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Designing and deployment of state-of-the-art electric vehicles (EVs) in terms of low cost and high driving
range with appropriate reliability and security are identified as the key towards decarbonization of the
transportation sector. Nevertheless, the utilization of lithium-ion batteries face a core difficulty associated
with environmental degradation factors, capacity fade, aging-induced degradation, and end-of-life repurposing.
These factors play a pivotal role in the field of EVs. In this regard, state-of-health (SOH) and remaining useful
life (RUL) estimation outlines the efficacy of the batteries as well as facilitate in the development and testing
of numerous EV optimizations with identification of parameters that will enhance and further improve their
efficiency. Both indices give an accurate estimation of the battery performance, maintenance, prognostics, and
health management. Accordingly, machine learning (ML) techniques provide a significant developmental scope
as best parameters and approaches cannot be identified for these estimations. ML strategies comparatively
provide a non-invasive approach with low computation and high accuracy considering the scalability and
timescale issues of battery degradation. This paper objectively provides an inclusively extensive review on
these topics based on the research conducted over the past decade. An in-depth introductory is provided for
SOH and RUL estimation highlighting their process and significance. Furthermore, numerous ML techniques
are thoroughly and independently investigated based on each category and sub-category implemented for
SOH and RUL measurement. Finally, applications-oriented discussion that explicates the advantages in terms
of accuracy and computation is presented that targets to provide an insight for further development in this
field of research.

1. Introduction the power performance, operation and economy of EVs. It is, therefore,
important to accurately manage the battery pack to extend its lifespan,

Battery energy storage system (BESS) is the key for the transport improve its reliability and lower its cost [5]. EVs operate on batteries

electrification and have been widely used in automobile, aviation, and
other relevant industrial fields [1]. The usage of BESS as a main power
source in electric vehicles (EV), has a significant potential to provide

that have a limited life span and charging efficiency, and thus energy
consumption is highly dependent on the condition of batteries [6].

needed energy storage to contribute to the reduction of fossil fuel re-
serve. It acts as a promising technology for reducing the environmental
impacts of transportation [2]. The rapid development of the industries
related to cell-phones, computers, power-tools and EVs has increased
the demand for power batteries [3]. In recent years, battery technology
has made significant progress in many areas, such as improved energy
density and power density, which is of great importance to energy
storage and plays a key role in many real-world applications [4]. Partic-
ularly, the battery pack acts as a key component, and is quite critical to
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Among different kinds of batteries, lithium-ion (Li-ion) battery is the
fastest developed and proved to be the most promising technology for
energy storage [7]. Over the last few decades, the significant advance-
ments in Li-ion batteries have attracted significant recognition due to
their high energy density, low maintenance, and efficient performance.
The reliability and safety evaluation of Li-ion batteries has become an
important issue for battery technology manufacturers, in particular for
future applications’ performance [8].
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Applications employing Li-ion batteries face difficulties in terms of
battery degradation which occurs both over time and due to usage.
The degradation depends on the battery chemistry, environmental con-
ditions, and operating patterns [9]. The aging-induced degradation in
battery capacity and power is inevitable which reduces its performance
and service life, and even gives rise to some safety hazards. Battery
degradation take place in every condition, but in different propor-
tions as usage and external conditions interact to provoke degradation.
Curbing degradation has been recognized as one of the sustainable
approach for battery resource management, as the extension in bat-
tery life decreases costs and environmental burdens that comes along
with the production of new batteries [10,11]. From the perspective of
the battery operation, the degradation model needs to be developed,
especially to evaluate the influence of the key parameters on battery
health and life and to curb the degradation. Understanding the oper-
ation fundamentals and modelling the degradation of Li-ion batteries
assists explicate operations that can extend battery lifetime [12]. It is
essential to precisely estimate the battery health, and model the battery
degradation and aging mechanism to establish the requisite operational
performance and optimize the battery design and management of Li-ion
batteries.

State of health (SOH) and remaining useful life (RUL) are the most
vital parameters of Li-ion battery to evaluate the contemporary battery
health condition and the battery performance [13]. These parameters
are largely associated with the battery degradation model as they track
the actual performance of batteries in operation, indicate the current
capacity of a Li-ion battery to store and dispense energy, and describe
the extent of degradation and aging [14]. While incorporating the
accurate RUL prediction and SOH estimation, the ongoing or a sudden
degradation of the battery is evaluated, and is therefore critical to
model the battery degradation. Devising the battery degradation model
based on SOH and RUL estimation is vital to ensure the safety and
reliability of batteries [15]. Gaining more knowledge through battery
degradation model can eventually result in the development of cost-
effective and long lasting batteries. Therefore, it is always desirable to
monitor the underlying degradation using SOH and RUL estimation to
be able to track the actual performance and carry out health diagnosis
and prognosis.

Several SOH and RUL estimation methods have been evaluated and
proposed in the literature. A recent summary on methods for Li-ion
battery SOH estimation can be found in [16]. RUL prognosis, which
depicts when a battery will fail or when it will reach a level that
cannot ensure satisfactory performance; the methods of its estimation
have also been studied extensively in different studies [17]. Battery
SOH estimation and RUL prediction have already developed as a ex-
pansive area of research, with several reviews and approaches outlined
and discussed in the literature [13,18,19]. Recent advancements in
data-driven methods have raised interest in machine learning based
battery health estimation [20,21]. The feasibility and cost-effectiveness
of data-driven techniques to deal with the challenges of real-time
battery health management has boosted progress in battery health
estimation and prediction in real-world applications [22]. Among the
data-driven techniques, machine learning (ML) has recently emerged
as a favourable modelling approach for SOH and RUL estimation and
battery degradation modelling, due to substantial availability of battery
data and enhanced computation capabilities [23]. Different ML models
are employed in various studies depending on the data attributes, input
features and target variables, experimental conditions, battery design,
and prediction accuracy to have a bigger picture view of the ML based
SOH and RUL estimation.

Several studies have been published for SOH and RUL estimation
which are summarized in Table 1. There are significant limitations that
are found in literature in the relevant SOH and RUL prediction based
review studies. Battery SOH and RUL prediction has progressed as a
significant area of research with different machine learning approaches
discussed in literature and gaining more knowledge about battery
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degradation model through these aspects can eventually result in the
development of efficient and reliable batteries. The major research gaps
in the existing SOH and RUL estimation based review studies, and the
contributions of this review study are represented in Fig. 1. The novelty
and contributions of this study are summarized as:

» The review article discusses about the relationship between the
battery degradation modelling, and SOH and RUL estimation as
there is a lack of clarification of the relationship between these
aspects in the current research status, and very few studies marks
out the relationship of the battery degradation with SOH and
RUL.

This review study upgrades the current literature by comprehen-
sively reviewing the machine learning methods used for SOH and
RUL estimation and battery degradation modelling as there are
very few studies that partially review the machine learning based
degradation models, and SOH and RUL estimation techniques.
This review article describes and summarizes the State-of-the-art
ML based SOH and RUL estimation methods, their classifications,
characteristics, evaluation processes and applications as there is
a paucity of discussion in terms of characteristics, evaluation
processes and applications in the existing studies.

The framework for systematic review of our research study is illus-
trated in Fig. 2. The framework consists of the external factors causing
the battery degradation, which are used as features in the ML methods
for battery degradation modelling, and SOH and RUL estimation. The
factors include cycling time, voltage range, current rate, state of charge
(SOC), temperature, depth of discharge (DOD), and energy storage
time. These factors are also used as features and parameters in the
machine learning methods for battery degradation modelling, and SOH
and RUL estimation.

This review study is envisaged to apprise the relevant academic
research and battery technology sector regarding the state-of-the-art
ML-based battery degradation modelling and SOH and RUL estimation
techniques. These techniques would aid in achieving sustainability, par-
ticularly in the EV sector. The global environment would benefit from
the improved production and recycling procedures of Li-ion batteries
in the EV sector. Engineers and researchers can use suitable machine
learning approaches to estimate SOH and RUL based on specific re-
quirements, and can gain ideas for how to improve these techniques.
This study is a useful resource for assisting in the design and operation
of battery health estimation and remaining life prediction systems, as
well as informing the research community on factors relevant to battery
dependability and life improvement. Thus, this review study amplifies
the progress in machine learning based battery degradation modelling
and battery health estimation on all energy storage technology primed
levels.

The review article is divided into 7 sections. Section 2 describes the
implementation of review methodology, while the definition of SOH
and RUL, and their relationship with battery degradation is discussed in
Section 3. Battery degradation analysis and modelling using data-driven
approaches, and the main factors affecting Li-ion battery performance
and life degradation are described in Section 4 while Section 5 provides
a detailed and comprehensive review to the current SOH and RUL
prediction methods and framework based on machine learning models.
Section 6 discusses the characteristics of the existing ML methods in
order to find the most suitable adaptive models for Li-ion battery SOH
and RUL estimation. Furthermore, it details the current challenges and
discusses future directions related to ML based battery degradation
modelling. The final section provides the conclusion of this review
article.

2. Review methodology
This review is carried out in the context of the machine learning

techniques for battery degradation modelling based on thorough con-
tent analysis. The review process is conducted using the state-of-the-art
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Fig. 2. Framework for systematic review of ML based battery degradation modelling, and SOH and RUL estimation.

studies published in Nature, Elsevier, IEEE, Springer and conference
publications. The review consists of the analysis and evaluation of the
studies published in the last 10 years. This is to make sure that all
the relevant aspects and techniques of machine learning used for SOH
and RUL estimation, and battery degradation modelling are covered in
this review study. The keywords which are used to search for relevant
articles include: data-driven techniques and Li-ion battery degradation,
ML and Li-ion battery aging and degradation, ML and Li-ion battery
SOH, ML and Li-ion battery RUL, utilization of battery degradation
models and applications. More than 500 articles were found from the
preliminary search. 300 articles have been selected by filtering and
analysing the title, abstract, keywords, and the relevant topics. Finally,
250 articles are listed down based on the impact factor, citation count,
and review process. Based on these articles, the review study mainly
discusses three aspects. Firstly, the relationship between SOH, RUL and

battery degradation modelling is established. Secondly, the ML meth-
ods to estimate SOH and RUL are comprehensively reviewed. Lastly,
the ML based SOH and RUL estimation methods, their classifications,
characteristics, evaluation processes and applications are discussed.

3. SOH and RUL as critical measures of battery degradation

SOH and RUL are the most crucial parameters to model the Li-
ion battery’s degradation [32]. SOH estimation and RUL prediction
have developed into a prominent research theme, which is particularly
aimed for enhancing battery reliability and prolonging battery life. The
battery degradation effects are usually represented by the change of
the battery electrical performance, especially the capacity and power.
Generally, battery SOH, and RUL are influenced by the usable capacity,
available energy and power, which degrades with the battery aging.
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Table 1
Evaluation of relevant review papers.
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Topic

Reference

Content

State of health and remaining useful life
estimation methods for Li-ion battery in
electric vehicles

Battery state of health monitoring methods
for smarter battery management system

State of health estimation for Li-ion
batteries

Calendar aging prediction of Li-ion batteries

State of health estimation methods of Li-ion
batteries for real applications

Prognostics and health management (PHM)
methods of Li-ion batteries

Data-driven health estimation and lifetime
prediction of lithium-ion batteries

Li-ion battery aging mechanisms and
diagnosis method for automotive
applications

State estimation for advanced battery
management

Battery health monitoring and prognostics
technologies for electric vehicle (EV) safety
and mobility

Li-ion battery degradation

Lipu et. al. [24]

Xiong et. al. [25]

Tian et. al. [26]

Liu et. al. [27]

Berecibar et. al. [28]

Meng et. al. [15]

Li. et. al. [29]

Xiong et. al. [25]

Hu et. al. [30]

Rezvanizaniani et. al.

