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Abstract. Developing energy consumption models for smart buildings
is important for studying demand response, home energy management,
and distribution network simulation. In this work, we develop parsimo-
nious Markovian models of smart buildings for different periods in a
day for predicting electricity consumption. To develop these models, we
collect two data sets with widely different load profiles over a period of
seven months and one year, respectively. We validate the accuracy of our
models for load prediction and compare our results with neural networks.
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1 Introduction

The rapid ongoing deployment of the smart grid has led to an increasing need
for accurate and parsimonious models for electrical loads in smart buildings,
such as smart homes and offices [1]. Building accurate models is important for
several smart grid components and applications. These include modeling of de-
mand response, home energy management, and distribution network sizing. Most
attempts at characterizing loads of smart buildings has led to models that lack
parsimony as their inputs include the set of appliances, the number of occupants,
appliance load models, and the occupancy behavior. Obtaining these inputs in
any realistic situation is challenging [2]. Motivated by the need for accuracy and
parsimony, in this work, we develop models for load prediction in smart buildings
and focus on Markovian models.

Given prior load data, we derive models that allow prediction for different
periods of a day. We then analyze the combined behavior of these models in
predicting the load for the entire day. To this end, we propose analytical models
based on Continuous Time Markov Chains (CTMC) and Discrete Time Markov
Chains (DTMC). Further, we compare the accuracy of our models with an Artifi-
cial Neural Network (ANN). To develop these models, we collect measurements
from two buildings with widely different load profiles over a period of seven
months and one year, respectively. Our results show that each period of a day
can be modeled accurately by a Markov model with only few states. We validate
our approach by comparing the cumulative distribution function (CDF) of the
load generated by numerical simulation of the models with the actual load.
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We make four contributions: (i) we collect real load measurements at a gran-
ularity of 30minutes for buildings with widely different load profiles, (ii) we
develop parsimonious Markov models for different periods of the day, (iii) we
perform comparison with an ANN, (iv) we validate that our models provide
good accuracy for predicting electrical loads.

The rest of the paper is organized as follows: we discuss related work in
Section 2, describe our data sets in Section 3, and present models in Section 4.
We evaluate the models in Section 5 and offer concluding remarks in Section 6.

2 Background and Related Work

Many deterministic and probabilistic models have been proposed for load fore-
casting in the past [3, 4]. It is important for models to be parsimonious as highly
parameterized models make it difficult to cover model space when doing simula-
tions or analysis. However, parsimony comes at a cost as a parsimonious model
has to necessarily ignore one or more of the many factors that determine the
load of smart buildings. These factors include the type of appliances, time of
day, size of the house, etc. In this work, we focus on Markov models for two rea-
sons. First, electricity consumption arises from the superposition of a finite set
of on-off loads from individual appliances. Such superpositions have been shown
in the past to be well-modeled using Markovian models. Second, Markov models
have been extensively used to model sequential events (e.g., in human speech)
and have been shown to combine both parsimony and descriptive power [5].

ANNs are commonly used for load forecasting but can require large number
of parameters for achieving high accuracy [4, 6]. Omid et al. proposed CTMC
models for transformer sizing which relates to prediction of peak load [7]. De-
tailed models for smart buildings, such as residential buildings, have also been
presented in the civil engineering, power engineering, and environmental studies
[2]. However, these models lack parsimony and tend to be highly parameterized.

3 Datasets

We consider two data sets with different load profiles and measure the real-time
energy consumption (in kWh) at a granularity of 30minutes, which is standard in
modern smart meters. The first data set we collected is of a male hostel building
with 360 occupants at a large University in Lahore, Pakistan. Figure 1 shows the
load variations during a single day as well as across weeks during the month of
November in 2011. Observe that the consumption tends to remain high from 6 pm
till 2 am and is much lower between 6:30 am and 3pm even though variations
in load exist during these times. During other times, the load generally remains
moderate. Moreover, these trends exhibit a great degree of periodicity (see Figure
1(b)) and seem to match the typical academic activities in a University. For
instance, during daytime students are on campus and consumption is expected
to be low. The second data set we consider is of a large software company, which
exhibits the load characteristics of a typical office (see Figures 1(c) and 1(d));
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(a) Single-day Consumption (dataset-1).
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(b) Monthly Consumption (dataset-1).
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(c) Single-day consumption (dataset-2).
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(d) Monthly Consumption (dataset-2).

Fig. 1. Electric load variations in dataset-1 and dataset-2.

with high consumption from 9 am to 5 pm, low consumption between 12 am-
9 am (which represents the base load), and medium consumption during other
times, suggesting that people tend to work beyond their office hours. Unlike in
dataset-1, we observe that weekends exhibit very different load profile compared
to weekdays as shown in Figure 1(d).

