

EE 414/517, CS 437/5317: Deep Learning

Fall 2024

Personnel Details	
Lead Instructor	Hassan Mohy-ud-Din, PhD
Room No. and Phone	9-246, SBASSE Tesla Wing. Telephone Extension: 8505.
Office Hours	Hassan: appointment by email (hassan.mohyuddin@lums.edu.pk)
Collectructors	ТВА (), ТВА (),
	TBA (), and TBA ()
Co-Instructors' Office Hours	ТВА: (), ТВА: (),
co-instructors office floors	TBA: (), and TBA: ()
Course URL	LMS Site
	LUMS offers a range of academic and other services to support students. These are mentioned below, and you are
Support Services	encouraged to use these in addition to in-class assistance from course staff. For a complete list of campus support
	services available for you click here: https://advising.lums.edu.pk/#supportservices

Course Offering Details					
Credit Hours	3	3			
Classes (per week)	2	Duration	75 min each	Timings & Venue	Tuesday & Thursday, 11:30 AM – 12.45 PM, SBASSE TBA

Course Teaching Methodology				
Main Lectures	Mode	On-campus lectures	Duration (per week)	75 minutes
Supplementary Lectures/Tutorials	Mode	Pre-recorded videos	Duration (occasionally)	Varied
Additional Problem-solving Sessions	Mode	In-office OR Zoom	Duration (per week)	Varied

Course Distribution		
Credit Hours	3	
Core	-	
Elective	Electrical Engineering, Mathematics, Computer Science	
	MS and PhD students OR	
Open for Student Category	CS200/EE201 (Introduction to Programming) AND MATH120/Math120H/Math 121 (Linear Algebra) OR	
	• PHY 505 (Computational Physics) AND MATH120/Math120H/Math 121 (Linear Algebra)	

Course Description

Deep Learning has created a revolution in the past decade with numerous applications in science and engineering. A deep learning framework consists of a neural network (architecture) that imitates (very coarsely) the learning process of human beings. A deep neural network can either be trained on sufficiently annotated examples (aka supervised learning) or annotation-free examples (aka unsupervised learning) with the goal that the trained model generalizes well to unseen data. Deep learning has a strong mathematical and practical component that drives this learning framework in almost all applications.

In this course, students will learn the basic theory and applications of deep neural networks with a special focus on supervised and unsupervised learning with convolutional neural networks, ensemble learning, transfer learning, autoencoders, GANs, and knowledge distillation. Students will learn to train deep neural networks in PyTorch for various applications in computer vision and medical imaging.

Course Prerequisite(s)/Co-Requisite(s)		
Pre-requisites	 CS200/EE201 (Introduction to Programming) AND MATH120/Math120H/Math 121 (Linear Algebra) OR PHY 505 (Computational Physics) AND MATH120/Math120H/Math 121 (Linear Algebra) 	
Recommended	EE 514 or CS 535 (Machine Learning), Python (basic understanding)	

Assessed Co	urse Learning Outcomes					
	The students should be abl	The students should be able to:				
CLO1:	Understand the (new) para	digm of data-driven learning.				
CLO2:	Learn the basic theory and	applications of deep learning.				
CLO3:	Understand various aspect	s of training a deep neural netw	ork including initialization, batch size, lea	ning rate, optimizer, loss		
	function, regularization, da	ta augmentation, etc.				
CLO4:	Learn to perform supervised and unsupervised deep learning in PyTorch.					
CLO5:	Understand advanced concepts of deep learning including ensemble learning, autoencoders, GANs, and knowledge distillation, etc.					
Relation to EE Program Outcomes						
EE-414 CLOs	Related PLOs	Levels of Learning	Teaching Methods	CLO Attainment checked in		
CLO1	PLO2	Cog1, Cog2	Instruction, Homework	Assignments/Quizzes/Exam		
CLO2	PLO2	Cog1, Cog2	Instruction, Homework	Assignments/Quizzes/Exam		
CLO3	PLO2	Cog1, Cog2	Instruction, Homework	Assignments/Quizzes/Exam		
CLO4	PLO3	Cog3	Instruction, Homework	Assignments		
CLO5	PLO3	Cog3	Instruction, Homework	Assignments/Quizzes/Exam		

Grading Breakup and Policy		
Assignments	45%	N-1 policy on assignments. No late submissions are acceptable.
Quizzes	25%	N-2 policy on quizzes. Can be announced or unannounced. No retakes will be allowed.
Exam	30%	Combined and closed book.