[31]

Han et. al. [12]

Discussed different estimation models to predict SOH, and RUL in a comparative manner
Identified the classifications, characteristics, and evaluation processes with advantages and
disadvantages for EV applications.

Investigated the issues and challenges with technological development of SOH, and RUL
estimation for Li-ion batteries.

Systematically reviewed the state of health estimation methods.

Analyzed battery aging process and provided theoretical support for model-based methods.
Explained the methods for determining the health state of the battery.

Analyzed the strengths and weaknesses of methods.

Provided a discussion on the aging reasons for Li-ion batteries.
Introduced the SOH prediction method based on the classification framework.
Analyzed the key benefits and drawbacks of each method.

Evaluated three mainstream types of modelling techniques for calendar aging prediction of
Li-ion batteries.

Developed an experimental setup to collect calendar aging under different storage temperature
and SOC levels.

Prediction performances of the models are studied and evaluated in terms of the model
accuracy, generalization ability and uncertainty management.

Battery SOH monitoring methods are reviewed

Different SOH estimation approaches are classified into specific groups.

Accuracy, strengths, and weaknesses of SOH estimation methods for the use in online BMS
applications are reviewed.

Approaches related to battery prognostics and health management are evaluated.

Considered the selection of the battery PHM approach according to the data availability, and
degradation mechanisms.

Contributed the perspectives on approach selection, health management, performance
evaluation, uncertainty treatment, application economics, as well as environmental issues.

Data-driven battery health estimation techniques are reviewed

The feasibility and cost-effectiveness of DDM techniques are studied with battery health in
real-world applications.

Challenges of real-time battery health management and potential next-generation techniques
are also discussed.

Summarized mechanisms and diagnosis of Li-ion battery aging.

Explained the influence of different external factors on the aging mechanism.

Discussed the widely-used methods for aging diagnosis

Discussed the challenges in the quantitative diagnosis and on-board diagnosis on battery aging.

Presented an overview of existing methods, key issues of the battery state estimation domain.
Elucidated various battery states estimation.
Discussed technical challenges, and future trends of the battery state estimation.

Summarized battery prognostics and health management (PHM) techniques.
Presented the approaches to monitor battery health status and performance.
Elaborated the evolution of prognostics modeling methods.

Provided comprehensive review of key issues of the battery degradation among the whole life
cycle.

Reviewed battery internal aging mechanisms for understanding the battery fade characteristic.
Discussed the influence factors affecting battery life from the perspectives of design,
production, and application

Presented the battery system degradation mechanism.

The SOH diagnostics manifest the performance degradation and helps
in taking preventive measure to avoid possible accidents [33]. With
the increasing demand for Li-ion batteries, the SOH estimation plays an
vital part in battery RUL prognostics as a capacity indicator. Appropri-
ate and robust prognostics algorithms of SOH and RUL estimation are
necessarily needed that can address the battery degradation challenges
as well as improve the performance and optimize the battery opera-
tion. Fig. 3 depicts the relationship between SOH, RUL and battery
degradation modelling, and illustrates a combined framework of SOH
estimation and RUL prediction which is used to establish the model of
battery degradation mechanism. It describes the factors impacting bat-
tery degradation, and battery failure which are used for SOH estimation
modelling. The SOH diagnostics and estimation assists in modelling the
battery RUL by evaluating the time or cycles remaining to reach 80%
SOH. Exploring, and modelling the degradation behaviour of batteries
hence requires accurate estimation of SOH, and RUL.

The battery aging and degradation models are depicted and evalu-
ated in the context of battery health and remaining capacity in several
studies [34-36]. The stable operation of EV is ensured by the systematic

application of accurate and robust SOH and RUL estimation methods
for Li-ion batteries. Nevertheless, the performance of Li-ion battery
varies due to charging-discharging behaviour, temperature fluctuation
and degradation [15]. Different studies consider battery degradation,
SOH estimation, and RUL prediction as either being fully identical
or completely distinct. Apart from the dissimilarities, dependencies,
and relations between these aspects, there is an associated confounded
notions, obscurity in their modelling concepts and unclear definitions
for these terms. The clarification related to the origins and definition
of these aspects, and evaluation of the relationship between them is
provided in the following sections.

3.1. Relationship of SOH with battery degradation

The most intuitive external characteristics of battery degradation
are capacity fade and/or power fade, which are mainly associated with
battery SOH. SOH is defined as the current status of battery health to
supply specific power and energy compared with its ability to deliver
power when it was in an initial state. It is mathematically formulated
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Fig. 3. Relationship between SOH, RUL and battery degradation modelling.

by dividing the actual capacity with nominal capacity, as shown in the
following equation [37]

Cactual (1)

nom

SOH =

where C,.,,,; and C,,,..,.; Tepresent the actual capacity and the nominal
capacity, respectively.

In addition, the battery degradation mode includes the internal
resistance increase, which also used to define the SOH for battery cells
and packs. The internal resistance increase may directly lead to the
battery power fade of the battery, and decreases in battery available
capacity. Generally, the decrease of capacity and increase of internal
resistance evaluates the SOH. As the Li-ion batteries start degrading
due to the degradation of the active material and other electrochemical
phenomena, the internal resistance starts increasing and the capacity
starts decreasing with time [38]. Therefore, internal resistance is also
considered an important indicator that identifies degradation process,
and evaluates SOH. Since the internal resistance of the battery in-
creases as the battery SOH decreases, SOH can be evaluated from the
perspective of the internal resistance of battery using the following
equation [39]:

R R

eol —
_— 2
R R (2)

SOH =

eol — Nnew
where R, is the internal resistance at the end of battery life, R,
represents the internal resistance of new battery, and R indicates the
current internal resistance of battery. Organizing a framework to form
the linkage between battery SOH and battery degradation is necessary
for battery degradation modelling as battery SOH is a estimation of
battery degradation in comparison to a new battery. Capacity and
internal resistance, in particular, are exclusive indicators which are
used to define battery SOH, and identify the process of battery degrada-
tion [40]. Various research studies have also used distinctive features
of battery degradation to describe SOH, such as internal resistance,
and power density [41,42]. The information related to capacity and
internal resistance is advantageous for the BMS to regulate the bat-
tery performance, ensuring battery reliability, and avoiding energy
shortages, and system faults of the battery. The parameters also give
information on the capability of the battery to fulfil the power re-
quirements during use [43,44]. SOH depicts the battery degradation
state and informs about the battery replacement. When the capacity

of the battery degrades to 80% of original capacity, it is considered
impracticable for vehicular applications and needs replacement. The
battery SOH degrades with aging following different rates that depend
on storage and use conditions [24,26]. Predicting the real values of
battery health states makes it possible to avoid battery overcharging
and undercharging [45]. Given that some of the battery’s internal
parameters also determine the health status, therefore characteristic
features like battery capacity and internal resistance are not the only
predictors of battery SOH. In practical terms, monitoring the SOH also
allows to investigate the parameters like voltage, current, temperature,
and SOC, which eventually helps in establishing a realistic degradation
model.

3.2. Relationship of RUL with battery degradation

The RUL is very useful for the battery health management, and
particularly important for the battery degradation evaluation process.
Considering the nonlinear degradation characteristics of the battery,
it is important to realize the accurate RUL prediction based on aging
mechanism and corresponding battery life model under different fading
stages. Generally, RUL of a battery is determined by evaluating the
time remaining to reach the estimated end of life (EOL) [17]. The
EOL is the time and the number of charge-discharge cycles when the
battery reaches the failure threshold. RUL is indicated by the following
formula:

RUL, =CCgy, — CC, 3)

where CC, is the present cycle, and C,, is the cycle at the EOL. RUL
of the battery at cycle « is obtained by estimating the cycle number of
EOL i.e., CCpo;.

The mechanism of degradation and RUL estimation correlate closely
to the operating state and reliability of the Li-ion battery. Success-
ful RUL prediction for batteries is highly desired; it allows for more
controllable failure prevention, so that functional maintenance can be
carried out at the suitable time without permanently degrading the bat-
tery [46]. RUL describes the degradation-inherent relationship and the
trend based on data. Al methods use monitoring data to fit a degrada-
tion model, and estimate RUL through extrapolating the characteristics
variables. RUL is typically associated with performance degradation
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and predefined failure threshold, which determines the remaining num-
ber of available cycles of Li-ion battery to the replacement threshold.
There is a strong relatedness between RUL and battery degradation,
since the distinctive features required to model the battery degradation
are similar to that can be used for RUL prediction. Liu et al. devised the
battery degradation model and estimated the RUL simultaneously using
operating parameters of Li-ion batteries [47]. Another study based on
experimental outcomes identified degradation patterns by forecasting
RUL and SOH. Additional studies also devised the battery degradation
model by evaluating and predicting the RUL prognostics [48,49]. As
a result, it is established that there is a strapping connection between
the battery degradation model and RUL estimation and we can evaluate
both at the same time using the characterization parameters. It also is
clear from the literature evaluation that many RUL prediction methods
are also applicable to battery degradation modelling.

4. Battery degradation analysis and modelling

Li-ion batteries are susceptible to aging, which decreases its per-
formance. One critical degradation characteristic is the loss of energy
quantified by the decrease in capacity. The major issue takes place
due to the degradation in capacity over time and it is one of the
key indicators of the SOH [50]. Furthermore, accurately measuring
and predicting SOH is very important in a BMS to have a sound
estimate of the battery performance. One of the important aspects of
battery degradation modelling is not only to give a measure of the
current capacity, but also to detect and analyze the aging mechanisms
causing the capacity fade. Understanding the cause of capacity fade
and degradation mechanisms in Li-ion batteries is critical to address the
challenges of longevity and safety. It is also important to make accurate
RUL predictions, and improve the functioning of the battery [28,51].
Several studies have been proposed to analyze rudimentary cause and
effect relation of the battery degradation. The majority of research
studies concur that capacity fading can be represented by the variation
in internal resistance and other parameters of equivalent circuit models
(ECMs) [52]. In recent years, battery life and health estimation methods
exacted from incremental capacity (IC) [53,54], differential voltage
(DV) [55,56], open circuit voltage (OCV) [57,58], and sample entropy
of discharging voltage curves have been suggested [59].

