, we design Multi-Level feedback Congestion control Protocol
(MLCP). In addition to being efficient, MLCP converges to a fair bandwidth al-
location in the presence of diverse RTT flows while maintaining near-zero packet
drop rate and low persistent queue length. Using extensive packet-level simula-
tions we show that the protocol is stable across a range of network scenarios. A
fluid model for the protocol reinforces the stability properties that we observe
in our simulations and provides a good theoretical grounding for MLCP.

✩An earlier version of the paper was presented at IEEE INFOCOM 2008, April 2008,
Phoenix, AZ.

✩✩This work was supported by NSF under grant 05-010684.
∗Corresponding author. Tel.: +1 412 624 8442; Fax: +1 412 624 8854
Email addresses: ihsan@cs.pitt.edu (Ihsan Ayyub Qazi), tznati@nsf.gov (Taieb

Znati)

Preprint submitted to Elsevier June 25, 2010

Keywords: Congestion Control, TCP, AQM, ECN, Load factor

1. Introduction

The congestion control algorithm in the Transmission Control Protocol (TCP)
has been widely credited for the stability of the Internet. However, future trends
in technology (e.g., increases in link capacities [1] and incorporation of wireless
WANs into the Internet), coupled with the need to support diverse QoS require-
ments, bring about challenges that are likely to become problematic for TCP.
This is because (1) TCP reacts adversely to increases in bandwidth and delay
and (2) TCP’s throughput and delay variations makes it unsuitable for many
real-time applications. These limitations may lead to the undesirable situation
where most Internet traffic is not congestion-controlled; a condition that is likely
to impact the stability of the Internet.

TCP was designed to suit an environment where the BDP was typically
less than ten packets and any packet loss inside the network was assumed to
be due to overflow of router buffers at the bottleneck [2]. These assumptions
are no longer true today. BDP of many Internet paths is orders of magnitude
larger and in networks such as wireless LANs and WANs, congestion is no longer
the only source of packet loss; instead bit errors, hand-offs, multi-path fading
etc account for a significant proportion of lost packets. A more fundamental
problem with TCP (e.g., Reno, NewReno, SACK) and its other variants (e.g.,
Vegas, Fast) is the usage of packet loss and queueing delay as signals of con-
gestion, respectively [3, 4, 5, 6]. Packet loss is a binary signal and so provides
little information about the level of congestion at the bottleneck, while (forward
path) queuing delay is hard to measure reliably. Moreover, loss and delay are
important performance metrics; using them as signals of congestion implies that
action can only be taken after performance has degraded.

To address these issues, researchers have proposed transport protocols that
can be placed into three broad categories, (a) end-to-end (e2e) schemes with
implicit feedback, (b) e2e schemes with explicit feedback and (c) network-based
solutions. e2e schemes with implicit feedback treat the network as a black box
and infer congestion via implicit signals such as loss and delay. Research studies
have shown that using only packet loss and/or delay as a signal of congestion
poses fundamental limitations in achieving high utilization and fairness while
maintaining low bottleneck queue and near-zero packet drop rate on high BDP
paths [4, 7]. The benefit of using such schemes is in the ease of their deployment
because they require modifications only at the end-hosts. e2e schemes with
explicit feedback (such as TCP+AQM/ECN proposals [8, 9, 10, 11, 12] and
VCP [13]) use one or few bits of explicit feedback from the network, however,
the bulk of their functionality still resides at the end-hosts. They typically
require changes at the end-hosts with incremental support from the network.
Such schemes have been shown to perform better than their counterparts with
implicit feedback. However, it is unclear how the amount of congestion feedback
information affects performance; a question we make an attempt to answer in

2

this work. In network-based schemes (e.g., XCP [14], RCP [15]), fairness and
congestion control are enforced inside the network, therefore, these schemes are
likely to induce more overhead on routers. Moreover, such schemes require
significant changes in the routers and end-hosts which makes their deployment
difficult.

VCP is an e2e scheme that uses two bits of explicit feedback from the net-
work. It is a generalization of the one-bit ECN that uses load factor (ratio of
demand to capacity) as a signal of congestion [13]. However, VCP’s rate of
convergence to an efficient bandwidth allocation is far from optimal, which con-
siderably increases the AFCT of short flows (see Section 2). VCP’s usage of a
single, fixed Multiplicative Decrease (MD) parameter reduces responsiveness to
congestion in high load and causes slow convergence to fairness. Further, in the
presence of diverse RTT flows, VCP becomes considerably unfair as shown by
simulation results in Section 4. A closer look at the VCP analysis reveals that
(1) more refined spectrum of congestion levels is necessary to avoid inefficiencies
on high BDP paths, (2) The window adjustment policies in high load regions
should adapt to the degree of congestion, to provide smooth rate variations and
to ensure robustness in the face of congestion and (3) mechanisms should be in
place to achieve good fairness while maintaining low queues in the presence of
RTT heterogeneity. This, however, raises few fundamental questions about load
factor based congestion control schemes: (i) What representation of the network
load provides the best trade-off between performance gains and the adverse ef-
fects due to the larger amount of feedback? (ii) What window increase/decrease
policies must be in place to ensure efficient and fair bandwidth allocations in
high BDP networks while keeping low queues and near-zero packet drop rate?
This paper addresses these issues and uses the insights gained by the analysis
to design Multi-Level Feedback Congestion Control Protocol.

The theoretical analysis and simulations carried out as part of this work
show that using 3-bit representation of the network load levels is sufficient for
achieving near-optimal rate of convergence to an efficient bandwidth allocation.
While the performance improvement of 3-bit over 2-bit schemes is large, the im-
provement follows the “law of diminishing returns” when more than three bits
are used. Our results also show that using multiple levels of MD enables the
protocol to adjust its rate of convergence to fairness, rate variations and respon-
siveness to congestion according to the degree of congestion at the bottleneck.
Guided by these fundamental insights, we design MLCP, in which each router
classifies the level of congestion in the network using four bits while employing
load factor as a signal of congestion [16]. In addition, each router also computes
the mean RTT of flows passing through it, to dynamically adjust its load factor
measurement interval. These two pieces of information are tagged onto each
outgoing packet using only seven bits. The receiver then echoes this informa-
tion back to the sources via acknowledgment packets. Based on this feedback,
each source applies one of the following window adjustment policies: Multiplica-
tive Increase (MI), Additive Increase (AI), Inversely-proportional Increase (II)
and Multiplicative Decrease (MD). MLCP like XCP decouples efficiency con-
trol and fairness control by applying MI to converge exponentially to an efficient

3

bandwidth allocation and then employing AI-II-MD control law for providing
fairness among competing flows [14]. MLCP adjusts its aggressiveness according
to the spare bandwidth and the feedback delay which prevents oscillations, pro-
vides stability in the face of high bandwidth or large delay, and ensures efficient
utilization of network resources. Dynamic adaptation of the load factor mea-
surement interval allows MLCP to achieve high fairness in the presence diverse
RTT flows. In addition, MLCP decouples loss recovery from congestion control
which facilitates distinguishing error losses from congestion-related losses; an
important consideration in wireless environments. MLCP has low algorithmic
complexity, similar to that of TCP and routers maintain no per-flow state.

Using extensive packet-level ns2 [17] simulations, we show that MLCP achieves
high utilization, low persistent queue length, negligible packet drop rate and
good fairness. We use an approximate fluid model to show that the proposed
protocol is globally stable for any link capacity, feedback delay or number of
sources for the case of a single bottleneck link shared by identical RTT flows.
The model reinforces the stability properties that we observe in our simulations
and provides a good theoretical grounding for MLCP.

The rest of the paper is organized as follows. In Section 2, we present
the feedback analysis for determining the number of congestion levels. We
describe the components of the protocol in Section 3. In Section 4, we evaluate
the performance of MLCP using extensive packet-level simulations. Section 5
discusses the stability of MLCP using a fluid model. Section 6 discusses related
work and Section 7 offers concluding thoughts and future work.

2. Feedback Analysis

Every protocol that uses load factor as a signal of congestion must consider
three important issues (1) How many bits to use for carrying load-factor in-
formation? (2) What transition points to choose for each symbol? (3) What
actions should end-hosts take based on the received signal? In this section, we
address these issues in detail.

The number of bits used in representing the feedback signal impacts the pre-
ciseness of congestion information. This, in turn, determines how conservative
a source may need to be in order to compensate for the loss of information.
However, having large number of bits in representing load-factor information is
not necessarily desirable. On one hand, increasing the number of bits is likely
to increase the overhead caused by the need to process and respond to different
levels of congestion. On the other hand, it leads to a more precise estimation
of the level of congestion and, therefore, a more accurate response from the
sources. Hence, the goal is to determine the number of congestion levels that
provide the best trade-off between performance improvements and the number
of bits used in the feedback.