4 Electricity Consumption Models

We now describe our approach for building Markov models by answering the
following questions: (a) how many Markov models do we need?, (b) how are the

Markov states chosen?, (c) how many states do we need in each model?, and (d)
how do we merge models to allow prediction for the entire day?

AMarkov chain is a stochastic process which satisfies the Markovian property
i.e., the conditional distribution of any future state, given past states, depends

only on the present state. In DTMCs, state transitions happen at specific time
steps whereas in CTMCs they can happen at any time. The dynamics of a k-
state DTMC and CTMC are represented by a k×k transition probability matrix
and a k× k transition rate matrix (denoted by Q), respectively, whose elements
qij represent the rate/probability of departing from state i to arrive at state j.
In our Markov models, we assign a value Ri to each state i, which represents
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the amount of energy consumed in this state. Consequently, the load is modeled
using a k-state Markov process defined by the {Q,R} tuple.

The number of Markov models we need depends on the load profile e.g., in
our data sets, load is highly sensitive to the time of day; the probability that the
minimum energy is consumed at 10 pm in dataset-1 is far lower than at 10 am.
To deal with this issue, we divide the load profile of a day into three periods: on,
mid and off peak such that the consumption levels remain almost stationary
during these periods. Therefore, for each data set, we need three models. In
general, however, these periods might span different hours of the day depending
on geographical location or seasons. Also, we observed that in case of dataset-
2, we need separate models for weekdays and weekends due to different load
characteristics.

The number of states in a Markov model depends on the variability in load
during the defined periods. For this, we need a goodness-of-fit metric, which we
discuss in Section 5. For making a k -state Markov model for a given data set,
we first use the k-means clustering algorithm to find k centroids of the data set;
these centroids are the required k states of our model and their values act as
quantization levels for electricity consumption, giving us a quantized data set.
This quantized data set is then used for deriving transition rate and transition
probability matrices for CTMCs and DTMCs, respectively. For a k -state CTMC,

qij =
no. of transitions fromR(i) toR(j) in clustered load

total time spent in state i before a transition to state j
(1)

where i 6= j and qii = −
∑k

j=1,j 6=i qij such that each row of the Q matrix sums
to zero. The entries of the Q matrix for a DTMC are defined as:

qij =
no. of transitions fromR(i) toR(j) in clustered load

total no. of transitions fromstate i to any other state (including i)
(2)

Once the Qmatrices are derived, we perform numerical simulation of the Markov
models to predict load. To allow prediction of at least 24 hours, we need to merge
models for different periods. For enabling smooth transitions, the Markov process
transitions to the nearest state in the new period and uses the corresponding Q

matrix from there on.

5 Evaluation

To compare Markov models with different number of states, we need a metric
that captures the efficacy of a model. We use the area between the CDF of the
measured load and the CDF obtained from the Markov model, which represents
how far two probability distributions are from each other [7]. We then normalize
this by the area under the CDF of measured load to calculate the CDF error as:

CDFerror =
Area betweenCDF of measured load andmodeled load

CDF Area of themeasured load
×100. (3)
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Fig. 2. Testing individual model’s suggestion of optimum number of states

The higher the value of this metric, the greater the modeling error. Note that
when the modeled load exactly matches the measured load, CDFerror is zero.

Due to the measurement granularity of 30mins in our data sets, we have
only 48 load samples per day. Consequently, we obtain the model parameters
(i.e., the Q and R matrices) by considering data of a month, which gives us a
total of 1440 samples. This allows us to effectively capture the load variations in
the data sets. In addition, the study of our data sets reveals that consumption
patterns do not show much change during a month. With improved sampling
granularity, the same models can be used while considering less history [2][7].

We first evaluate the Markov models using CTMC for each period separately.
To do this, the load profile is divided into on, mid and off peak periods based on
the time of day, and then these smaller data sets are used to obtain the Q and R

matrices. Figure 2(a) shows the CDFerror as a function of the number of states
for each model for dataset-1 for November 2011. Observe that the CDFerror

decreases with the number of states and is minimum when 15 states are used.

Intuitively, using 15-state Markov models for each period should yield the
minimum CDFerror if the periods are uncorrelated. To validate this, we analyze
the merged model in which all three models are used together to generate a
day-long load profile. We use 15 states for mid and off periods and vary the
number of states in the on-model. Figure 2(b) shows that we can achieve the
minimum CDFerror using smaller number of states in the merged model than by
using 15-states in each model (Note that similar results were obtained when the
mid and off states were varied). This is due to the fact that the boundaries of
the on, mid and off periods, where state transitions occur across period models,
are correlated and form a reasonable portion of the sample set (e.g., 5 out of 48
samples in a day for dataset-1 are on these boundaries). This inter-dependence
between models increases if we divide a day into more periods. Due to this,
running the models independently and then stitching together the results does
not correspond well with the results suggested by the merged model.