Battery capacity is regarded as a criterion for determining the
relationship between the ampere-hours charged or discharged from
the battery and voltage difference prior to and following the respec-
tive usage. Therefore, determining this relationship is a fundamental
principle of almost all methods of capacity estimation and battery
aging. Due to the interaction of number of factors, aging phenomena is
extremely difficult to report. Fig. 4 depicts the coupling factors that
cause degradation of batteries. The factors include calendar aging,
cycle aging, environmental conditions, components and manufacturing
faults [60]. These factors are further subdivided into various critical pa-
rameters like temperature, SOC, humidity, mechanical stress, charging
and discharging current, and electrodes and electrolyte degradation.
All of these factors are mainly employed for analysing and modelling
the degradation of batteries. Various studies approached to analyze the
battery degradation by investigating these factors. A particular study
based on extended accelerated aging tests on Li-ion batteries which
include storage and cycling is undertaken for the detailed analysis of
battery aging under the influence of temperature, voltage and SOC on
battery aging using the differential voltage method [61]. Another study
investigates the cycling aging behaviour under the influence of DOD,
C-rate and Ah-throughput, and compares degradation under constant
operation conditions with non-constant operations through a semi-
empirical model dynamic validation [62]. Some studies modelled the
battery capacity and consequent aging on the basis of the OCV and SoC
relationship for the given battery type [63,64], while some proposed to
model the capacity fade by employing its correlation with the increase
in battery resistance, which is considered as an attempt to model a
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universal battery degradation that would reflect both the change in the
battery impedance and capacity [65]. Furthermore, in some studies,
degradation occurring in Li-ion batteries is evaluated by the perfor-
mance of the battery under both rest and cycling conditions, using the
long-term storage or cycling data [66,67]. In one study, a particular
methodology is presented to identify the aging mechanisms associated
with capacity loss in a Li-ion battery. A model was proposed that
relates changes in the capacity of active material and the stoichiometric
operating window in each electrode to the aging mechanisms [50]. In
another study, a unique battery degradation model is proposed using
a synthetic strategy based on specific electrode behaviour with the
right adjustments of the loading ratio and the extent of degradation.
This method differs significantly from traditional empirical methods,
and it has a mechanistic knowledge of battery aging processes and
failure mechanisms, allowing it to perform high-fidelity simulations
that address route dependency in battery degradation [68]. A concise
review study is undertaken by the authors of [69], who presented
the failure mode and error analysis (FMEA) method to categorize
degradation mechanisms of Li-ion batteries, and analyzed their causes
and effects. In another study, the impact of Li-ion battery impedance
on battery aging is investigated. It exploits the battery resistance to
extensively evaluate the battery degradation [70].

Battery aging models have a key significance in the development
of a Li-ion battery RUL prediction method. A multi-variable analysis
of a detailed series of accelerated lifetime experiments is presented in
a study to evaluate RUL, and a semi-empirical aging model coupled
with an impedance-based electric thermal model is used to simulate the
dynamic interaction between battery aging and thermal as well as elec-
tric behaviour [71]. Another study devised the method for estimating
battery RUL by directly measuring the capacity loss in real time. It pro-
posed the excitation response level (ERL) as a battery health indicator
to describe the voltage variation over different lifetimes based on the
current and voltage under the actual load curve. This approach made
it effective to quantify the battery degradation characteristics [72].
Nonetheless, due to various factors as depicted in Fig. 4, the extent of
aging and degradation of Li-ion batteries substantially varies. Thus, a
suitable and robust algorithm for battery degradation modelling, and
SOH and RUL estimation is imperative that considers all the associated
parameters and factors to precisely model the degradation of Li-ion
battery.

4.1. Battery degradation model using data driven approaches

A variety of methods have been developed for battery degrada-
tion modelling and battery SOH estimation. These methods can be
roughly classified into four domains: Physics-based models [73], em-
pirical models [74], data-driven methods (DDMs) [20,75], and hybrid
methods [76]. The key benefits and drawbacks of these domain models
are represented in Fig. 5. The methods associated with the aforemen-
tioned domains have been implemented in various studies, and the
outcomes of these studies are used to describe the benefits, and draw-
backs of different modelling techniques. Table 2 highlights the domain
and the associated modelling techniques along with the summary of
their respective advantages, and drawbacks. The domain of Physics-
based approaches comprises of equivalent circuit models (ECM), elec-
trochemical models, and filter-based models. Empirical models, and
probabilistic models refers to the domain of mathematical models,
while statistical models and machine learning methods refer to the
DDM domain. Hybrid method’s domain comprises of the combination
of DDMs, filtering techniques and empirical models.

Off all the methods, data-driven methods are becoming one of
the most distinguished approaches for establishing battery degradation
models, battery health estimation and life prediction due to their
flexibility and model-free characteristics [77]. DDMs incorporate spe-
cialized battery tests containing all the degradation influencing factors,
and these factors are then linked to the battery health to establish a
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battery degradation model. However, the efficacy of these methods are
heavily dependent on the characteristics and volume of data [78,79].

Several data-driven techniques are notably applied in the battery
degradation models and battery health estimation and prediction,
which are categorized as differential analysis, lifetime estimation mod-
els, and machine learning methods. Differential analysis (DA) has
proven to be a useful tool to analyze voltage, surface temperature
and strain data under different aging states due to the correlation
between the SOH and electrical, thermal and mechanical behaviours
of a battery [29,80]. Lifetime estimation models have become another
well-known technique which makes use of the predefined experimental
conditions and devise the fitting model using the collected data. These
models have high computational efficiency and greater accuracy when
subjected to similar operating conditions [41,81]. Machine-learning
(ML) methods are among the most admired data-driven techniques for
SOH estimation and RUL prediction due to their adaptability and non-
linear problem solving capability. Functional tests on battery aging are
conducted to generate a suitable training dataset which incorporates
multiple factors affecting battery health. A principal relation is then
established by mapping the factors to the battery health and remaining
life using different ML techniques [82,83].

5. Battery degradation modelling using machine learning

Characterizing and simulating battery degradation mechanism is
unscalable. The SOH and RUL of a battery frequently span many
charge/discharge cycles, resulting in two relevant timescales, making
predictions particularly difficult. The challenges associated with degra-
dation can be summarized as the need for a function that takes the
current state of the battery as an input and predicts future behaviour.
A promising strategy for overcoming this obstacle is the data-driven
modelling [91]. Combined with machine learning techniques which are
flexible, models are able to make predictions without prior knowledge
of the system because they have an efficient fitting function with no
underlying physical knowledge.

ML techniques have grown in popularity as a result of their enor-
mous potential for achieving high accuracy at a low computation cost.
ML techniques — including neural network, support-vector machine,
random forest and regression techniques — predicts and estimates bat-
tery SOC, SOH and RUL [82,92]. Recent advances in DDMs have
assisted in devising the models for degradation diagnosis, and subse-
quently the SOH, RUL, battery degradation can be accurately predicted
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Summary of the various battery degradation modelling techniques.
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Domain Modelling techniques

Advantages

Drawbacks

Ref.

Physics based approaches Equivalent circuit model
Electrochemical model

Filter based models

Mathematical models Empirical models

Probabilistic models

Data-Driven Models Statistical models

(DDMs)

Simple structured principle
Good dynamic response characteristics

Higher precision.

Quantify the aging state inside battery.

Robust degradation estimation.
Dynamically tracks and predicts the
health.

Deals with the uncertainty of external
factors.

Simple mathematical structure.
Fast performance calculations.

Low modelling difficulty.
Handles several aspects for modelling.
Wide range of applications.

Simple to use, and has high accuracy.
No complexity involved.

Prediction depends on ECM structure.
The model error increases continuously

Parameter identification is difficult.
No accurate internal aging mechanism.

Complex, and higher computation.
Rely heavily on the model accuracy.

The physical model is not clear.
Affected by external factors.
Affected by operating conditions.

Require experimental pre-validation
Relies on model accuracy.
Depends on computational time.

Low update efficiency of the model
Requires comprehensive data.

Ng et. al. [82]
Dai et. al. [52]

Wang et. al. [6]
Barre et. al. [84]

Song et. al. [85]
1i et. al. [86]

Pelletier et. al. [74]

Feng et. al. [87]

Nuhic et. al. [88]
You et. al. [21]

Accurate.
Robust.

Machine learning models

Applicable for modelling of non-linear

systems.

Hybrid methods Combination of DDMs,
filtering techniques, and

empirical models

accuracy.

thresholds.

Achieves better performance and

Depends on the data quality.
Depends on the data quantity.
Requires higher computation.

Ng et. al. [82]
Severson et. al. [89]

Li et. al. [29]
Wu et. al. [90]

Complexity is increased.
Requires higher computation.

Optimizes model parameters and

without modelling a physical mechanism [83]. Qualitative changes are
apparent in Li-ion battery degradation process. However, it is chal-
lenging to identify quantitative features that are linked to degradation.
The data-driven based prognostics approach resolves this by performing
real-time, non-invasive measurements without on the battery mod-
elling a physical process, and utilizing statistical machine learning to
link those results to battery health and degradation [92,93]. Fig. 6
illustrates the primary workflow required for the machine learning
application to the battery degradation modelling. The first step is
the data collection of quantifiable battery parameters which include
temperature, current and voltage recorded during operation, which can
be operated as the inputs for the model training. The features of the
degradation process are extracted in the second step. The following
step is to train a machine learning model to describe the relationship
between battery degradation, SOH estimation, and extracted features.
After the model has been trained, the final step is to put it into actual
usage. Feature extraction is a crucial step that has a significant impact
on SOH estimation and battery degradation model performance, so
having more relevant and accurate feature input data will lead to more
accurate models. To highlight the content and features of various ML
algorithms for battery degradation model from the perspective of SOH
and RUL estimation, a comparison of studies is illustrated in Table 3.

A framework of the ML based battery degradation model develop-
ment for online application is illustrated in Fig. 7, which uses battery
parameters to establish a degradation model. The aging model can
then be integrated with online application in which real-time battery
data parameters act as inputs for the pre-established lifetime estimation
model to estimate the SOH and RUL of the battery. To establish the
battery degradation model, ML methods can be used for both SOH
estimation and RUL prediction, but there is a significant difference
between these two aspects in terms of input parameters and the ex-
pected outcome [110]. As described in Fig. 6, the input features for
SOH estimation are retrieved from the BMS and the output is the
estimated SOH. However, the ML methods for RUL prediction generally
require the estimated SOH parameters as the input to predict RUL of
the battery.

There are a wide range of machine learning models, which can be
classified into two categories: supervised and unsupervised learning.
Supervised learning is the most seasoned approach used in the majority

of ML studies for battery SOH and RUL estimation [23,82]. Further-
more, it is methodically observed that all battery SOH estimation
and RUL prediction problems can be characterized as the regression
problems, as they represent the output in the form of numerical SOH
and RUL values and therefore the methods described in this study refer
to the regression type.