The performance metrics likely to be affected by the preciseness of the feed-
back signal include (1) rate of convergence to high utilization and (2) rate of
convergence to fairness. The analysis of these metrics is used to derive the
optimal number of congestion levels.

4

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80
M

I F
ac

to
r

Load Factor (%)

Ideal
4-bit feedback
3-bit feedback
2-bit feedback

Figure 1: Comparison of MI factors of the ideal protocol with 2-bit, 3-bit and 4-bit feedback
schemes

2.1. Rate of Convergence to High Utilization

Window-based congestion control protocols often use MI to converge expo-
nentially to high utilization. However, stable protocols often require the mag-
nitude of the MI factor to be proportional to the available bandwidth at the
bottleneck [14, 13]. In the context of load-factor based congestion control pro-
tocols, this translates into requiring the MI factor to be proportional to 1 − σ,
where σ is the load factor at the bottleneck. We, therefore, define the MI gain
function of the ideal, stable, load factor based congestion control protocol as
follows.

ξ(σ) = κ · 1− σ

σ
(1)

where κ = 0.35 is a stability constant. The stability result presented in Section
5 shows that congestion control protocols whose MI gains are upper-bounded
by the above function, are indeed stable. It should be noted that the actual MI
factor is given by 1 + ξ(σ) [13].

Figure 1 shows the MI factors used by the ideal protocol along with 2-bit,
3-bit and 4-bit feedback schemes. The goal of the protocol designer is to closely
match the MI gain curve of the ideal protocol using as few bits as possible. The
more congestion levels the feedback signal represents, the more aggressive the
sources can be due to higher MI factors. If the number of congestion levels is
small, sources would have to make a conservative assumption about the actual
load factor value at the bottleneck, forcing them to use small MI gains. To
compare the performance of schemes using different representations of the net-
work load levels, we examine their speed of convergence for achieving efficient
bandwidth allocations.

To quantify the speed of convergence, we compute the time required to
achieve a given target utilization Ut ∈ [0, 1] (80% in our case). When the
system utilization, Us, is less than Ut, each flow applies MI with a factor that
depends on (1) l, the number of congestion levels used by the scheme and (2)
the load factor interval (or utilization region) in which the system is operating.
Suppose that a given scheme divides the target utilization region (i.e., [0, Ut])
into l0, l1, l2, .., ll levels, where l0 = 0, the size of each interval [li−1, li] (referred

5

 0
 25
 50
 75

 100
 125
 150
 175
 200

 1 10 100 1000 10000
T

im
e

(in
 R

T
T

s)

Link Capacity (Mbps)

2-bit feedback
3-bit feedback
4-bit feedback

15-bit feedback

Figure 2: Comparison of the time required to achieve 80% utilization for 2-bit, 3-bit, 4-bit
and 15-bit feedback schemes.

to as interval i) is s = Ut/l and li = li−1 + s. The MI factor applied during
interval i is given by mi = 1 + ξ(li). Note that the upper limit of an interval
determines the MI factor. The reason is when Us ∈ [li−1, li], li is an upper-
bound on system utilization and since Us can lie anywhere in the interval, a
flow must assume it to be li to avoid using a larger MI factor than allowed by
Eq. 1.

Consider a single flow with an initial congestion window size of x0 KB. Sup-
pose that the BDP of the path of the flow is k = C · RTT and the system
utilization is li−1. When the system utilization becomes li, the congestion win-
dow of a flow must be equal to xi = k · li, ∀i ≥ 1. Therefore,

xi−1 · (mi)
ri = xi (2)

where ri is the number of RTTs required to achieve utilization li given that
the system started at li−1. This implies that the amount of time required to
complete interval i is

ri = logmi(xi/xi−1). (3)

Thus, for a flow with an initial congestion window size of x0 KB, it would take

r(l) =

l∑
i=1

ri =

l∑
i=1

logmi(xi/xi−1) (4)

RTTs to attain a system utilization equal to Ut, where r(l) is the total time
required to achieve the target utilization by a scheme that uses l congestion
levels. We assume that a protocol using n bits for achieving efficient bandwidth
allocations employs l = 2n − 3 levels for representing the target utilization
region.1 The rest of the symbols are used for representing load factor values in
(Ut, 100). The analysis for determining the number of levels to represent the
overload region (i.e., σ ∈ [100%,∞)) is presented in Section 2.2.

1One symbol (i.e., code (00)2) is reserved for ECN-unaware source hosts to signal “not-
ECN-capable-transport” to ECN-capable routers, which is needed for incremental deployment
[10].

6

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000
U

til
iz

at
io

n
(%

)
Bottleneck Capacity (Mbps)

3-bit feedback
2-bit feedback

Figure 3: The figure shows the bottleneck utilization at t=10s as a function of link capacity
for the 2-bit and 3-bit feedback schemes.

Consider a single flow traversing a 1Gbps link with RTT=200ms and an ini-
tial congestion window size of 1KB. The above analysis implies that in order to
achieve a target utilization of 80%, the 2-bit scheme would take roughly r(1) =
118RTTs, the 3-bit scheme would take r(5) = 15RTTs, the 4-bit scheme would
take r(13) = 11RTTs and the 15-bit scheme (an approximation to the ideal
scheme with infinite congestion levels) would take about r(32765) = 8RTTs.
Figure 2 shows the time taken by different schemes to achieve Ut = 80% as
a function of the bottleneck capacity. Observe the dramatic decline in time
when n is increased from 2 to 3. However, as n is increased beyond 3, the gain
in performance is very little and remains largely unaffected by the bottleneck
capacity. Thus for n ≥ 3, performance improvement follows the law of dimin-
ishing returns. Intuitively, this happens because increasing the number of bits
beyond three only helps a small portion of the target utilization region (<10%,
see Figure 1). Since the time taken by a flow to attain 10% utilization is a small
component of the total time required by a flow to achieve the target utiliza-
tion, increasing n has little impact on performance. To validate our results, we
ran ns2 simulations. Figure 3 shows the bottleneck utilization at time t = 10 s
for protocols employing 2-bit and 3-bit feedback signals. The 3-bit protocol is
able to achieve 80% utilization within the first 10 seconds across link capacities
ranging from 1Mbps to 10Gbps, whereas, for the 2-bit protocol, utilization falls
significantly as link capacity is increased.

Impact on the AFCT of flows: An important user perceivable metric
is the Average Flow Completion Time (AFCT) (or response time). The 3-
bit feedback scheme considerably reduces the AFCT due to its higher rate of
convergence to efficiency. In particular, it helps short flows to finish much
quicker and since most flows on the Internet are short, this improvement impacts
the majority of flows [15].

Let r2 and r3 be the AFCT corresponding to 2-bit and 3-bit feedback
schemes, respectively. The improvement in AFCT is expressed as (1−r3/r2)100%.
Figure 4 shows the improvement in AFCT that the 3-bit scheme brings over the
2-bit scheme as a function of the average file size on a 10Mbps and 100Mbps
link with RTT=100ms. The file sizes obey the Pareto distribution with a shape

7

Figure 4: Improvement in AFCT that the 3-bit feedback scheme brings over the 2-bit feedback
scheme as a function of the average file size on a 10Mbps and 100Mbps link

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

A
F

C
T

 (
se

cs
)

Average Load (%)

3-bit feedback
2-bit feedback

Figure 5: AFCT of flows as a function of load on a 10Mbps link with RTT=100ms.

parameter of 1.2 and the offered load was kept at 0.7. Note that the 3-bit feed-
back scheme offers a reduction in AFCT of at least 16% and up to 45% over the
2-bit scheme. Figure 5 shows the AFCT as a function of the average load at the
bottleneck assuming the average file size to be 30KB. Observe that for average
loads less than 50%, the 3-bit scheme improves the AFCT by a factor of ∼1.8.
However, as the average load increases, the improvement reduces to a factor of
∼1.4.