Comparison between CTMC and DTMC models: We use a 3-tuple
(a,b,c) to represent the number of states used in the on, mid and off models,
respectively. To compare these models, we find the least number of states which
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(b) DTMC models for dataset1
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(c) CTMC models for dataset2
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(d) DTMC models for dataset2

Fig. 3. Modeling errors with variations in states

give us a CDFerror below a threshold of 3%. Figure 3(b) shows the CDFerror of
the DTMC for the month of December. Observe that a minimum of 8 states are
required to obtain an error lower than 3% corresponding to tuples such as (2,3,3).
With CTMC, 7 states are required (e.g., with (3,2,2)) as shown in Figure 3(a). In
dataset-2, the DTMC and CTMC models require 7 and 10 states corresponding
to tuples (3,2,2) and (5,3,2), respectively (see Figures 3(d) and 3(c)). The CTMC
model requires much more states in dataset-2 than the DTMC model because of
the larger variability in the on period of the data set, which increases the penalty
of a misprediction, especially when the process spends more than 30minutes in a
state. Increasing the number of states decreases the likelihood of a large deviation
from the true load, thus reducing the penalty of a misprediction. Another trend
observed in Figure 3(c) is the increase in CDFerror with the number of off

states. Since the off -period captures the base load (which is fairly constant), 2
states are enough to model the load and increasing the number of states results in
inaccurate centroids, which increases the error. These results show that modeling
error depends on how much time the process spends in a period and how variable
the consumption is within that period.

Prediction: We now use CTMC and DTMC based models for load predic-
tion. In particular, we derive the Q and R matrices for the month of November to
predict load for the next 15 days of December. Figure 4(a) shows the CDFerror

of the CTMC model for a 15-day prediction for dataset-1. Observe that the
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Fig. 4. CTMC and DTMC for 15 days prediction
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Fig. 5. Error comparisons for ANN and Markov models

minimum CDFerror is 2.92% given by (5,2,3). In case of DTMC, the minimum
CDFerror is 5.37% given by (4,2,4) as shown in Figure 4(b). These results show
that Markov models based on CTMCs and DTMCs can be used for prediction
with CTMCs yielding potentially better results for data sets similar to dataset-1.

5.1 Comparison with Artificial Neural Networks

The neural network we use is a two-layer feed-forward network with sigmoid
hidden layer neurons and linear output neurons. The network is trained using
the Levenberg-Marquardt back propagation algorithm using its implementation
available in the Neural Network Toolbox in MATLAB [8]. A commonly used
error metric for ANNs is the Mean-Squared Error (MSE). In order to compare
the results obtained using the neural network and the Markov models, we use
both MSE as well as CDFerror. Figure 5(a) shows the CDF of the actual load
(for dataset-1), ANN predicted CDF, DTMC predicted CDF, and CTMC pre-
dicted CDF. Observe that the Markov models show a stair-case kind of CDF.
This is due to the quantization of load values based on k-means clustering.
The CDFerror for the CTMC model with 6 on states, 3 mid states and 3 off

states was 4.1%, which was the minimum we observed across all the models. The
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CDFerror for the neural network with eighty hidden layer neurons and 30%, 35%,
35% training, validation and testing sample percentages, respectively was 4.9%.
We use eighty neurons because we found that the CDFerror stabilized after ≈ 60
neurons. Moreover, we tested various combinations of sample percentages for the
three phases and found the MSE and CDFerror to be minimum for the above
combination. The CDFerror for the DTMC Model with 6 on states, 3 mid states
and 3 off states was 5.4%.

Figure 5(b) shows the MSE of ANN as a function of the number of neurons.
While the MSE remains less than 0.08, it increases when the number of neurons
are increased beyond ≈ 80. This trend is likely due to over-fitting of data which
reduces ANN’s ability to generalize. In case of Markov models, we did not observe
any significant variations in MSE as we varied the number of states. However,
the mean MSE for the Markov model as a function of the states (not shown due
to space limitations) was ≈ 0.077. Note that MSE may not be an ideal metric
for evaluating Markov models as it does not capture the distribution of loads.

6 Conclusion and Future Work

We presented Markov models for load prediction and performed comparison with
ANNs. We derived k-state models based on CTMCs and DTMCs for different
periods of the day. Our results show that the models require small number of
states, are parsimonious, and are accurate enough for load forecasting. In the
future, we plan to evaluate these models on data sets with finer-granularity.
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