5.1. SOH estimation using machine learning approaches

In recent years, battery degradation state recognition for battery
SOH estimation has attracted intense interests, and therefore, many
approaches are put forward, among which the data-driven approaches
have gained much attention. One of the main benefits of data-driven
approaches for Li-ion batteries degradation model development and
SOH estimation is that they can be applied as black-box models, as
they are capable of learning the behaviour of the battery based on
monitored data and thus do not demand battery chemical modelling
and knowledge. DDMs are also used to model the relationship between
battery health, performance and environmental parameters during op-
eration [31]. Among DDMs, machine learning approaches such as
an artificial neural network (ANN), support vector machine (SVM),
and Relevance Vector Machine (RVM), as well as other intelligent
algorithms, are used to extrapolate the estimated SOH, and map the
relationship between the battery degradation, health indicators and
battery SOH through learning from a historical database [47,111]. The
SOH is calculated by ML methods using features that are sensitive to
battery degradation. This calculation necessitates the collection and
examination of data throughout the battery operation. It has the advan-
tage of not requiring extensive battery behaviour tests and simulations
and it allows for greater adaptability to various features and battery
types. However, on the other hand, ML techniques have a drawback of
carrying out high end computation, which makes online model opera-
tion on a real-world application like EV more complex [112]. Various
studies have been conducted for SOH estimation using appropriate
machine learning methods including linear regression, random forest,
SVM, fuzzy logic, neural networks and Gaussian processes [24,25,85].
Thus, in the following sub-sections, we present an state-of-the-art re-
search status of machine learning techniques based SOH estimation in
detail, for battery degradation model development.



H. Rauf et al. Renewable and Sustainable Energy Reviews 156 (2022) 111903
Predictive Predictive
Data Data Pre- dal I P
Collection Processin Mode Andiytcs for
9 Development SOH
. Model Creation
Historical Database Data Cleaning Systemintegration
- Parameter Tuning
Data Collection Feature Extraction S —— Online Estimation
from Sensors Model Validation
Training M :
achine
Input Feature Input- Learning F:a(:rre
Space Output 2 B
P Pairs Algorithm Estimation
Fig. 6. Generic workflow for battery degradation and SOH/RUL prediction models using ML techniques.
Table 3
Machine learning algorithms for battery degradation modelling.
Methods Estimation parameter Content and features Refs
ANN SOH Uses maximum available capacity to indicate the SOH based neural network. [21]
RUL Uses battery capacity and applies neural networks to estimate the RUL. [94]
SOH Provides battery health capacity model [95]
SVM . L. . , .
RUL Provides accurate practical information about the battery’s expected life. [96]
RVM SOH Estimates the battery health and remaining capacity using capacity fade trend. [97]
RUL Employed as a time-series prediction model to predict the RUL of the battery. [98,99]
Fuzzy Logic SOH Establishes the dynamic prediction model and calculates SOH. [26]
GPR SOH Generates the mapping between different factors and forecasts battery SOH. [33,100]
RUL Realize the RUL prediction by incorporating prognostics with prior information and uncertainty. [101]
ARMA SOH Evaluates SOH by taking battery capacity as the representing parameter. [76]
RUL Uses SOH estimation to characterize RUL. [102,103]
LSTM SOH Establishes the SOH prediction model-based on a sliding window. [104]
RUL Predicts RUL and EOL with better generalization. [105]
. SOH Devise the battery degradation model over repetitive cycles to estimate SOH. [106]
Bayesian networks . L L .
RUL Evaluates RUL by quantifying the uncertainties in predicting the end of life cycles. [107]
Hybrid methods SOH Optimizes the combination of different methods and achieves better performance for accurate SOH estimation. [86,108]
v RUL Predicts the RUL of the battery by combining ML methods with different adaptive techniques. [109]
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Fig. 8. SOH estimation results by applying SVM for the conventional battery data [88].

5.1.1. Support vector machines

SVM is an effective ML technique which is applied to solve nonlinear
issues like battery health estimation, by transforming the data into
a higher feature space, where a problem becomes linear. Kernels are
generally used in SVM to aid in evaluating nonlinear problems with
a lower-feature space, by transforming them into a linear problem
with higher feature space [29]. It has the advantage as an adaptable
method which can reasonably model complex problems when pro-
vided sufficient data. SVM makes predictions based on the following
function [113]:

N
y(x) = Z 0,K(x,x,)+¢€ 4
n=1

where w, are the weights of the model connecting feature space to
output whereas K(-) is a kernel function. The battery SOH and RUL
estimation problems primarily fall under the regression category and
when SVM is applied for regression tasks like battery SOH and RUL
estimation, it is named support vector regression (SVR) [114]. SVR is a
useful tool for nonlinear regression problems and it deals with data in
a high dimension space by using linear quadratic programming tech-
niques which gives the optimal properties to regression results [115].
Given the capability of SVR to describe the nonlinear correlation of
input and output data, it is suitable for prediction tasks [116]. Several
studies applied SVM algorithm for the estimation of SOH under the
influence of different environment and load conditions. The summary
of the SVM based SOH estimation and degradation modelling studies
is given in Table 4. Nuhic et al. demonstrated an unique data-driven
strategy that incorporates the influence of environmental, ambient, and
load variables, as well as the operating history, to include diagnosis
and prognostics of battery health for automotive applications [88]. The
SVM method is used to estimate the SOH from the perspective of ca-
pacity. The study accurately predicted SOH with less than 0.0007 mean
square error (MSE) in real driving conditions, considering temperature
change, SoC, and C-rate. The results of SOH estimation with the SVM
by using the conventional battery dataset are shown in Fig. 8. Klass
et al. devised a method for applying standard battery tests to an SVM-
based battery model. To estimate capacity, typical EV battery usage
data is collected and SVM technique is applied to it. The resultant SOH
estimation shows good accuracy under typical EV operation settings,
allowing for online battery degradation modelling [117].

Many studies are being conducted on improving the performance
of the SVM algorithm by fusing it with other algorithms, in addition
to the simple SVM algorithm. Dong et al. considered a novel technique
by merging SVM and adaptive particle-filter (PF) algorithm for SOH
estimation [95]. Chen et al. proposed a fixed size LS-SVM model based
on the arbitrary entropy to estimate SOH. The authors first chose a
voltage range, then used the discharge time of the voltage interval as
the model’s input variable and SOH as the model’s output variable.
Finally, with LS-SVM, the Bayesian framework is employed to estimate
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the important parameters, considerably speeding up computation and
modelling [118]. Ma et al. used feature fusion and SVR, and proposed
a methodology for Li-ion battery SOH prediction. During the discharge
phase of Li-ion batteries, the authors used a sliding window to extract
features [116].

5.1.2. Gaussian process regression

ML techniques which include regression methods have received
increasing attention in Li-ion battery health estimation, because of their
model-free characteristics [122]. Generally, the battery health estima-
tion problems are primarily evaluated using the regression techniques
as it can be used to supplement existing mathematical approaches with
strong potential for battery degradation model development. Due to its
non-parametric nature, which allows for greater flexibility in capturing
complex nonlinear relationships and its ability to directly quantify the
uncertainty in the predictions, Gaussian process regression (GPR) is an
effective technique for dealing with complicated battery aging predic-
tion problems [27,123]. It can predict the behaviour of any system by
using an appropriate combination of Gaussian processes to model its
behaviour. It has finite variable sets, each of which has a Gaussian
distribution [124]. The Gaussian process f(x), which is constructed
using the mean function m(x) and the co-variance function, can be
obtained by extending the multivariate Gaussian distribution to infinite
dimensions k(x;, x;). The co-variance function k(x;, x;), also known as
the kernel function, is utilized to capture the similarity between distinct
inputs, which is extremely sensitive to GPR performance predictions.
The GPR method delivers a probability distribution of possible battery
SOH predictions through following function [82,125]:

m(x) = E(f(x)) (5)

Ky (xrax;) = EL(/ () = mG))(f (x)) = m(x;)] )

GPR-based DDMs have been successfully used in the literature for
SOH prediction by extracting certain features as inputs [100,126].
The summary of all the GPR based SOH estimation and degradation
modelling studies is given in Table 5. Zhang et al. established a method
which uses the GPR through proper co-variance functions or the opti-
mal combination for battery state. GPR is applied on the training data
to determine the ultra-parameter, and the model is used to predict
the latter cycle capacities within the test data with MAE and RMSE
less than 0.01, and 0.014, respectively [127]. Deng et al. employed
typical data-driven methods, including LR, SVM, RVM, and GPR, to
predict battery SOH. A novel feature extraction method is proposed
to extract health indicators (HIs) which can be used as input features.
The estimation results of these methods are compared under different
operating conditions for the three types of batteries. Among them, the
GPR depicts the best performance, and its MAE and RMSE are lower
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Table 4
Summary of the SVM based SOH/RUL estimation and degradation modelling studies.
Refs Battery chemistry SOH/ RUL Data calculation Operation mode  Stress factors Evaluation index Estimation error
estimation considered
Nuhic et al. [88] High power LIBs SOH and RUL Matrix operation Online Temperature, SOC, MSE <8x107*
DOD, C-rate
Chen et al. LiFEPO4/Graphite SOH Matrix operation Offline Temperature, C-rate RMSE, MARE 0.32%, 0.2279%
[118]
Anton et al. LiFePO4 SOH Radial Basis Function Offline Temperature, C-rate, MARE 3.61%
[119] (RBF), and Polynomial SOoC
kernel
Dong et al. [95] Second generation SOH and RUL Probabilistic Online Temperature, Current, RMSE <25x 1073
Li-ion battery Distribution Functions Voltage and Internal
impedance
Klass et al. [117] Automotive Li-ion SOH Langrangian Online Temperature, C-rate, RMSE <0.85%
battery Multipliers, RBF-kernel SoC
Song et al. [85]  Li(NiCoMn)O2/Graphite SOH Langrangian Online C-rate, SOC, RMSE <4%
multipliers, and Matrix Temperature
operation
Ng et al. [120] Moderate power LIBs RUL Probability estimates, Offline Temperature, Current, RMSE 0.27
and Logistic models Voltage and Impedance
Liu et al. [7] LiCoO2 SOH Kernel principal Online Temperature, Voltage, MAE <5%
algorithm Current, C-rate
Mansouri et al. UAV Li-ion battery RUL LASSO and Langrangian Online Voltage, DOD MAPE 1.2%

[121] Multipliers

than 1% and 1.3%, respectively [128]. A study by Kailong et al. mod-
elled Li-ion battery SOH and aging prediction through an experimental
setup, which is established to collect aging data at various storage
temperatures. The GPR model is well trained using its corresponding
training solution based on this database, and the model’s prediction
performances are analyzed and assessed in terms of model accuracy,
generalization capacity, and uncertainty management. Results for both
training and testing phases of this study are shown in Fig. 9 [27].
Richardson et al. effectively modelled the underlying degradation of
the Li-ion battery by accurately forecasting the battery SOH using
GPR, having RMSE less than 0.05. The researchers also employed a
systematic kernel function to fit complex aging patterns, and combine
Gaussian processes with knowledge of degradation mechanisms [100].