2.2. Rate of Convergence to a Fair Share

Once high utilization is achieved, the goal of the protocol is to converge
to a fair bandwidth allocation, often using control laws such as AIMD, AI-
II-MD etc. While achieving this end, a protocol should aim to satisfy three
requirements: (a) high convergence rate, (b) smooth rate variations, and (c)
high responsiveness to congestion. These requirements, however, cannot be
satisfied in all network scenarios. For instance, in some cases, maintaining high
responsiveness to congestion may necessarily require significant variations in
the rates of flows. However, one can isolate cases in which one or two of the

8

 0.7

 0.8

 0.9

 100 105 110 115 120 125 130 135
M

D
 V

al
ue

 (
β)

Load Factor (%)

Scheme A
Scheme B
Scheme C
Scheme D

Figure 6: β as a function of load factor for different schemes

requirements are more desirable than the rest, allowing the protocol to focus on
few complimentary goals. These cases are as follows:

• When the system is in equilibrium (i.e., all flows have achieved their fair
rates), the goal is to ensure (b) while (a) and (c) are not relevant.

• When new flows arrive, (a) and (c) are more important than (b).

A load factor based congestion control protocol may not be able to exactly
discern between these cases. However, load factor values in the overload region
(> 100%) can provide for approximately identifying the above cases. The reason
is that, for a fixed number of flows, the average overload remains the same. It
only changes when a new flow arrives or an old flow leaves the network.

2.2.1. Quantifying rate of convergence to fairness and the smoothness
properties of a scheme

In order to quantify rate of convergence to fairness, we measure the time
taken by a newly arriving flows to achieve 70% of its fair rate. For ease of
comparison, we normalize the convergence time of all schemes by the conver-
gence time of the best scheme. We call this quantity the convergence ratio. The
smoothness property of a scheme is determined by the MD parameter value,
β. In particular, flows that reduce their congestion windows by a factor of β in
overload experience throughput variations by a factor of 1− β.

2.2.2. Determining the MD levels

Let a round be a single cycle between two overload events. The duration, d,
of a round is determined by the increase policy and the value of β, whereas the
number of rounds, p, needed for convergence to fairness is determined by β only
[18].2 Thus, a high value of β leads to slow convergence and reduces respon-
siveness to congestion. On the contrary, a low value of β, improves convergence
and responsiveness but introduces large throughput variations.

2Note that if the value of β depends on the increase policy then both of these determine p

9

 1

 1.5

 2

 2.5

 3

 3.5

 0.1 1 10 100

C
on

ve
rg

en
ce

 R
at

io

Bottleneck Capacity (Mbps)

Scheme A
Scheme B
Scheme C
Scheme D

(a)

 100
 105
 110
 115
 120
 125
 130

 0.1 1 10 100

Lo
ad

 F
ac

to
r

(%
)

Bottleneck Capacity (Mbps)

(b)

Figure 7: (a) Convergence ratio and (b) load factor in overload as a function of bottleneck
capacity. N=2 flows, RTT=100ms.

It is important to note that when a link is highly loaded (i.e., σ is high
in overload), responsiveness and convergence are more important goals than
maintaining small rate variations. In order to achieve this end, we vary β ∈
[βmin, βmax] with σ ∈ [100%, σmax%], where σmax is the maximum value of
σ after which sources apply βmin, and βmin and βmax are the minimum and
maximum β values that can be used by sources. Two important factors must be
considered when choosing these values. First, the minimum β value should be
large enough to prevent the system from entering MI after MD because applying
MI immediately after MD leads to high packet loss rate. In order to ensure this,
note min(σβ(σ)) ≥ 0.8. Since for σ ≥ σmax, the smallest β is applied, therefore,
β should be at least 2/3 (for σmax = 1.2). We, therefore, set βmin to 0.675.
Second, the maximum β value should be strictly less than 1 to allow for high
rate of convergence to fairness. We set βmax to 0.875. Note that this choice
ensures that for 70% convergence only nine congestion rounds are needed [18].

We now compare the performance of the following schemes:

• Scheme A uses a single β value of 0.675,

• Scheme B uses a single β value of 0.875,

• Scheme C uses two levels of MD depending on σ in overload, and

• Scheme D uses eight levels of MD as shown in Figure 6.

Varying Bottleneck Capacity: We start a single, long-lived MLCP flow
at time t = 0. A new flow is started at t = 50 s.3 We vary bottleneck capacity
and measure the convergence ratio for the second flow for each of the schemes.
Figure 7 shows the convergence ratio of the four schemes along with the average

3Note that an inter-arrival time of 50 s ensures that the first flow is able to saturate the
link before a new flow arrives

10

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20

C
on

ve
rg

en
ce

 R
at

io

Number of Flows

Scheme A
Scheme B
Scheme C
Scheme D

(a)

 100

 102

 104

 106

 108

 5 10 15 20

Lo
ad

 F
ac

to
r

(%
)

Number of Flows

(b)

Figure 8: (a) Convergence ratio and (b) load factor in overload as a function of the number
of flows. C=20Mbps, RTT=100ms.

load factor in overload, σ̃, at the bottleneck.4 Observe that scheme A has the
highest rate of convergence to fairness across a range of link capacities, followed
by scheme D. However, scheme A also introduces the largest amount of variation
in the throughput of flows; a characteristic that is highly undesirable for real-
time and multimedia applications [19]. Scheme D, on the other hand, adapts β
with σ̃. When C is small, scheme D applies a small β value (since σ̃ is high in
overload). As the average overload decreases, scheme D increases the β value,
therefore, reducing the rate variations. Scheme B takes the longest time to
converge to a fair bandwidth allocation across a range of link capacities. This
is due to the usage of a fixed, high β value. Scheme C improves upon the
performance of scheme B. However, since it uses only two levels for representing
overload, it is less aggressive than scheme D when 100% ≤ σ̃ < 120%. Note
that for link capacities exceeding 10Mbps, average load factor values remain
very close to 100%. This causes the sources to apply the maximum β value as
allowed by each scheme; resulting in similar convergence ratios. However, this
is only true for the case of two flows. Next, we show how each scheme performs
when the number of flows are increased.

Varying Number of Flows: We now vary the number of long-lived flows
on a bottleneck with capacity 20Mbps. For these experiments, N − 1 flows
are started at time t = 0 and flow N is started at t = 50 s. We measure the
convergence ratio for flow N . As the number of flows increases, average overload
increases roughly linearly (see Figure 8). Observe that while the convergence
ratios achieved by schemes A and D are similar, schemes B and C take a much
longer time to converge. For twenty flows, schemes A and D have convergence
times that are at least three times smaller than that of schemes B and C. The
reason is that these two schemes apply a β of value 0.875, which leads to slower

4The convergence time of scheme A is used as the normalizing factor because it has the
highest convergence rate

11

convergence.5 Scheme D changes β dynamically with σ and therefore achieves
the right tradeoff between convergence and rate variations. Based on these
insights, we use eight levels for representing the overload region.

2.2.3. Determining the Increase Policy

The increase policy indirectly impacts (a) and (b). A large increase per RTT
causes (i) MD to be applied more often and (ii) a smaller β to be applied by the
end hosts, leading to fast convergence but increased oscillations. On the other
hand, small increase per RTT enables existing flows to sustain their bandwidth
for a longer time. However, it may lead to slow convergence. In order to achieve
the benefits of these two strategies, we employ the AI-II-MD control law. When
80% < σ ≤ 95%, AI is used and for 95% ≤ σ < 100%, II is employed. AI
ensures that flows quickly achieve high sending rates especially on high BDP
paths, whereas II helps flows in sustaining their sending rates for a longer period
of time. Since, with II, flows increase inversely proportional to the square root
of their window sizes, they cause mild increments in σ when in steady state and
larger when new flows arrive that have small congestion window sizes.

3. Protocol

In this section, we describe the sender, receiver and router components of
MLCP.

3.1. MLCP Sender: Control Laws

3.1.1. Homogeneous RTT flows

We first consider a link shared by homogeneous flows whose RTTs are equal
to tp, the load factor measurement interval. At any time t, a MLCP sender
applies either MI, AI, II or MD, based on the value of the encoded load factor
received from the network.

load factor region: 0-80% When the load factor at the bottleneck is
below 80%, each MLCP sender applies load-factor guided MI. The MI factor
applied at each transition point (i.e., 16%, 32%, 48%, 64% and 80%) are shown
in Fig. 1. This translates into the following window adjustment strategy:

MI : cwnd(t+ rtt) = cwnd(t) × (1 + ξ(σ)) (5)

where ξ(σ) = κ · 1−σ
σ , σ is the load factor and κ = 0.35.

load factor region: >80% When the system has achieved high utiliza-
tion, senders use the AI-II-MD control law to converge to a fair share. Each
sender, applies AI until σ becomes 95%, after which II is applied. When the
system moves into the overload region (≥100%), each sender applies MD. The

5Note that scheme C applies β = 0.875 because σ̃ < 120% for N ≤ 20

12

following equations describe these control laws in terms of congestion window
adjustments:

AI : cwnd(t+ rtt) = cwnd(t) + α (6)

II : cwnd(t+ rtt) = cwnd(t) +
α√

cwnd(t)
(7)

MD : cwnd(t+ δt) = cwnd(t) × β(σ) (8)

where rtt = tp, δt → 0, α = 1.0 and 0 < β(σ) < 1. To avoid over reaction to
the congestion signal, MD is applied only once per tp interval.