Examination De	tail
	Yes/No: Yes
	Combine/Separate: combined
Exam	Duration: 3 hours
	Preferred Date: second half of the semester
	Exam Specifications: closed book, closed notes, no help sheets, all relevant formulas will be provided in the question paper.

Campus Support and Key University Policies

Campus Supports

Students are strongly encouraged to meet course instructors and TA's during office hours for assistance in course-content, understand the course's expectations from enrolled students, etc. Beyond the course, students are also encouraged to use a variety of other resources. (Instructors are also encouraged to refer students to these resources when needed.) These resources include Counseling and Psychological Services/CAPS (for mental health), LUMS Medical Center/LMC (for physical health), Office of Accessibility & Inclusion/ OAI (for long-term disabilities), advising staff dedicated to supporting and guiding students in each school, <u>online resources</u>, etc. To view all support services, their specific role as well as contact information <u>click here</u>.

Academic Honesty/Plagiarism

LUMS has zero tolerance for academic dishonesty. Students are responsible for upholding academic integrity. If unsure, refer to the student handbook and consult with instructors/teaching assistants. To check for plagiarism before essay submission, use <u>similarity@lums.edu.pk</u>. Consult the following resources: 1) <u>Academic and Intellectual Integrity</u> and 2) <u>Understanding and Avoiding Plagiarism</u>.

LUMS Academic Accommodations/Petitions Policy

Long-term medical conditions are accommodated through the Office of Accessibility & Inclusion (OAI). Short-term emergencies that impact studies are either handled by the course instructor or Student Support Services (SSS). For more information, please see Missed Instrument or "Petition" FAQs for students and faculty at https://rb.gy/8sjlh.

LUMS Sexual Harassment Policy

LUMS and this class are a harassment-free zone. No behavior that makes someone uncomfortable or negatively impacts the class or individual's potential will be tolerated. To report sexual harassment experienced or observed in class, please contact me. For further support or to file a complaint, contact OAI at <u>oai@lums.edu.pk</u> or <u>harassment@lums.edu.pk</u>. You may choose to file an informal or formal complaint to put an end to

the offending behavior. You can also call their Anti-Harassment helpline at 042-35608877 for advice or concerns. For more information: Harassment, Bullying & Other Interpersonal Misconduct: Presentation.

SSE Council on Equity and Belonging

In addition to LUMS resources, SSE's Council on Belonging and Equity is committed to devising ways to provide a safe, inclusive and respectful learning environment for students, faculty and staff. To seek counsel related to any issues, please feel free to approach either a member of the council or email at <u>cbe.sse@lums.edu.pk</u>.

Rights and Code of Conduct for Online Teaching

The misuse of online modes of communication is unacceptable. TAs and Faculty will seek consent before the recording of live online lectures or tutorials. Please ensure, if you do not wish to be recorded during a session to inform the faculty member. Please also ensure that you prioritize formal means of communication (email, LMS) over informal means to communicate with course staff. Kindly follow the copyright rules attached with the educational materials uploaded on LMS by the instructor.

Course O	verview		
Week No.	Reference Readings	Торіс	Related CLOs
1	Reading Assignment # 1 Tutorial # 1 Assignment # 0	Introduction with Applications We will cover the following topics: Real-world applications from numerous domains. Why Learning is essential? What is Artificial Intelligence, Machine Learning, and Deep Learning? Learning vs Inference – Overfitting and Generalization Types of Learning: Fully Supervised, Unsupervised, Semi-supervised, Self-Supervised, and Reinforcement Learning. Regression vs Classification. ChatGPT and Large Language Models What is Intelligence? Noam Chomsky's perspective on intelligence The anticipated world out of AI Embracing AI or Resisting AI – Role of Natural Selection Explainability, Interpretability, Reproducibility, and Replicability	CLO1
2-3	Reading Assignment # 2 Tutorial # 2	Gradient-based Optimization We will cover the following topics: Review of Vector Calculus. Optimization. First-order optimization method. Learning formulated as an optimization problem. The problem of parameter estimation. Variants of first-order methods including Stochastic Gradient Descent (SGD). Loss functions: Topology, Optimal solution, Convexity, etc. Flat minima and generalizability.	CLO3
	Reading Assignment # 2 Tutorial # 2 Assignment # 1	First-order Optimization Algorithms We will talk about several variants of SGD including: • Momentum method. • Nesterov accelerated gradient method. • Adam method. • Learning rate policies	CLO3
4 – 5	Reading Assignment # 3 Tutorial # 3 and Tutorial # 4 Assignment # 2	Deep Learning – A Modern Learning Paradigm We will talk about: • Learning Methodology – Conventional vs Modern Paradigm Human visual system – An inspiration A brief timeline of Deep Learning.	CLO2