SOH estimation using GPR in combination with different tech-
niques has also been considerably undertaken in various studies. Liu
et al. used a combination of Linear Gaussian Process Functional Re-
gression (LGPFR) and multi-step-ahead prognostics for Li-ion battery
SOH estimation. An improved Quadratic Gaussian Process Functional
Regression (QGPFR) is also applied in order to realize multiple-step-
ahead prognostics to reflect SOH, including capacity fade and local
regeneration [33]. Fig. 10 displays the mean prediction of the two
models in detail. The prognostics results are proven to reflect the
self-recharge phenomenon as fixed cycles, which differ from actual
regeneration cycles. This is because the study’s co-variance function
is chosen in a smooth and consistent manner. Yu et al. presented a
consolidated multiscale logic regression (MLR) and GPR ensemble for
SOH estimation [45]. Systematic multiscale GPR modelling method is
also proposed in some studies to accurately solve the SOH estimation
problem [129]. He et al. suggested a multiscale GPR modelling ap-
proach to determine the SOH of Li-ion batteries [130]. Other combined
approaches, such as GPR and multiscale GPR algorithms, are considered
to be more complicated than GPRNN (Gaussian process regression with
neural network) models. GPRNN models have the ability to provide
real-time prognostics. Zhou et al. also proposed the GPR with GPRNN
as its variance function to evaluate and predict the SOH of batteries. By
comparing quantitatively with basic GPR, combination LGPFR, combi-
nation QGPFR, and the multiscale GPR, experimental results show that
the GPRNN may be used effectively for Li-ion battery health estimation.
The proposed models’ RMSE and MAPE have been decreased to less
than 1% [131].

5.1.3. Neural networks
Artificial intelligence is envisioned to establish solutions to the accu-
rate aging estimation and prediction models. Artificial neural networks
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(ANN) are particularly suitable for complex non-linear problems and
achieves better accuracy. The structure of ANN consists of artificial neu-
rons arranged in input, output and hidden layers as shown in Fig. 11.
The input layer takes the pre-processed data and operates as a directing
medium to the hidden layers. In the hidden layers, each neuron acts
as mathematical model for governing the output based on the input,
and represented by a weighted linear combinations [113,134]. NNs are
widely used in self-learning and adaption and, they do not rely on the
electrochemical scenarios taking place inside the battery. The mapping
association between characteristic parameters and the lifetime of Li-
ion battery degradation is established using neural networks. NN has
a robust algorithm that estimates SOH accurately under a variety of
battery states, dynamic loads, and temperatures [135].

Various studies used ANN to explore its extensive applications
in battery degradation modelling and SOH estimation [136-138]. A
summary of the neural networks based SOH estimation and degradation
modelling studies is given in Table 6. Two types of ANN including as
recurrent neural networks (RNN), and feed-forward neural networks
(FFNN), have been mainly applied for SOH estimation. FFNN and RNN
are promising methods to express the input and output correlations
in the battery aging data. The structures of FFNN and RNN are visu-
ally represented in Fig. 11. The battery degradation process typically
comprises several cycles, and the degradation information among these
cycles is greatly dependent and correlated. Thus, it is worthwhile to
derive these dependencies and correlations for accurate estimation.
In a study, authors applied a systematic approach based on the ANN
for battery SOH estimation [139]. In another study, based on the
historical distribution of data collected over one year of experiments
on Li-ion battery cells using ten different driving cycle profiles, the
researchers developed a real-time SOH estimating method utilizing
FNN [21]. Pan et al. presented a FFNN based method which takes
voltage, time, voltage boost points and battery degradation curve data
as input under different cycle numbers, while battery SOH is taken as
an output variable for prediction [94]. To calculate SOH, FNN with
time-delayed input data is employed in a study, which is referred as
an input time-delayed neural network (ITDNN). The NN successfully
represented the dynamics and memory effects of a battery by using time
delayed inputs. The battery terminal voltage, current, time-delayed
signals, and ambient temperature are used to calculate SOH [140].
Yang et al. proposed a simple method estimating battery’s SOH based
on three-layer back propagation (BP) neural network. Based on a BP
neural network, the study employed maximum available capacity to
determine the battery SOH. The parameters of the first-order equivalent
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Fig. 10. Battery health prognostics compared with LGPFR and QGPFR [33].

circuit model (ECM) are identified using a direct parameter extraction
method. To estimate SOH, a three-layer BP neural network is then
devised, with inputs being the first-order ECM parameters and outputs
being the current value of SOH [141].

RNNs have been widely used to process sequential data in artificial
intelligence applications, and it is also one of most promising method
for battery health prediction. SOH estimate entails following a gradual
battery degradation process using battery data with dynamic character-
istics. As a result, using an RNN to tackle SOH estimate is an intrinsic
strategy. Associative memory feature, voltage, current, temperature,
and time-delayed voltage and current are the key inputs of the RNN.
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In literature, RNN has been widely used as a more effective tech-
nique than the FFNN for SOH estimation. For example, Chaoui et al.
presented simple RNN based approach, where the dynamically driven
RNN is built to estimate both the SOC and SOH of Li-ion batteries [111].
A more practical RNN based approach is presented in another study, in
which batteries support real-world driving patterns. The study proposed
to trace SOH using measurable EV data, such as current and voltage. A
degradation model is designed a model based on a RNN, which is highly
suited to handling the sequential data. The validation provides very
robust and flexible results under various EV driving conditions, with
the average error lower than 2.46% over all of the experiments [152].
Authors of an another study created an RNN to forecast the SOH of
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Table 5
Summary of the GPR based SOH/RUL estimation and degradation modelling studies.
Refs Battery SOH/RUL Operation mode Stress factors considered Evaluation Evaluation
estimation index error

Liu et al. [33] Li-ion IFP18650 SOH Offline Charging/Discharging voltage, MAPE 0.016
current and temperature

Yin et al. [132] LIBs RUL Offline Charging/Discharging voltage, MAE 0.0067
current and temperature’

He et al. [130] Li-ion IFP18650 RUL Online Charging/Discharging voltage, MAPE <0.98%
current and temperature

Richardson et al. [100] Li-ion IFP18650 SOH Online Temperature, Current, Voltage RMSE <0.025

Peng et al. [101] LIBs RUL Online Temperature, Current, Voltage Accuracy 2.2%

Yu state et al. [45] Li-ion IFP18650 SOH Online Temperature, Charg- RMSE 0.0168
ing/Discharging voltage and
current, and EOL criteria

Yang et al. [129] Li-ion IFP18650 SOH Online Temperature, Voltage, Current RMSE <0.0345

Li et al. [133] Li-ion IFP18650 RUL Offline Temperature, charge/discharge RMSE 0.0130
and impedance

Zhou et al. [131] Li-ion IFP18650 SOH Offline Temperature, Charge/Discharge MAPE & RMSE <1%
Current, and Voltage

Richardson et al. [122] LiNCO/Graphite RUL Online Temperature, C-rate, RMSE <3%

& Li-ion Charge/Discharge Voltage,
IFP18650 Current

Feedforward Neural Network (FFNN) |

Hidden

Input

Xis1

Recurrent Neural Network (RNN) |

Hidden

Fig. 11. A visual representation of FFNN and RNN. The neurons are represented as circles [134].

a Li-ion battery based on both battery capacity fade and rise in its
equivalent series resistance in a practical investigation. As illustrated
in Fig. 12, a battery data input is utilized to train RNNs capable of
estimating battery capacity and equivalent resistance, which are then
merged to estimate SOH. The RNNs are trained and evaluated utilizing
cell temperature, current, SOC fluctuation, and previous time step
capacity and resistance. When compared to experimental data, the SOH
estimator model produced an accurate prediction of the battery SOH,
with an MSE of less than 1% [142].

Long short-term memory (LSTM) is a sub-type of RNN architecture
that is created to address the RNN’s long-term dependency. LSTM has
feedback connections, unlike normal FFNN. In comparison to the RNN
architecture, it has input gates, forgetting gates, and output gates. LSTM
has been utilized in a number of research to estimate and predict SOH.
Qu et al. used LSTM to create a prediction model for SOH and predict
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SOH using a sliding window, whose basic model formula is provided
below [104]:

SOH*

¢, =/(SOH? SOH’

t—=1""

..SOH’ 1

t+1-s

7

where SOH fH and SOH t"H is the estimation value, and observation
value at step ¢, respectively and s is the length of the sliding window.

In real environments and applications, LSTM is also used to forecast
SOH. Chen et al. for example, provided a SOH estimation approach for
EV battery life prediction using LSTM. The prediction model with LSTM
is built using the discharge time under constant current, the number of
charging and discharging cycles, and the charging capacity [118]. In
one study, the authors utilized an LSTM to predict the battery SOH,
which was trained using a 2.3 Ah LFP cell dataset simulated from
an electrochemical model of the cell at various SOHs. Cell capacity
fluctuation, voltage, current, and temperature are all employed to train
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Table 6
Summary of the neural networks based SOH/RUL estimation and degradation modelling studies.

Refs NN method Battery SOH/RUL Operation mode Stress factors considered Evaluation Evaluation

estimation index error
Eddahech et al. RNN LiNixCoy- SOH Online Temperature, SOC, Current MSE 0.462
[142] AlzO2/Graphite
Zhang et al. [143] RNN Li(Ni, Co, A)O2 RUL Offline Temperature, C-rate, SOC Prediction error 0.2 to 0.25
You et al. [21] FFNN Li-ion 18650 3.1 Ah SOH Online Temperature, C-rate, RMSE 0.0677

Current, Voltage
Wu et al. [139] FFNN LiFePO4 SOH Offline Temperature, SOC, C-rate MAE 0.81%
You et al. [144] RNN Li-ion IFP18650 SOH Online Temperature, C-rate RMSE <2.46%
Chaoui et al. [111] DDRN LiFePO4 &LTO SOH Offline Temperature, SOC, RMSE <0.42%
Voltage, Current
Hussein et al. [145] ANN Li-ion battery SOH Offline Temperature, SOC, C-rate Prediction error <0.1613
3.6-V/16.5-Ah
Wu et al. [138] FFNN Li-ion IFP1865140 RUL Online Temperature, C-rate, SOC Prediction error <5%
Li et al. [146] CNN LiPO4/graphite RUL Offline Voltage, and Temperature MAE 13.7
Lin et al. [147] RNN LiFePO4 SOH and RUL Online Temperature, C-rate Accuracy >90%
Choi et al. [148] FFNN/CNN Li-ion IFP18650 RUL Offline Temperature, C-rate MAPE 1.03%
Bai et al. [149] ANN Li-ion IFP18650 SOH Offline Temperature, C-rate MAPE <2.75%
Zhou et al. [150] ANN Li-ion Polymer SOH Offline Temperature, C-rate Normalized root- <10%
Battery mean-square-
error (NRMSE)

Wang et al. [151] ANN LiFePO4 SOH Offline Temperature, C-rate, SOC RMSE <0.012
Pan et al. [94] FFNN LiINMC battery SOH Online Temperature, C-rate, SOC, RMSE 0.0280

Voltage, Current

Capacity Predictor

Resistance Predictor

Fig. 12. SOH estimation architecture using RNN [142].

the LSTM. Simulating an aging mechanism with high currents and tem-
perature inputs yielded the dataset used to train the model. The SOH
is only calculated during charging profiles from the model-generated
dataset [153].

All Neural Network methods offer the advantage to be very quickly
adapted to the nonlinear battery data, and it is not required for them to
model the battery in all of its details. They must, however, be trained
over a large number of cycles.