3.1.2. Parameter scaling for Heterogeneous RTT flows

So far, we considered the case where the competing flows had the same RTT,
equal to tp. We now consider the case of heterogeneous RTTs. To offset the
impact of heterogeneity, we normalize the RTT of each flow with the common tp
value. This emulates the behaviour of all flows having an identical RTT equal
to tp, thus making the rate increases independent of the flows’ RTTs. During an
interval tp, a flow with RTT value rtt increases by a factor of (1+ξs)

tp/rtt where
ξs is the scaled parameter. To make the MI amount independent of a flow’s RTT,
(1+ξs)

tp/rtt = (1+ξ), which yields Eq.9. Similarly, the AI gain of a flow during
a time interval tp can be obtained by solving 1 + α = 1 + (tp/rtt)αs. However,
for II, we want the increase policy to depend only on the current congestion
window size, while being independent of its RTT. Therefore, we apply the same
parameter scaling for II as used for AI.

For MI : ξs = (1 + ξ)rtt/tp − 1, (9)

For AI and II: αs = α ·
(
rtt

tp

)
, (10)

Scaling for fair rate allocation: The above RTT-based parameter scal-
ing only ensures that the congestion windows of flows with different RTT con-
verge to the same value in steady state. However, fairness cannot be guaranteed,
since rate (= cwnd/rtt) is still inversely proportional to the RTT. We need an
additional scaling of the α parameter to achieve a fair share. To illustrate this,
consider the AI-II-MD control mechanism applied to two competing flows where
each flow i = (1, 2) uses a separate αi parameter, but a common MD parameter
β. At the end of the M-th congestion epoch that includes n > 1 rounds of AI,
m > 1 rounds of II and one round of MD, we have:

ci(M) = β · (ci(M − 1) + n · αi +m · αi√
ci(M − 1)

) (11)

where ci(M) is the congestion window of flow i at the end of the M-th congestion
epoch. Eventually, each flow i achieves a congestion window that is proportional

13

to αi. Indeed, the ratio of congestion window of the two flows approaches α1/α2

for large values of M . In order to see this, note that c1(M)/c2(M) equals

=
c1(M − 1) + α1(n+ m√

c1(M−1)
)

c2(M − 1) + α2(n+ m√
c2(M−1)

)

=
βc1(M − 2) + α1(n+ βn+ m

k1
+ βm√

c1(M−2)
)

βc2(M − 2) + α2(n+ βn+ m
k2

+ βm√
c2(M−2)

)

=
β2c1(M − 3) + α1(n+ βn+ β2n+ m

a1
+ βm

b1
+ β2m

c1
)

β2c2(M − 3) + α2(n+ βn+ β2n+ m
a2

+ βm
b2

+ β2m
c2

)

where ki = (βci(M − 2) + αiβn/
√
ci(M − 2) + αiβn)

1/2, ci =
√
ci(M − 3),

bi =
√
ci(M − 2) and ai = ki with ci(M − 2) expanded to the next level. For

M = k the expression takes the same form as the above equation, the left
operand of the addition operator becomes βk−1ci(M − k) which approaches
zero as k becomes large since β < 1. The multiplicative factor of αi’s can then
be eliminated since they assume the same values. Hence, the above expression
approaches α1/α2. Therefore, to allocate the bandwidth fairly among two flows,
we scale the α parameter of each flow by its own RTT.

αf = αs ·
(
rtt

tp

)
= α ·

(
rtt

tp

)2

(12)

Note that VCP [13] uses similar parameter scaling but it employs the AIMD
control law while MLCP uses the AI-II-MD control law.

3.2. MLCP Router

A MLCP router performs two functions: (1) it computes the load factor over
an interval tp and (2) it estimates the average RTT of flows to adapt the load
factor measurement interval.

3.2.1. Estimating the load factor

There are two conflicting requirements that the value of a load factor mea-
surement interval (i.e., tp) should aim to satisfy. First, it should be larger than
the RTTs of most flows to factor out the burstiness induced by flows’ responses.
Second, it should be small enough to allow for robust responses to congestion
and hence avoid queue buildup. A single value for tp may not be suitable for
meeting both the requirements since they depend on the RTT of flows which
can vary significantly across Internet links. For example, in [13], a fixed value of
tp is used, which results in significant queue buildup due to the MI gains of large
RTT flows. To keep low queues, they bound the MI gains of such flows, which
in turn results in considerable unfairness as shown Section 4.4. For small RTT
(
 tp) flows, a fixed tp results in small MI and AI gains which can considerably
increase the AFCT of flows. Indeed, as the Internet incorporates more satellite

14

links and wireless WANs, the RTT variation is going to increase. At the same
time, RTT variation could be small in some cases. To meet these requirements,
we dynamically adapt tp according to the mean RTT of flows passing through
the router. Each router computes the load factor σ during every tp interval of
time for each of its output links l as [20, 8, 9, 16, 13]:

σ =
λl + κq · ql
γl · Cl · tp (13)

where λl is the amount of traffic during the period tp, ql is the persistent queue
length during this period, κq controls how fast the persistent queue length drains
and is set to 0.75. γl is the target utilization, and Cl is the capacity of the link.
λl is measured using a packet counter whereas ql is measured using exponentially
weighted moving average. The queue sample time is set at 10ms.

3.2.2. Adapting tp according to the mean RTT of flows

Every packet passing through a router carries the source’s estimate of its
RTT. The router uses this to estimate the mean RTT of flows. To ensure
stability of the RTT estimate under heterogeneous delays, it is maintained in
the following way:

(1) The data path of the MLCP router computes the average RTT over all
packets seen in the control interval:

T d =

∑
i rtti
nT

(14)

where T d is the average round-trip time over interval T = 10ms, rtti is the RTT
estimate carried in the packet header and nT is the number of packets seen in
the control interval.

(2) The control path (which performs load factor computations periodically
with a period of tp) takes T d as input and keeps a smoother average RTT
estimate, T c. The data path RTT average is used in determining the moving-
average gain as follows:

if(T d ≥ T c)

θ = T/T c

else

θ = T · T d/(φ · T 2

c)

where φ = 50. The control path RTT estimate is updated as follows:

T c = T c + θ(T d − T c) (15)

The intuition behind the above expressions is that the gain should be at most
T/T c since if average RTT is larger than T , more than one samples are received

15

within the average RTT, so each sample should be given smaller weight. How-
ever, if T d is smaller than T c, we want to be cautious in decreasing the control
path estimate suddenly, and so the gain is made smaller by weighing it with
T d/T c. A similar algorithm for updating the average RTT is used in [21].

The value of tp is then chosen as follows:

tp =

{
min∀i∈|S|{si : si ∈ S, si ≥ T c}, if T c < 1400
1400, if T c ≥ 1400

where S ={80, 200, 400, 600, 800, 1000, 1200, 1400}. There are three reasons for
choosing the set S. First, we do not need precise values of tp because rigorous
experimentation has shown that if the RTT of a flow is within 2.0-2.5 times tp,
there is hardly any queue buildup. Second, the mean RTT of flows must change
significantly for tp to get changed, ensuring that tp doesn’t fluctuate due to
minor variations in the mean RTT. Third, these values can be communicated to
the sources using only three bits. The value of tp that is sent back to the sources
is the one being used by the bottleneck router (the initial value for tp was set
at 200ms). Using network scenarios with diverse RTTs, we show in Section 4.4
that setting tp to the mean RTT of flows improves fairness significantly.

3.3. MLCP Receiver

The MLCP receiver is similar to a TCP receiver except that when acknowl-
edging a packet, it copies the header information from the data packet to its
acknowledgment.