		Perceptron and Multi-layered Perceptron model.	
		When is Learning possible?	
		(Multi-layered) Sigmoid neuron model.	
		Neural network architecture and MNIST problem.	
		Backpropagation	
		Limitation of sigmoid neuron models	
		Aspects of Neural Network	
		We will focus on the following aspects:	
		Activation functions.	
		• Vanishing gradient problem and exploding gradient problem.	
	Deeding Assignment # 4	Initialization schemes.	
6 7		Overfitting, underfitting, and reasonable fitting in deep neural networks.	CL 0.2
0-7	Assignment # 2	• Regularization includes L_1 and L_2 weight decay, dropout, data augmentation, and	CLUS
	Assignment # 5	early stopping.	
		Implicit vs Explicit Regularization.	
		Bias-Variance trade-off, Model complexity, and Training-Validation performance	
		trade-off.	
		Batch size.	
		Convolutional Neural Network	
	Reading Assignment # 5 Tutorial # 6 Assignment # 4	We will cover in-depth the mathematical structure of convolutional neural network. We	
		will also study the following important modules:	CL 0.2
8 – 9		Batch normalization	
		Convolutional filters	CL03, CL04
		Activation units	
		Pooling	
		Advanced Topics in Deep Learning	
	Reading Assignment # 6 and	We will study the following topics:	
	Reading Assignment # 7	Autoencoders	
10 11	Tutorial # 7 and Tutorial # 8	• GANs	CLOF
10 - 14	Assignment # 5,	Knowledge Distillation	CLUS
	Assignment # 6, and	Contrastive Learning	
	Assignment # 7	Diffusion Models	
		Transformers	

Textbook(s)/Supplementary Readings

Books on Deep Learning:

- Christopher M. Bishop and Hugh Bishop, Deep Learning: Foundations and Concepts, Springer (2024). [Ebook]
- Simon J. D. Prince, Understanding Deep Learning, MIT Press, (2024). [Ebook]
- Francois Fleuret, The Little Book of Deep Learning, Creative Commons, (2023). [Ebook]
- Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, Dive into Deep Learning, arXiv, (2021). [Ebook]
- Pradeepta Mishra, PyTorch Recipes, Apress, Springer, (2019). [Ebook]
- Sandro Skansi, Introduction to Deep Learning, Springer (2018). [Ebook]
- Charu C. Aggarwal, Neural Networks and Deep Learning, Springer International Publishing, (2018). [Ebook]
- Francois Chollet, Deep Learning with Python, Manning Publications, (2018).
- Antonia Gulli and Sujit Pal, Deep Learning with Keras, Packt Publishing Ltd, (2017).
- Nikhil Ketkar, Deep Learning with Python: A hands-on introduction, APress, (2017). [Ebook]
- Nikhil Buduma and Nicholas Lacascio, Fundamentals of Deep Learning: Designing next-generation machine intelligence algorithms, O'Reilly Media, Inc., (2017). [Weblink]
- Phil Kim, MATLAB deep learning With Machine Learning, Neural Networks and Artificial Intelligence, Springer, (2017). [Ebook]
- Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, (2016). [Ebook]
- Michael Nielsen, Neural Networks and Deep Learning, Determination press, (2015). [Ebook]

Books on Optimization:

- Jorge Nocedal and Stephen Wright, Numerical Optimization, Springer Science & Business Media, (2006).
- Stephen P. Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge University Press, (2004). [Ebook]
- Dimitri P. Bertsekas, Nonlinear Programming, Athena Scientific, (1999).

Prepared and revised by:	Dr. Hassan Mohy-ud-Din
Revision Date:	July 15, 2024