5.1.4. Fuzzy logic and integrated learning methods

Fuzzy logic is a behaviour-based bionic reasoning technique de-
signed to address complicated reasoning problems involving fuzzy phe-
nomena [154]. It is an adaptive machine learning technique which can
be used for SOH estimation. It processes the measured data of complex
and nonlinear systems using a fuzzy rule set and offer the possibility
to globalize data, which is an advantage for battery aging and SOH
estimation [155,156]. For example, Ali et al. improved the accuracy of
the SOH estimation based on two parameters’ measurements embedded
with a fuzzy logic system operating under a large scale of temperature
and current [157]. A study used cycle number, voltage drop, and
internal resistance as inputs, while the SOH is used as an output. The
dynamic prediction model is built using the T-S fuzzy control, and
the SOH is calculated to model battery degradation [92]. In another
study, fuzzy logic is used to estimate SOH where the input is maximum
capacity and resistance [158]. Neuro-fuzzy (NF) system is also proposed
in a study, to develop an online machine health prognostic system. The

14

study determines NF technique to be more reliable and robust health
condition predictor than RNN as it can capture the system dynamic
behaviour quickly and accurately [159].

Besides the discussed methods, there are a variety of additional
ML techniques that are used for estimating battery SOH [82]. These
methods are referred as ensemble methods and integrated learning
algorithms. They employ a number of different approaches to learning,
as well as certain principles to integrate the learning outcomes in
order to generate a better learning effect than a single method [160].
Many researchers have sought to integrate multiple methods at the
same time in order to improve the results and prediction accuracy.
For example, Roman et al. introduced a machine learning-based battery
health management pipeline which combines experimental battery data
with machine learning modelling to estimate SOH. The study explores
four algorithms: Bayesian ridge regression (BRR), GPR, random forest
(RF), and a deep ensemble of neural networks (dNNe). All algorithms
are assessed on error values and uncertainty. The lowest error was
achieved by RF and BRR while considering uncertainty assessment
metrics, dNNe achieves a better calibration score, with an average
increase in MAPE of 0.43% and RMSPE of 0.97%. The dNNe model
achieved a RMSPE of 0.45% with a calibration score of 91.02% [161].
In addition, other machine learning ensemble methods like RF, gradient
boost and Ada-Boost are also employed in literature for robust and
accurate SOH estimation [162-164].
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Summary of the hybrid methods based SOH/RUL estimation and degradation modelling studies.

Method Refs Battery SOH/RUL estimation Operation mode Evaluation index Evaluation error
RVM - GM Zhao et al. [168] LIBs RUL Online RMSE <5%
LSSVR - PSO Yang et al. [168] LiFePO, SOH Online RMSE 0.0192
AR - PF Liu et al. [42] LIBs RUL Online RMSE <2%

AR - EMD Chen et al. [166] Li(NiCoMn)O, SOH N/A MSE <1x10™*
RVM - UKF Zheng et al. [169] LIBs RUL Online RMSE <3%

NN - PF Wu et al. [170] LIBs RUL N/A Error 10%
RVM - Mean Entropy Li et al. [171] LFP SOH Offline Standard error <4%
Polynomial regression - PF Xing et al. [109] LIBs RUL Offline Error 1%
Brownian Motion - PF Dong et al. [172] Li-ion IFP18650 SOH and RUL Online RMSE <4%
GPR - PF Li et al. [86] Li-ion IFP18650 SOH Offline MAPE <0.0102
MLP - PF Cadini et al. [173] LIBs RUL Online Relative error 10%
RBF - PF Sbarufatti et al. [136] Li-ion IFP18650 RUL Online Average error <10%
RVM - KF Chang et al. [174] LIBs RUL Online Error <5%
Logistic Regression - GPR Yu et al. [45] Li-ion IFP18650 RUL Online Average Error <10%
SVR - PF Dong et al. [95] Li-ion IFP18650 SOH and RUL Online RMSE <0.024
FENN - KF Bai et al. [175] Li-ion IFP18650 SOH Online MSE <0.067
BSA - SVM Li et al. [176] Li-ion IFP18650 RUL Offline RMSE <0.06

5.1.5. Hybrid techniques

Hybrid methods are a integration of multiple approaches, with
the same or distinct types of methods being used. Furthermore, by
adjusting the model parameters, there are combinations of optimization
algorithms and other methods that provide better results. The most
commonly used hybrid approaches are those that combine data-driven
and SOH prediction methods of the same type [26]. A fusion or hybrid
approach enables effective use of information from the ML approaches
to achieve dynamic SOH estimation outcomes.

Several studies have been carried out using hybrid techniques which
use regression, SVMs, and neural networks in combination with dif-
ferent adaptive model techniques [165]. A summary of the hybrid
methods based SOH estimation and degradation modelling studies is
given in Table 7. Li et al. used the fusion operation of RVM and mean
entropy to accurately predict the SOH of the Lithium Phosphate (LFP)
battery. The authors used the online mode of operation and results
of the study indicate that the proposed hybrid has a standard SOH
prediction error less than 4% [98]. Xu et al. implemented a hybrid
method based on GPR and particle filter (PF) hybrid method, which
is used to estimate the SOH of standard Li-ion IFP18650 battery in
an offline operation mode. The study indicates a high accuracy of the
GPR-PF hybrid method, which shows a mean absolute percentage error
(MAPE) of less than 0.01 [86]. Chen et al. proposed an auto-regressive
(AR) approach combined with empirical mode decomposition which is
used to estimate the SOH of Li(NiCoMn)O, battery with mean square
error (MSE) less than 1 x 10~* [166]. Yang et al. used a particle
swarm optimization (PSO)-least square support vector regression (LS-
SVR) strategy to provide an effective SOH estimation result with high
accuracy and good generalization ability, with the PSO algorithm being
used to increase the global optimization algorithm’s capacity. The
results of the study indicate that proposed technique is able to estimate
SOH with high accuracy [167]. Zhao et al. presented a hybrid technique
based on the grey model and the RVM (GM). From the SOH sequence,
the approach predicts the SOH values of the regeneration cycle, the
regeneration cycle number, and normal degradation. The method uses
a multi-step SOH prediction based on the time series for the typical
degradation modelling phase. The results indicate the estimation result
with high accuracy and RMSE of less than 5% [168].

5.2. RUL estimation using machine learning approach

The ability to accurately forecast the RUL of a faulty component
is critical for system prognosis and health management. Operators can
use RUL to find out when a component needs to be replaced. A Li-ion
battery is considered to have failed when its capacity drops by 20%-—
30% of its rated value. The remaining time or number of cycles before
the battery’s SOH approaches 0% is referred to as RUL [177,178]. The
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RUL is typically predicted based on a capacity degradation pattern
reaching a preset failure threshold, and it is obtained by subtracting
the current health of the battery from the estimated life of the battery.
Battery health estimation tools are developed to forecast the SOH as
a function of the historical usage data. The relationship between the
battery RUL predictors and SOH estimator for an EV vehicle battery is
illustrated in Fig. 13, which represents the stages of data collection and
data processing for battery health management. It also describes the
process to establish the model for RUL prognostics using SOH estima-
tion and diagnostics. In addition to the SOH estimation, RUL prediction
of Li-ion batteries plays an important role in practical applications of
battery health management, and provides meaningful insights in terms
of battery echelon utilization and safety management [30]. The steadily
fading battery capacity is often employed as an effective health indica-
tor for Li-ion battery RUL prediction to track the battery’s degradation
process.

Considerable research efforts have been devoted to RUL estimation.
Recent research has focused on data-driven approaches that leverage
statistical machine learning to relate real-time, non-invasive RUL mea-
surements of the battery to battery health without modelling a physical
mechanism [17,179]. According to Hu et al. current RUL prediction
methods can be divided into model-based, data-driven, and hybrid
methods. These methods vary in terms of computational complexity,
model accuracy, and requirements. The data-driven model incorporat-
ing machine learning mechanism is considered to be a promising RUL
prognosis technology [180]. Data-driven machine learning algorithms
extract valuable features from acquired data in order to characterize the
current state, and, as a result, to model the degradation trend [181].
The utilization and applications of ML methods for SOH estimation and
RUL prediction are quite distinct. The input features for SOH estimation
are collected from the BMS during operation, and the outputs are the
estimated capacity at a given moment. In order to predict RUL, ML
techniques often require estimated or measured SOH information, such
as capacity values, as inputs [29]. To create the degradation model, ML
approaches effectively extract feature information from RUL prediction,
and based on this information, they describe intrinsic degradation
correlations and patterns [93]. Therefore, machine learning methods
have become the focus of RUL prediction and battery degradation
modelling.

A reliable ML based approach for precise battery degradation mod-
elling and RUL estimation is of extreme importance for advanced
battery management [89]. Predicting a battery’s RUL and detecting pos-
sible unpredictable scenarios induced by battery aging are the ultimate
goals of battery health management. The battery health monitoring
data is typically used to fit the degradation model and calculate the
RUL by extrapolating the variables to the failure threshold in ML-based
methodologies [17]. By using ML approaches, it is not necessary to
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Fig. 13. Battery SOH estimation and RUL prediction algorithm framework.

simulate various degradation mechanisms in detail; rather, the acquired
data is used to predict RUL. The requirement of large amount of train-
ing datasets that are quite relevant to the degradation, is a fundamental
drawback of ML techniques. To further understand the prognostics of
RUL reported in the literature, various studies developed a data-driven
based ML prediction model to exhibit RUL. Prognostics ensure that
complex systems, such as battery RUL prediction, are understood and
developed by integrating data generation and data-driven modelling.

5.2.1. Support vector machine

SVM is a powerful method for handling large amounts of battery
data, which include sets of current, voltage, SOC, Ah and temperature
data. These datasets are be widely used to devise battery models [182].
Numerous studies have used SVM technique for RUL estimation [183].
For instance, Wang et al. proposed an SVM-based iterative multi-step
prediction model in order to accomplish accurate RUL prediction [184].
Klass et al. developed and evaluated RUL estimation method based on
SVM models and virtual standard performance tests. The study carried
out the validation of the RUL estimation method based on battery
data from experimental work, while standard performance tests and EV
current profiles served as input data to the SVM modelling [117]. Patil
et al. suggested a novel method for estimating Li-ion battery RUL in
real-time that incorporates the classification and regression properties
of the SVM algorithm. The researchers evaluated Li-ion battery cycling
data under various operating settings and extracted crucial elements
from the voltage and temperature profiles. When the battery is nearing
its EOL, the proposed model provides an approximate estimation and
predicts the accurate RUL as shown in Fig. 14 [185].

Some studies focused on different SVM based hybrid DDMs for
RUL estimation. Pattipati et al. obtained battery RUL prediction af-
ter incorporating the Hidden Markov model (HMM) into SVM. The
nonlinear SVM models are utilized to forecast capacity decline due
to a high degree linear correlation between battery resistance and
capacity [186]. Gao et al. proposed a multi-kernel SVM (MSVM) based
on polynomial kernel and radial basis kernel function, in combination
with particle swarm optimization, to predict RUL of the battery [187].
Experiments show that the model has a good accuracy in detecting
health characteristics with few parameters. The application of SVM
depicts a reasonable performance on the battery RUL estimation. How-
ever, forecasting future values of the variable of interest, as well as
describing the uncertainty associated with these values, is a crucial
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component of RUL prognostics. There are other machine learning al-
gorithms that presents a more stable and competitive prediction and
provide a principled approach to dealing with uncertainty as compared
to SVM [188].