4. Performance Evaluation

Our simulations use the packet-level simulator ns2 [17], which we have ex-
tended with an MLCP module. We evaluate the performance of MLCP for
a wide range of network scenarios including varying the link capacities in the
range [100Kbps,10Gbps], round-trip times in the range [1ms,1 s], number of
long-lived, FTP-like flows in the range [1,1000], and arrival rates of short-lived,
web like flows in the range [1 s−1,1500 s−1]. We always use two-way traffic. For
TCP SACK, we use RED [8, 22] (with ECN enabled at the routers) and RIO
(RED with in/out bit) [23] with the default parameter values provided in ns2.
The bottleneck buffer size is set to the bandwidth-delay product, or two packets
per-flow, whichever is larger. The data packet size is 1000 bytes, while the ACK
packet size is 40 bytes. All simulations are run for at least 100 s unless specified
otherwise. The statistics neglect the first 5% of the simulation time.

4.1. Single Bottleneck Topology

We first evaluate the performance of MLCP for the case of a single bottleneck
link shared by multiple MLCP flows. The basic setting is a 200Mbps link with
80ms RTT where the forward and reverse path each has 10 FTP flows. This
corresponds to an average per-flow bandwidth of 20Mbps. We evaluate the
impact of each network parameter in isolation while retaining the others as the
basic setting.

16

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000 10000

B
o

tt
le

n
e

c
k
 U

ti
liz

a
ti
o

n
 (

%
)

Bottleneck Capacity (Mbps)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000 10000

B
o

tt
le

n
e

c
k
 Q

u
e

u
e

 (
%

 B
u

f)

Bottleneck Capacity (Mbps)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 2

 4

 6

 8

 10

 12

 0.1 1 10 100 1000 10000

P
k
t

D
ro

p
s
 (

%
 P

k
ts

 S
e

n
t)

Bottleneck Capacity (Mbps)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

Figure 9: One bottleneck with capacity varying from 100Kbps to 10Gbps (Note the logarith-
mic scale on the x-axis).

4.1.1. Impact of Bottleneck Capacity

MLCP achieves high utilization across a wide range of link capacities as
shown in Figure 9. VCP, on the other hand, becomes inefficient at high link ca-
pacities. The utilization gap between MLCP and VCP starts widening when link
capacities are increased beyond 10Mbps. This difference becomes more than
60% on a 10Gbps link. VCP’s performance degrades because it uses a fixed MI
factor of value 1.0625, which is too conservative for high link capacities. On the
contrary, MLCP adapts its MI factor, increasing far more aggressively in low
utilization regions, allowing it to remain efficient on high capacity links. Uti-
lization with SACK+RED and SACK+RIO remains considerably lower than
that of MLCP and VCP. This happens because TCP SACK uses a conservative
increase policy of one packet/RTT and an aggressive decrease policy of halving
the window on every congestion indication, leading to inefficiency on high BDP
paths. Note that SACK+RED maintains a lower average queue length com-
pared to SACK+RIO. This happens because unlike SACK+RIO, the adaptive
RED algorithm, used by SACK+RED, dynamically adjusts its parameters to
mark/drop packets more aggressively during times of congestion and is thus
able to maintain a lower average queue length [22]. The average queue length
for MLCP remains close to zero as we scale the link capacities. However, for
very low capacities (e.g.,100Kbps), MLCP results in an average queue length
of about 20% despite keeping zero loss rate. This happens because the value
of α is high for such capacities which leads to queue buildup. Note that while
MLCP achieves roughly the same utilization as XCP, it is able to maintain a
lower average bottleneck queue for link capacities ≥2Mbps. Packet loss rate
with VCP and XCP also remains close to zero whereas SACK+RED results in
loss rates that are as high as 12% for low capacities.

4.1.2. Impact of Feedback Delay

We fix the bottleneck capacity to 200Mbps and vary the round-trip propa-
gation delay from 1ms to 1 s. As shown in Figure 10, MLCP scales better than
VCP, XCP, SACK+RED, and SACK+RIO. For delays larger than 100ms, the
utilization gap between MLCP and VCP increases from roughly 5% to more
than 40%. With SACK+RED, utilization drops most rapidly as delays are in-

17

 0

 20

 40

 60

 80

 100

 1 10 100 1000

B
o

tt
le

n
e

c
k
 U

ti
liz

a
ti
o

n
 (

%
)

Round-trip Propagation Delay (ms)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 20

 40

 60

 80

 100

 1 10 100 1000

B
o

tt
le

n
e

c
k
 Q

u
e

u
e

 (
%

 B
u

f)

Round-trip Propagation Delay (ms)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 0.5

 1

 1.5

 2

 1 10 100 1000

P
k
t

D
ro

p
s
 (

%
 P

k
ts

 S
e

n
t)

Round-trip Propagation Delay (ms)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

Figure 10: One bottleneck with round-trip propagation delay ranging from 1ms to 1 s (Note
the logarithmic scale on the x-axis).

 0

 20

 40

 60

 80

 100

 1 10 100 1000

B
o

tt
le

n
e

c
k
 U

ti
liz

a
ti
o

n
 (

%
)

Number of Long-Lived Flows

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 20

 40

 60

 80

 100

 1 10 100 1000

B
o

tt
le

n
e

c
k
 Q

u
e

u
e

 (
%

 B
u

f)

Number of Long-Lived Flows

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 2

 4

 6

 8

 10

 12

 1 10 100 1000

P
k
t

D
ro

p
s
 (

%
 P

k
ts

 S
e

n
t)

Number of Long-Lived Flows

MLCP
VCP
XCP

SACK+RED
SACK+RIO

Figure 11: One bottleneck with the number of long-lived, FTP-like flows increasing from 1 to
1000 (Note the logarithmic scale on the x-axis).

creased. The difference between MLCP and SACK+RED increases from 20%
for 100ms to more than 60% for 1 s. With SACK+RIO, this difference in-
creases from ≈20% to more than 40% for delays larger than 500ms. Observe
that when delays are less 50ms, SACK+RED results in higher utilization than
SACK+RIO. However, as delays are increased beyond 50ms, adaptive RED
becomes more aggressive than RIO, and therefore, SACK+RED achieves lower
utilization. This is also evidenced by the fact that RED maintains much lower
average queue length than RIO. It should be noted that the average queue length
remains less than 15% for MLCP across the entire RTT range. These results
indicate that MLCP could be effectively used in long-delay satellite networks.

4.1.3. Impact of Number of Long-lived Flows

Figure 11 shows that as we increase the number of long-lived flows (in either
direction), MLCP is able to maintain high utilization (≥90%), with negligible
average queue length and near-zero packet drop rate. For small flow aggregates
[1-50], SACK+RED’s utilization remains lower than that of MLCP, VCP, XCP,
and SACK+RIO (due to large per-flow bandwidth), whereas the difference be-
tween them grows to as large as 20%. When the number of flows is less than five,
MLCP achieves a higher average utilization than XCP. However, as the number

18

 0

 20

 40

 60

 80

 100

 1 10 100 1000

B
o

tt
le

n
e

c
k
 U

ti
liz

a
ti
o

n
 (

%
)

Arrival Rate of Short-lived Flows (/s)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 20

 40

 60

 80

 100

 1 10 100 1000

B
o

tt
le

n
e

c
k
 Q

u
e

u
e

 (
%

 B
u

f)

Arrival Rate of Short-lived Flows (/s)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 5

 10

 15

 20

 1 10 100 1000

P
k
t

D
ro

p
s
 (

%
 P

k
ts

 S
e

n
t)

Arrival Rate of Short-lived Flows (/s)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

Figure 12: One bottleneck with short-lived, web-like flows arriving/departing at a rate from
1/s to 1500/s

of flows is increased, XCP and MLCP achieve similar average utilization. Note
that MLCP has a much lower average queue size compared to XCP even though
they have similar loss rates. Observe that, in most cases, SACK+RIO results in
the highest average queue length. Moreover, as the number of flows increases,
loss rate with SACK+RED and SACK+RIO also increases, reaching a value of
≈6% for 1000 flows.

4.1.4. Impact of Short-lived, Web-like Traffic

To study the performance of MLCP in the presence of variability and bursti-
ness in flow arrivals, we add web traffic into the network. These flows arrive
according to a Poisson process, with an average arrival rate varying from 1/s
to 1500/s. Their transfer size obeys the Pareto distribution with an average of
30 packets. This setting is consistent with the real-world web traffic model [24].
Figure 12 illustrates the performance of MLCP in comparison to VCP, XCP and
TCP SACK. When the arrival rate is less than 1000/s, MLCP achieves higher
utilization than VCP, XCP and SACK+RED/RIO. However, note that XCP,
VCP, and SACK+RIO achieve more than 80% in all cases. When the arrival
rate is increased beyond 1000/s, loss rate for VCP and XCP increases almost
linearly to 10% and 7%, respectively. The average queue length for VCP and
XCP rises to about 90% and 80% of the buffer size, respectively. This illustrates
VCP’s low responsiveness to high congestion; a consequence of using a single,
high value of β = 0.875. MLCP, on the hand, is able to maintain almost 100%
utilization, with negligible average queue length and near zero packet drop rate
even under heavy congestion. Using multiple levels of MD allows MLCP to be
more aggressive in its decrease policy than VCP, resulting in high responsive-
ness to congestion. Moreover, the AI parameter setting in VCP is too large
when the link is heavily congested. MLCP, on the hand, applies II after the
load factor exceeds 95%, which tends to lower the rate at which flows increase
their rates. SACK+RED results in low link utilization when the arrival rate is
smaller than 500/s. However, as we increase the load of short flows, utilization
improves at the cost of a higher loss rate. SACK+RIO achieves high utilization
but results in the highest average queue length across all protocols. Note that

19

 0

 20

 40

 60

 80

 100

 1 10

B
o

tt
le

n
e

c
k
 U

ti
liz

a
ti
o

n
 (

%
)

Bottleneck ID

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 10

B
o

tt
le

n
e

c
k
 Q

u
e

u
e

 (
%

 B
u

f)

Bottleneck ID

MLCP
VCP
XCP

SACK+RED
SACK+RIO

 0

 1

 2

 3

 4

 5

 1 10

P
k
t

D
ro

p
s
 (

%
 P

k
ts

 S
e

n
t)

Bottleneck ID

MLCP
VCP
XCP

SACK+RED
SACK+RIO

Figure 13: Multiple congested bottlenecks with capacity 100Mbps

 0

 50

 100

 150

 200

 0 50 100 150 200 250

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
p

k
ts

)

Time (secs)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

U
ti
liz

a
ti
o

n
 (

%
)

Time (secs)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

Q
u

e
u

e
 (

%
 B

u
f)

Time (secs)

Figure 14: MLCP is robust against and responsive to sudden, traffic demand changes.

the minimum average queue length with SACK+RIO is ≈30%. For arrival rates
higher than 500/s, the queue length rises to ≈100% and the loss rate becomes
more than 20%.

4.2. Multiple Bottleneck Topology

Next, we study the performance of MLCP with a more complex topology of
multiple bottlenecks. For this purpose, we use a typical parking-lot topology
with 10 bottlenecks, where each router-router link has capacity 100Mbps and
the propagation delay of each link is set at 20ms. There are 30 long FTP flows
traversing all the links in the forward direction, and 30 FTP flows in the reverse
direction. In addition, each link has 5 cross FTP flows traversing the forward
direction. The round-trip propagation delay for the 30 long-lived, FTP flows
is set at 440ms, whereas for the cross flows, it is 60ms. Figure 13 shows that
MLCP achieves roughly 30% higher utilization when compared with VCP and
SACK+RED on all the 10 bottleneck links. With SACK+RIO, this difference is
≈15%. While XCP has a higher utilization than MLCP (about 4%), MLCP has
a much smaller average queue length (about 35% less) at the first bottleneck.
Note that all protocols achieve zero packet loss rate on all the links.

20

 0
 0.25

 0.5
 0.75

 1

 0 5 10 15 20 25 30

F
ai

rn
es

s
δ (ms)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

Figure 15: Jain’s fairness index {(∑N
i=1 xi)2/N · ∑N

i=1 x
2
i for flow rates xi, i∈[1,N]} under

scenarios of one bottleneck link shared by 30 flows, whose RTT are in the ranges varying from
[40ms, 156ms] to [40ms, 3520ms]

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30

Q
ue

ue
 (

%
 B

uf
)

δ (ms)

MLCP
VCP
XCP

SACK+RED
SACK+RIO

Figure 16: Bottleneck queue as a function of the RTT variation

4.3. Dynamics

All the previous simulations focus on the steady-state behaviour of MLCP.
Now, we investigate its short-term dynamics.

Sudden Demand Changes: To study the behaviour of MLCP when the
demand at the bottleneck link changes suddenly, we used the following network
settings. We consider 10 FTP flows (in either direction) with RTT=80ms shar-
ing a 150Mbps bottleneck link. At t = 80 s, 100 new forward FTP flows are
made active; they leave at t = 140 s. Figure 14 clearly shows that MLCP can
quickly adapt to sudden fluctuations in the traffic demand. (The left figure
draws the congestion window dynamics for four randomly chosen flows.) When
the new flows enter the system, the flows adjust their rates to the new fair share
while maintaining the link at high utilization. At t = 140 s, when 100 flows
depart creating a sudden drop in the utilization, the system quickly discovers
this and ramps up to almost 100% utilization within a couple of seconds. No-
tice that during the adjustment period the bottleneck queue remains low. The
result shows that MLCP is very responsive to sudden variations in the available
bandwidth.

21

 0

 20

 40

 60

 80

 100

 100 200 300 400

U
ti
liz

a
ti
o

n
 (

%
)

Buffer Size (pkts)

N=45
N=90

N=135
N=180

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 100 200 300 400

Q
u

e
u

e
 (

p
k
ts

)

Buffer Size (pkts)

N=45
N=90

N=135
N=180

Buffer Capacity

 0

 2

 4

 6

 8

 10

 0 100 200 300 400

P
k
t

D
ro

p
s
 (

%
 P

k
ts

 S
e

n
t)

Buffer Size (pkts)

N=45
N=90

N=135
N=180

Figure 17: One bottleneck with C=45Mbps, RTT=80ms and the number of long-
lived flows varying from 45 to 180.

4.4. Fairness

We now compare the fairness properties of MLCP, VCP, SACK+RED,
and SACK+RIO. We have 30 FTP flows (in both directions) sharing a sin-
gle 60Mbps bottleneck link. Each forward flow j′s RTT is chosen according to
rttj = 40+ j ∗ 4 ∗ δms for j = 0, .., 29, where δ is the one-way propagation delay
for a non-bottleneck link. We perform simulations with δ varying from 1ms to
30ms. When δ is 1ms, RTTs are in the range [40ms,156ms]. When δ = 30,
the RTTs are in the range [40ms,3520ms]. Figure 15 shows the comparison
of the fairness achieved by MLCP, VCP, XCP and SACK+RED/RIO. While
XCP achieves the highest level of fairness across a large range of RTT varia-
tions, MLCP, on the hand, achieves good fairness (≥0.75, ∀δ) while maintaining
<20% average queue length (see Figure 16). With VCP and SACK+RED/RIO,
fairness decreases considerably as the network incorporates more diverse RTT
flows. In the case of VCP, this occurs due to the bounding of the MI and AI
gains. With TCP, flows achieves RTT-proportional sending rates, therefore,
large RTT flows achieve much smaller throughput than small RTT flows. This
reduces the overall fairness for SACK+RED/RIO.

4.5. Impact of Buffer Size

Recent advances in technology suggest that all-optical networks are likely to
become commonplace in the future. However, optical packet buffers can only
hold a few dozen packets in an integrated opto-electronic chip. Larger all-optical
buffers remain infeasible, except with unwieldy spools of optical fiber (that can
only implement delay lines, not true FCFS packet buffers) [25]. In order to
make TCP amenable to small buffers, researchers have suggested using paced
TCP [25], proposed changes in the AIMD parameters [26] and proposed new
protocols to make it friendly with small buffers [27]. Dhamdhere et al. [28]
showed that with small buffers (sized according to the square-root rule [29])
TCP observes loss rates as high as 15% on congested Internet links. The key
problem with TCP is the coupling of packet loss with congestion indication that
creates self-induced losses. MLCP decouples congestion indication from packet
loss and thus only requires packet buffers for absorbing short-term packet bursts.

22

In this section, we analyze the performance of MLCP with small buffers. We
consider a 45Mbps link with a round-trip propagation delay of 80ms. This gives
a BDP of 450 packets where each packet has a size of 1KB. We vary the buffer
size from 10pkts to 450 pkts and the number of long-lived flows, N , from 45
to 180 yielding a range of per-flow bandwidths in [250Kbps,1Mbps]. Figure 17
shows that even in the most congested network scenario (when N=180), with a
buffer size of 10 packets (≈2% of the BDP of the path), MLCP is able to achieve
>80% utilization and maintain a loss rate of less than 2%. As we increase the
buffer size, utilization improves and the loss rate decreases sharply. Note that
the average queue size remains less than 70 packets (<16% of the BDP of the
path) even in the most congested scenario. These results indicate that MLCP
can achieve high performance even with as small as 10 packets buffers.