5.2.2. Bayesian methods

Bayesian approaches offer a logical approach to dealing with un-
certainty, as well as a plausible interval with probabilistic upper and
lower bounds, which is critical for making informed decisions [189].
In a study, the authors developed a systematic technique based on
identification, model selection, and a strategy for prognostics data
selection to simulate battery capacity fading across recurrent cycles.
Under diverse operating situations, the suggested Bayesian technique
is capable of quantifying the uncertainty in predicting battery capacity
and RUL [190]. Another study characterized battery degradation and
a Naive Bayes (NB) model is developed for RUL prediction of batteries
under various usage scenarios and ambient temperatures. Furthermore,
the analysis shows that the RUL of Li-ion batteries is predicted using
the NB technique in constant discharge situations, regardless of the
exact values of the operating parameters. The proposed model has an
improved prediction performance as compared to SVM [107]. He et al.
developed a unique online technique based on Dynamic Bayesian Net-
works (DBNs) for estimating the RUL of Li-ion batteries. The parameters
of the DBN model are learned using training data obtained from battery
aging studies, and the DBN model is inferred using a forward approach
to predict the RUL in real-time. Experimental results represent the
effectiveness of the proposed method in estimating the RUL of Li-ion
batteries [106].

5.2.3. Gaussian process regression

Gaussian process regression (GPR) is a flexible, probabilistic, non-
parametric Bayesian approach that offers a number of unique ad-
vantages for RUL prediction. It represents variance around its mean
predictions to describe related uncertainty in the evaluation and pre-
diction [191]. These advantages of GPR have been exploited in a
number of studies for battery RUL prognostics, and it is applied in
different batteries and situations theoretically. Richardson et al. demon-
strated that GPRs are used to estimate battery conditions and outlined
many important advantages over other data-driven and mechanical
techniques. On chosen capacity datasets from Li-ion cells, the study
used Gaussian processes for short- and long-term RUL prediction [100].
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Fig. 14. RUL prediction of the SVM based approach [185].

Liu et al. evaluated the GPR model to realize the battery SOH and
proposed RUL prediction approach. Experimental results prove the
effectiveness and confirm that the algorithm is effectively applied to
the battery monitoring and prognostics [192]. Li et al. introduced a
new RUL prediction approach based on the Gaussian Process Mixture
(GPM), which fits distinct segments of trajectories with different GPR
models. Due to the outstanding testing results of two commercial Li-ion
batteries, the method is proved to be effective for RUL prediction. When
the models’ performance is compared, it is clear that the GPM is more
accurate than the GPR and SVM [133].

5.2.4. Neural networks

Neural networks (NN) is another industry-leading machine learning
technique as it can attain high levels of accuracy. Furthermore, NNs are
the most typically used method for estimating battery RUL as they have
accurate generalization and learning of nonlinear relation between
data and output. Many of the recent studies have considered different
types of neural networks for RUL estimation. A summary of the neural
networks based RUL prediction and degradation modelling studies is
given in Table 6. Different types of ANNs have been successfully applied
for battery RUL prediction in various studies, including FFNN, RNN,
CNN, ARIMA [104,179]. FFNN is used as a machine learning method
for RUL estimation due to its ability for nonlinear simulation. Based
on the historical distribution of observed battery data, You et al.
built a real-time RUL estimation method utilizing a FFNN [21]. On
the basis of RUL definition, Wu et al. proposed a Li-ion battery RUL
estimation method using FFNN. For its simplicity and effectiveness,
FFNN simulates the link between RUL and charge curve. Based on
these findings, an online method for estimating Li-ion battery RUL
using FFNN is presented [193]. The experimental findings show that
the proposed strategy performs in an effective way in terms of RUL
estimation for online applications.

On the other hand, RNN provides an accurate simulation of Li-ion
cell aging behavior as explored in a study, taking specific operational
conditions into account and providing practical information on the
battery RUL [142]. RNN-based predictors are used in a wide range of
high-performance energy storage systems for hybrid and electric vehi-
cles [194]. An application of dynamically driven RNN is presented in a
study for online EV battery analysis. A nonlinear auto-regressive archi-
tecture of RNN is designed for SOC, SOH and RUL estimation [195]. In
another study related to EV battery analysis, RNN is proposed to trace
the EV battery RUL, using measurable data from an EV where batteries
are cycled dynamically according to various driving patterns [196]. An
adaptive RNN is also presented in a study for predicting the RUL of
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Li-ion cells, based on a history of cell impedance data from numerous
batteries as a starting point for predicting the unknown impedance
variation of a new battery. Adaptive recurrent feedback is used in the
suggested strategy to improve prediction accuracy [197]. A study by
Che et al. proposed a novel RNN based method to predict RUL using
health indicators (HIs) and online model correction. A combination
of transfer learning and gated recurrent neural network (TL-GRNNs)
is used to improve the RUL prediction accuracy, which uses the most
relevant battery to train the pre-model and fine-tune the model using
early cycling data of the test battery. GPR is used to optimize the
threshold for HIs to determine the EOL. Experimental results show that
the proposed method provides more accurate RUL prediction than the
conventional method. The proposed method predicts RUL with an error
of fewer than 5 cycles [198].

Some studies used RNN based LSTM approach to estimate RUL.
For instance, to forecast RUL, Zhang et al. suggested an RNN-based
LSTM. The data was gathered using a variety of Li-ion cells at var-
ied current rates and temperatures. The model obtains satisfactory
results in predicting RUL independent of offline training data [199].
Chinomona et al. considered the aging characteristics extracted from
the voltage, current, and temperature to analyze the degradation of the
battery and determine the battery RUL using RNN-LSTM [200]. Chen
et al. used LSTM networks to develop a prediction model that properly
calculated RUL with an RMSE of less than 4% [166]. A study by Li et al.
improves RUL prediction, and proposed a prognostic framework shared
by multiple batteries. A variant LSTM neural network, called AST-LSTM
NN, is designed for the promising performance of RUL prediction. AST-
LSTM NNs have mapping structures of many-to-one and one-to-one,
and are independently well-trained for the prediction of SOH and RUL.
The experiments carried out on NASA dataset results in lower average
RMSE (A-RMSE) of 0.0216 for SOH prediction and conjunct error (CE)
of 0.0831 for RUL estimation. A comparison of the RUL estimation
results of the proposed AST-LSTM NNs, with the estimation results of
other methods including RNN, and LSTM is depicted in Fig. 15 [201].

Convolutional neural network (CNN) is also studied in the previous
studies as it is suitable for predicting RUL of Li-ion battery. Li et al.
constructed a CNN model to achieve high accuracy for RUL prediction
of Li-ion battery and applied orthogonal method for optimizing model
parameters [146]. Deep Neural Network (DNN), which acts as multi-
layer ANN, is another suitable technique that achieves better accuracy
for complex prediction problems such as multi-battery RUL estimation
due to its ability of high complex non-linear fitting [202,203]. Ren et al.
devised a similar DNN integrated deep learning approach in a study
for multiple Li-ion battery RUL prediction. The study used a multi-
dimensional feature extraction method with an auto-encoder model to
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Fig. 15. The RUL prediction results of different methods [201].

depict battery health decline, and an RUL prediction model based on
DNN is trained to estimate multi-battery remaining cycle life [204].

5.2.5. Relevance vector machine

Relevance vector machine (RVM) is a sparse Bayesian approach for
the kernel regression which undertakes regression in a probabilistic
way. RVM has a high level of accuracy, learning ability, sparsity, a sim-
ple training process, and a probability distribution prediction output.
However, one clear disadvantage is that training requires enormous
datasets, resulting in significant computational complexity, time, and
memory needs [205]. Due to RVM model’s sparsity, it is possible to
make efficient predictions for new observations [206]. RVM has the
identical function form of SVM as mentioned in Eq. (4). However, un-
like SVM, it has the ability to provide probabilistic classification [205].
The residual capacity and battery health of Li-ion batteries have been
evaluated using RVM based on the characterization data derived by
the charging behaviour [97]. The RVM model has been gradually used
for the degradation prediction phase, and it is integrated with other
methods for battery RUL estimation. In a study, Wang et al. created a
Li-ion battery prognostic model that included an RVM algorithm and
a capacity degradation model to predict RUL. To increase prediction
performance, the suggested RVM picks the significant training vec-
tor [183]. To improve the RUL prediction precision, Liu et al. presented
an incremental on-line learning technique for RVM [99]. Li et al. used
the RVM algorithm, and mean entropy to develop the RUL prediction of
Li-ion batteries. The mean entropy is used in the study to determine the
ideal dimension for proper time series regeneration [98]. A summary
of the RVM based RUL prediction and degradation modelling studies is
given in Table 8.

5.2.6. Hybrid techniques

ML methods and physical-model methods are potentially comple-
mentary to each other; therefore, it is desired to develop a hybrid
model-combining the two approaches — to achieve an accurate RUL
prediction. With such combined model, the battery working in field can
be better described and simulated, which will eventually provide a solid
foundation for the battery health estimation and prediction [31]. Nu-
merous studies have been carried out using ML methods in combination
with different adaptive model techniques. SVM, RVM, neural networks,
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GPR and other ML methods are widely used in combination with
other adaptive and empirical methods for accurate RUL prediction.
A summary of recent work based on the hybrid techniques for RUL
prediction and degradation modelling studies is given in Table 6.

(i) SVR Based
Wang et al. suggested a hybrid SVR and differential evolution
(DE) model to improve RUL prediction accuracy for Li-ion bat-
teries. DE has been used to obtain the kernel parameters of
SVR [213]. Furthermore, a number of studies made use of SVR
and combined it with PF for RUL prediction of batteries [95,
214,215]. A hybrid technique called the improved bird swarm
algorithm optimization least squares support vector machine
(IBSA-LSSVM) has been presented in a study to estimate the RUL.
The LSSVM model’s optimum parameters are determined using
IBSA. The goal of the method is to improve prediction accuracy
and stability [176].
(ii) Neural Network Based
Qu et al. proposed a neural-network-based method that achieved
a high accuracy by combining LSTM network with PSO and
attention mechanism for RUL prediction [216]. Cadini et al.
suggested a hybrid strategy for RUL prediction that included PF
and multilayer perception (MLP) neural networks. The posterior
probability density function (PDF) of the MLP parameters is
determined recursively using PF [173]. To represent the battery
system dynamics, Bai et al. used FFNN and Kalman filtering
(KF). The authors used a collection of battery trial data to back
up the proposed strategy [175]. Sbarufatti et al. demonstrated
a method that combined PF and radial basis function (RBF)
neural networks to predict RUL, with PF being able to dynam-
ically determine RBF parameters. The algorithm adjusts to the
changing dynamics caused by battery aging [136]. Pang et al.
developed a new approach for forecasting the RUL of a Li-ion
battery that combines wavelet decomposition technology (WDT)
with the Nonlinear Auto Regressive Neural Network (NARNN)
model [217].
GPR Based
Joint estimation GPR models are also proposed to accurately es-
timate the capacity and predict the RUL. A high RUL prediction