5. STABILITY ANALYSIS

MLCP employs an aggressive load factor guided MI control law, which tracks
the available bandwidth exponentially fast. This naturally raises stability con-
cerns6. In this section, we observe that the fluid approximation model of the
traffic presented in [13] can be used to show that such a control law does not
result in instability when used in conjunction with a load factor dependent MD.
The fluid model considers a single link shared by multiple flows and is described
by the following differential equation:

ẇi(t) =
1

RTT
· [wi(t) · ξ(σ(t)) + α] (16)

where wi(t) is the congestion window of flow i at time t and ξ(σ(t)) = (1 −
σ(t))/σ(t) and α are the MI and AI parameters, respectively.

The above differential equation models (1) the load-factor guided MI control
law (characterized by ξ(σ(t))), (2) the AI control law (characterized by α), and
(3) the MD control law whose parameter value depends on the load factor
(characterized by ξ(σ(t)) for σ(t) ≥ 1) and thus models the impact of multiple
back-off factors. All of these features are used by MLCP. The stability conditions
of the above model are given by the following theorem7:

Theorem 1. Under the model given by Equation 16, where a single bottleneck
is shared by a set of synchronous flows with the same RTT, if κ ≤ 1

2 , then the
delayed differential equation described in [13] is globally asymptotically stable
with a unique equilibrium w∗ = γC · RTT + N α

κ , and all the flows have the

same steady-state rate r∗i = γC
N + α

κ·RTT

6Note that the results presented in Section 4 demonstrate the stability of MLCP across a
wide range of network scenarios using simulation.

7For the proof of the model, we refer the reader to [13]

23

The above result holds for any link capacity, feedback delay, and number
of flows. Moreover, the global stability result does not depend on the network
parameters. It demonstrates that the use of the load factor guided MI, AI and
multiple back-off factors does not cause instability as long as κ ≤ 1

2 for the
case of a single bottleneck link. Intuitively, as the load factor at the bottleneck
approaches 1, ξ(σ(t)) approaches zero, causing sources to become less aggressive
as the available bandwidth decreases. When σ(t) exceeds one, sources backoff in
proportion to the amount of overload. This helps in keeping low persistent queue
length. Note that this is unlike TCP’s unguided exponential increase during
slow-start, which becomes unstable as capacity or delay increases [12, 30].

The above model makes some simplifications in order to make the analysis
tractable and differs from MLCP in the following ways: First, it uses MI and AI
together at any given time. MLCP, on the other hand, uses either MI, AI, or II
at a given time. In MLCP, AI results in a faster window growth than II because
α ≥ α

wi(t)
, ∀wi(t) ≥ 1, therefore, the MLCP window growth is less aggressive

than the growth given by the above differential equation. Second, it uses the
exact load factor, whereas MLCP uses a quantized value of the load factor to
choose the control laws and their parameters values.

6. Related Work

In this section, we discuss and relate MLCP to two categories of congestion
control schemes.

Explicit rate based/Congestion notification schemes: In RCP, each
router assigns a single rate to all flows passing through it. Determining a single
rate, however, requires an accurate estimate of the number of ongoing flows, a
difficult task considering the dynamic nature of the Internet [15]. XCP regulates
the sending rate by making routers send precise window increment/decrements
in feedback to each flow [14]. ATM ABR service, previously, also proposed
explicit rate control, however, ABR protocols usually maintain per-flow state at
the switches and are essentially rate-based whereas MLCP is a window-based
protocol and maintains no per-flow state in the routers [31]. VCP, like MLCP,
uses load factor as a signal of congestion, however, it differs from MLCP in
three ways: (1) MLCP uses 4-bits for feedback instead of 2, which allows it to
obtain near-optimal performance in terms of rate of convergence to efficiency and
fairness. (2) VCP uses a fixed tp, which presents a trade-off between fairness and
low queues, VCP chose the latter. MLCP, on the other hand, adapts tp, which
allows it to remain fair in the presence of diverse RTT flows while maintaining
low queues and (3) VCP uses AIMD in steady-state, whereas MLCP employs
AI-II-MD. This has two benefits. First, II enables smooth rate variations while
improving fairness. Second, it considerably increases robustness to congestion
[13]. BMCC uses the existing ECN bits along with a packet marking scheme to
obtain load factor estimates of up to 16-bit resolution [32, 33]. It considerably
reduces the response time of flows. However, unlike MLCP, it uses the MI-AI-
MD control law and employs a fixed tp. DCTCP has been proposed for use

24

in data center networks [34]. DCTCP employs a simple AQM scheme at the
routers that marks packets based on the queue length. Like MLCP, DCTCP
sources also adaptively backoff depending on the degree of congestion. Other
than this, DCTCP uses the same algorithms and parameters as TCP SACK and
therefore, doesn’t address TCP’s slow convergence and fairness issues in large
BDP networks.

Pure end-to-end schemes: PCP chooses the sending rate for a flow by
using a sequence of packets to determine the rate that the network can sup-
port. However, this requires accurate timers and small jitter for determining
the available bandwidth correctly. While, PCP performs well in lightly loaded
links, it is unclear how PCP’s performance and stability properties vary under
high load [35]. RAPID [36], like PCP, is a rate-based protocol that uses an
available bandwidth estimation technique to determine a sending rate for flows.
However, unlike PCP, it is able to probe for multiple rates within one RTT8. In
order to scale to gigabit and multi-gigabit networks, it requires high-precision
packet time-stamping and packet-spacing, which is challenging in today’s net-
works. HighSpeed TCP adaptively sets the increase/decrease parameters ac-
cording to the congestion window size [4]. FAST TCP uses queuing delay as a
signal of congestion and improves on TCP Vegas’s AIAD policy with a propor-
tional controller [3, 6]. CTCP [37] uses loss and delay for congestion window
growth. LTCP layers congestion control of two scales for high speed, large
RTT networks [38]. BIC adds a binary search phase into the standard TCP for
probing the available bandwidth in a logarithmic manner [5]. DCCP provides
a framework for implementing congestion control protocols without reliability
[39]. Since, MLCP builds on TCP in terms of reliability features, it would be
a relatively simple task to incorporate it into the DCCP framework. However,
since MLCP maintains low packet loss rate, real-time applications are likely to
benefit from its reliability features too. Pure end-to-end schemes do not require
explicit feedback. Therefore, it is hard for them to remain efficient and fair
while keeping low queues and low loss rate. MLCP requires only four bits of
congestion-related feedback and is able to achieve these goals in all likely net-
work scenarios. Finally, [33], [40] and [41] present methods that can be used to
implement MLCP using the existing ECN bits.

7. Conclusion and Future Work

In this paper, we analyzed the trade-off between increasing the amount of
feedback information and the resulting performance improvements for load fac-
tor based congestion control protocols. We showed that while 2-bit scheme is far
from optimal, using 3 bits is sufficient for achieving near-optimal performance in
terms of rate of convergence to efficiency. We also showed that introducing mul-
tiple levels of MD allows a load factor based congestion protocols to achieve high

8PCP probes for only a single larger rate in one RTT

25

rate of convergence to fairness, smooth rate variations and increased robustness
to congestion. Using these fundamental insights we designed a low-complexity
protocol that achieves efficient and fair bandwidth allocations, minimizes packet
loss and maintains low average queue size in high BDP networks.

We are currently investigating the efficacy of packet marking schemes in con-
veying high resolution congestion estimates using the existing ECN bits available
in the IP header. Moreover, we plan to evaluate MLCP’s performance using a
real implementation which will allow us to assess its strengths and limitations
in more practical settings. As future work, it would also be useful to study the
stability properties of the fluid model, presented in Section 5, for the case of
heterogeneous RTT flows.

The ns2 implementation code of MLCP is available at http://www.cs.

pitt.edu/~ihsan/.

References

[1] ITU’s Asia-Pacific Telecommunication and ICT Indicators Report focuses
on broadband connectivity: Too much or too little?, http://www.itu.

int/newsroom/press_releases/2008/25.html, 2008.

[2] V. Jacobson, Congestion Avoidance and Control, in: Proceedings of ACM
SIGCOMM, 1988.

[3] C. Jin, D. Wei, S. Low, FAST TCP: Motivation, Architecture, Algorithms
and Performance, in: IEEE INFOCOM, 2004.

[4] S. Floyd, HighSpeed TCP for Large Congestion Windows, in: IETF RFC
3649, 2003.

[5] L. Xu, K. Harfoush, I. Rhee, Binary Increase Congestion Control (BIC) for
Fast Long-Distance Networks, in: IEEE INFOCOM, 2004.

[6] L. Brakmo, L. Peterson, TCP Vegas: End to End Congestion Avoidance
on a Global Internet, in: IEEE J. Selected Areas in Communications, 1995.

[7] H. Bullot, R. L. Cottrell, Evaluation of Advanced TCP Stacks on Fast
Long-Distance Production Networks., URL http://www.slac.stanford.

edu/grp/scs/net/talk03/tcp-slac-nov03.pdf, 2003.

[8] S. Floyd, V. Jacobson, Random Early Detection Gateways for Congestion
Avoidance, in: IEEE/ACM Trans. Networking, 1(4):397-413, 1993.

[9] S. Athuraliya, V. Li, S. Low, Q. Yin, REM: Active Queue Management, in:
IEEE Network, 15(3):48-53, 2001.

[10] K. K. Ramakrishnan, S. Floyd, The Addition of Explicit Congestion Noti-
fication (ECN) to IP, in: IETF RFC 3168, 2001.

26

[11] C. Hollot, V. Misra, D. Towsley, W. Gong, Analysis and Design of Con-
trollers for AQM Routers Supporting TCP Flows, in: IEEE/ACM Trans.
Automatic Control, 47(6):945-959, 2002.

[12] S. Low, F. Paganini, J. Wang, J. Doyle, Linear Stability of TCP/RED and
a Scalable Control, in: Computer Networks Journal, 43(5):633-647, 2003.

[13] Y. Xia, L. Subramanian, I. Stoica, S. Kalyanaraman, One More Bit Is
Enough, in: Processings of ACM SIGCOMM, 2005.

[14] D. Katabi, M. Handley, C. Rohrs, Internet Congestion Control for High
Bandwidth-Delay Product Networks, in: Processings of ACM SIGCOMM,
2002.

[15] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McKeown, Procesor Shar-
ing Flows in the Internet, in: Thirteenth International Workshop on Qual-
ity of Service 2005, 2005.

[16] R. Jain, S. Kalyanaraman, R. Viswanathan, The OSU Scheme for Con-
gestion Avoidance in ATM Networks: Lessons Learnt and Extensions, in:
Performance Evaluation, 31(1):67-88, 1997.

[17] ns-2 Network Simulator, URL http://www.isi.edu/nsnam/ns/, .

[18] R. Shorten, F. Wirth, D. Leith, A positive systems model of TCP-like
congestion control: Asymptotic results, IEEE/ACM Trans. Networking 14
(2006) 616–629.

[19] W.-T. Tan, A. Zakhor, Real-time Internet video using error resilient scal-
able compression and TCP-friendly transport protocol, in: IEEE Trans. on
Multimedia, 1999.

[20] S. Kunniyur, R. Srikant, Analysis and Design of an Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management, in: Proceedings of ACM
SIGCOMM, 2001.

[21] N. Dukkipati, Rate Control Protocol (RCP): Congestion control to make
flows complete quickly, Ph.D. thesis, Department of Electrical Engineering,
Stanford University, 2008.

[22] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An Algorithm for In-
creasing the Robustness of RED’s Active Queue Management, Tech. Rep.,
URL http://www.icir.org/floyd/papers/adaptiveRed.pdf, 2001.

[23] D. D. Clark, W. Fang, Explicit allocation of best-effort packet delivery
service, IEEE/ACM Trans. Networking 6 (4) (1998) 362–373, ISSN 1063-
6692.

[24] M. Crovella, A. Bestavros, Self-Similarity in World Wide Web Traffic:
Evidence and Possible Causes, in: IEEE/ACM Trans. Networking, 1997.

27

[25] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, T. Roughgarden, Routers
with Very Small Buffers, in: IEEE INFOCOM, 2006.

[26] R. N. Shorten, D. J. Leith, On queue provisioning, network efficiency and
the transmission control protocol, IEEE/ACM Trans. Netw. 15 (4) (2007)
866–877, ISSN 1063-6692.

[27] Y. Gu, D. Towsley, C. V. Hollot, H. Zhang, Congestion Control for Small
Buffer High Speed Networks, IEEE INFOCOM .

[28] A. Dhamdhere, C. Dovrolis, Open issues in router buffer sizing, SIGCOMM
Comput. Commun. Rev. 36 (1) (2006) 87–92, ISSN 0146-4833.

[29] G. Appenzeller, I. Keslassy, N. McKeown, Sizing router buffers, SIGCOMM
Comput. Commun. Rev. 34 (4) (2004) 281–292, ISSN 0146-4833.

[30] S. Ha, I. Rhee, Hybrid Slow Start for High-Bandwidth and Long-Distance
Networks, in: PFLDnet, 2008.

[31] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, B. Vandalore, The ER-
ICA Switch Algorithm for ABR Traffic Management in ATM Networks, in:
IEEE/ACM Trans. Networking, 8(1), 2000.

[32] I. A. Qazi, L. L. H. Andrew, T. Znati, Two bits are enough, in: ACM
SIGCOMM, Seattle, WA, (Extended Abstract), 2008.

[33] I. A. Qazi, L. L. H. Andrew, T. Znati, Congestion Control using Efficient
Explicit Feedback, in: Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, 2009.

[34] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, M. Sridharan, DCTCP: Efficient Packet Transport for the
Commoditized Data Center, in: ACM SIGCOMM, 2010.

[35] T. Anderson, A. Collins, A. Krishnamurthy, J. Zahorjan, PCP: Efficient
Endpoint Congestion Control, in: NSDI‘06, 2006.

[36] V. V. R. Konda, J. Kaur, RAPID: Shrinking the Congestion-Control
Timescale., in: IEEE INFOCOM, 2009.

[37] K. Tan, J. Song, A Compound TCP Approach for High-speed and Long
Distance Networks, in: IEEE INFOCOM, 2006.

[38] S. Bhandarkar, S. Jain, A. Reddy, Improving TCP Performance in High
Bandwidth High RTT Links Using Layered Congestion Control, in: PFLD-
Net, 2005.

[39] E. Kohler, M. Handley, S. Floyd, Designing DCCP: Congestion Control
Without Reliability, in: Proceedings of ACM SIGCOMM, 2006.

[40] X. Li, H. Yousefi’zadeh, MPCP: multi packet congestion-control protocol,
SIGCOMM Comput. Commun. Rev. 39 (5) (2009) 5–11, ISSN 0146-4833.

28

[41] N. Vasic, S. Kuntimaddi, D. Kostic, One Bit Is Enough: a Framework for
Deploying Explicit Feedback Congestion Control Protocols, in: Proceed-
ings of The First International Conference on COMmunication Systems
and NETworkS (COMSNETS), 2009.

8. Authors’ Biographies

Ihsan Ayyub Qazi Ihsan Ayyub Qazi is a Ph.D. Candidate in the Depart-

ment of Computer Science at the University of Pittsburgh, PA, USA. He received

his BSc (Hons) degree in Computer Science and Mathematics from the Lahore Uni-

versity of Management Sciences (LUMS), Lahore, Pakistan in 2005. He is a recipi-

ent of the prestigious Andrew Mellon Predoctoral Fellowship for the year 2009-2010.

His current research interests include congestion control, routing, and MAC design

for wired and wireless networks, virtualized large-scale testbeds for experimentation,

and performance modeling of networked systems. For more information, please see:

http://www.cs.pitt.edu/∼ihsan

Taieb Znati Taieb Znati is a Professor in the Department of Computer Science

at the University of Pittsburgh with a joint appointment in Telecommunications in

the Department of Information Science. He obtained his Ph.D. degree in Computer

Science from Michigan State University, East Lansing in 1988, and a Master of Sci-

ence Degree from Purdue University, West Lafayette, Indiana. He is currently on

leave from the University of Pittsburgh to serve as Division Director in the Division of

Computer and Network Systems (CNS) at the National Science Foundation. He has

29

served as general chair for a number of networking conferences including INFOCOM

2005 and SECON 2004. He is a member of the steering committee of ACM SenSys and

has served on the editorial board of several journals including IEEE Transactions of

Parallel and Distributed Systems, Wireless Networks Journal of Mobile Communica-

tion, Computation and Information, Journal of Adhoc Networks, Pervasive and Mobile

Computing Journal. International Journal of Parallel and Distributed Systems and

Networks, and Journal on Wireless Systems and Mobile Computing. His current re-

search interests include routing and congestion in high speed networks, QoS in wired

and wireless networks, data dissemination in wireless sensor networks, performance

analysis of network protocols, and distributed systems. For more information, please

see: http://www.cs.pitt.edu/∼znati

30