(iii)
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Table 8
Summary of the RVM based SOH/RUL estimation and degradation modelling studies.
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Refs Battery

SOH/RUL estimation Operation mode Stress factors considered

Evaluation index Evaluation error

Hu et al. [206] LIBs prismatic cells SOH Online Temperature, DOD, C-rate, SOC RMS 0.92%
Saha et al. [182] Li-ion IFP18650 RUL Offline Temperature, SOC Accuracy Minimum error
Zhou et al. [207] Li-ion IFP18650 RUL Online Charging/Discharging voltage, current and temperature RMSE 0.0117
Wang et al. [183] LIBs RUL Offline Temperature, Current, Voltage RMSE <0.0116
Qin et al. [208] Li-ion IFP18650 RUL Online Current, Voltage RMSE <5%

Li et al. [98] LIBs SOH Offline Temperature, Voltage, Current RMSE <0.004
Song et al. [209] Li-ion IFP18650 RUL Online Temperature, Voltage, Current MAE & RMSE <0.01
Zhang et al. [210] Li-ion IFP18650 RUL Online Temperature, Voltage, Current MSE <0.0002
Widodo et al. [211] Li-ion IFP18650 SOH Offline Temperature, Voltage, Current RMSE 5.96 x 1073
Liu et al. [47] Li-ion IFP18650 RUL Online Temperature, C-rate, Current, and Voltage RMSE <0.054
Zhang et al. [212]  Li-ion IFP18650 RUL Offline Temperature, C-rate MSE <0.0007

accuracy is achieved in a study by combining the GPR method
with probability predictions [43]. Another study proposes a
mechanism for forecasting the RUL of Li-ion batteries by com-
bining GPR and logistic regression (LR) [45]. Wavelet de-noising
(WD) method and the GPR model are also fused in a research
study to evaluate the performance of RUL prognostics and obtain
a higher accuracy for RUL prediction of Li-ion battery [101].
(iv) AR Based
Liu et al. explored an improved nonlinear degradation auto
regressive (ND-AR) model for Li-ion battery RUL estimation. A
battery RUL prognostic joint framework of ND-AR model and
RPF algorithm is proposed to realize various Li-ion batteries
RUL estimation [42]. In another study, Saha et al. presented a
comparative study of ARIMA, extended KF, RVM, SVM and PF
approaches on experimental data collected from Li-ion batteries
in the RUL prediction [218]. Zhou and Huang suggested an
approach based on empirical mode decomposition (EMD) and
ARIMA To estimate the RUL of Li-ion batteries. An aging test
dataset of Li-ion batteries is used to validate the methodol-
ogy [103]. In one study, researchers used a novel and optimised
AR model in which the model order is modified adaptively using
the particle swarm technique for battery RUL prediction [219].
RVM Based
Various studies also applied RVM in combination with different
techniques to forecast RUL. For instance, Saha et al. explored the
battery prognostic problem in a study through Bayesian learn-
ing based RVM-PF framework to encapsulate the randomness
of RUL and improve its prediction with extensive measure-
ments [220]. The advantages of this model-based approach over
other techniques capable of handling uncertainties like NN and
GPR, are also demonstrated in [221]. RVM and grey relation
analysis (GRA) are utilized by Qin et al. to forecast RUL. The
duration of the charging and discharging voltage difference is
chosen as the model’s input first, followed by feature selection
to eliminate redundant points in the data [208]. Li et al. em-
ployed used mean entropy and RVM to calculate the RUL. The
authors used mean entropy to determine the best dimension
for time series regeneration, and then used RVM to anticipate
Li-ion battery SOH and RUL [98]. Song et al. estimated Li-
ion battery RUL with an iterative updated RVM fused with the
KF algorithm [85], whereas Zhao et al. implemented a hybrid
method for RUL estimation by using the RVM and the grey
model (GM) alternately [168]. To estimate the RUL of the Li-
ion battery, Zhang et al. suggested an approach based on the
EMD denoising method and the multiple kernel relevance vec-
tor machine (MKRVM). By using the EMD denoising technique
to the measured capacity data, noise-free capacity data can
be obtained. Its capacity forecasting model is developed using
MKRVM based on the noise-free capacity data. [212]. Chang
et al. developed a hybrid method to obtain the RUL of Li-ion
batteries By integrating UKF, EMD and RVM [174].

W)
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A few studies also conducted research on RUL prognosis using
novel data-driven techniques including Dempster-Shafer theory and the
Bayesian Monte Carlo method, sample entropy and sparse Bayesian
predictive modelling, Box—Cox transformation and Monte Carlo simu-
lation [222,223].

6. Discussion

With the ever-increasing complexity and dynamics of battery stor-
age systems, battery degradation modelling has become more complex.
Qualitative changes are apparent in Li-ion battery degradation process.
However, it is challenging to identify quantitative features that are
linked to degradation. The data-driven based prognostics approach
resolves this by performing real-time, non-invasive measurements on
the battery without modelling a physical process and utilizing statistical
machine learning to link SOH and RUL to the battery degradation.
Different ML methods have been proposed in literature for modelling
the battery degradation using health SOH diagnostics and RUL prog-
nostics of Li-ion battery. All of the presented ML-based SOH and RUL
prediction algorithms have their own set of applications, and in some
cases, superior results can be obtained. Each method’s complexity
and style of operation differ, which can have an impact on practical
applications. There is no single accurate method to model all current
issues related to the battery degradation. The characteristics of each ML
method comprise of the accuracy, computational effort and generaliza-
tion ability which are usually required to assess their performance and
applicability. This section discusses the characteristics of the existing
ML methods in order to recommend the most suitable models for Li-
ion battery SOH estimation and RUL prediction. Furthermore, some
considerations are discussed concerning approach selection, and per-
formance evaluation for the particular ML method application of Li-ion
battery aging prediction. This is crucial to comprehend the methods’
scope of applicability and complexity, as well as to serve as a reference
for actual implementation and future study. In addition, this section
also discusses about the aspects related to applicability of ML methods
in EV applications for battery safety, reliability and its life improvement
through battery degradation modelling.

6.1. SOH, RUL and battery degradation modelling

Lithium-ion batteries face a core difficulty associated with environ-
mental degradation factors, capacity fade, aging-induced degradation,
and end-of-life repurposing. The performance and capacity of Li-ion
batteries gradually deteriorates over time due to the aging process and
impacts from the operating conditions. The SOH and RUL are main
benchmarks to analyze battery health conditions, and provide helpful
technical information that outline the efficacy of the batteries as well as
facilitate in the identification, development and testing of numerous pa-
rameters that will enhance and further improve the efficiency of BESS.
The SOH indicates the battery aging level and reflects the reduction
in the total useful capacity and increment in internal resistance of the
battery. RUL denotes the period from the present time to the end of the
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battery useful life. Both these measurement indices provide an accurate
and effective framework of battery degradation model. Various studies
have proposed to capture the relationship between battery SOH estima-
tion, RUL estimation and battery degradation trend. The characteristic
parameters associated with Li-ion battery aging are capacity fade, and
internal resistance which have a strong correlation with the battery
SOH. These parameters act as the health indicators to estimate the
battery SOH whereas the accurate SOH estimation is the foundation
and prerequisite for the RUL prediction. The SOH estimation and RUL
prediction, in combination, devise the model to predict the battery
degradation trend by quantitatively utilizing battery aging parameters
of capacity fade and internal resistance. Thus, establishing the model
of degradation behaviour of Li-ion batteries hence requires accurate
estimation of SOH, and RUL. Appropriate and robust algorithms of
SOH estimation and RUL prediction are necessary in addressing the
battery degradation challenges, improve the battery operation and
performance, allowing them to be used to their maximum potential and
attaining extended life before replacement or disposal.

6.2. Machine learning and battery aging prediction

Machine learning methods are the evolutionary methods, which
require less pre-test work, and carry out precise estimation of the
slowly changing parameters critical to battery degradation modelling
such as battery life (RUL) and health (SOH). The drawbacks of these
methods include high requirements on the efficiency and portability
of the algorithm and high dependence on the transmitted data [25].
These methods have great potential for battery health management and
battery degradation modelling. ML models are the viable choice when
there is no functional dependence information from a Physics-based
model. ML functions as a black box, where battery datasets are fed and
SOH and RUL predictions are generated.

ML techniques provides better estimation accuracy than other adap-
tive methods as analyzed in a study by comparing the IC analysis with
GPR and RF [162]. Dynamic conditions involving drastic variations
in the usage of current and voltage, and temperature stresses make
it difficult to accurately model the battery degradation. ML can be
employed in a dynamic setting, such as a driving cycle of an electric
vehicle, due to its flexible properties. Temperature changes can be used
as input variables for model training and linked to aging. However,
these methods require a greater computational effort, which is a major
hurdle in their online application. Based on the battery’s usage pattern,
a suitable SOH estimation method should be chosen. Because of its ca-
pacity to adapt to non-linear battery state behaviour, ML is a potential
solution for batteries under more complex operating situations, such as
those found in EV.

6.3. Comparison of different ML methods

The ML methods and their usage in different studies is described
in two parts; one for the SOH estimation, and the other for the RUL
prediction. The methods explored for SOH estimation and RUL pre-
diction include SVM, ANN, RNN, RVM, GPR, fuzzy logic, Bayesian
methods, ensemble learning, and hybrid methods. The basic workflow
required for online SOH/RUL estimation using feature input prediction
algorithms is depicted in Fig. 6. Feature extraction is a critical phase
and a difficult problem in battery deterioration modelling, because it
has a direct impact on performance. In the domain related to battery
degradation modelling, there is no established optimum model for
estimating SOH and RUL due to system complexities, data availability,
and application constraints. In some cases, though, one strategy may
outperform another. In this part of the discussion, the comparison
of different ML methods have been made in terms of the approach
selection, non-linear data handling capability, complexity, robustness
and then an conclusive interpretation of this comparison is given.
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6.3.1. Approach selection

For the particular ML method application for Li-ion battery aging
prediction, the structure of the selected model is important. Users’ re-
quirements and criteria, such as the testing environment, accuracy, and
forecast time, needs to be addressed when selecting effective method-
ologies for battery degradation modelling. The model’s capacity to fit
future aging data is constrained in an online learning setting. ARIMA
models are susceptible to similar problems. ANN models, assuming a
constant architecture, have a fixed number of weights and are the-
oretically capable of approximating any battery degradation function
within a desired accuracy range, as long as the model specification is
properly established. Methods involving filtering techniques to update
aging models can be exposed to limitations, and hence the ability to
perform accurate predictions strongly depends on the reliability of the
initial model.

SVR, GPR, and RVM have an associated parameter, providing the
model more flexibility to react to new data acquired during online
operation. When a reliable ML model is already available, filtering-
based hybrid approaches can be a good way to update it and make
it more adaptable to future battery data. In contrast, in a circumstance
where the model must be devised from the scratch, a method like GPR
or RVM is more appropriate. This strategy can provide the model more
adaptability when it comes to new data points while also minimizing
the amount of battery testing hours needed to train it.

6.3.2. Non-linear data handling capability

The ability to model nonlinear relations like the battery degradation
behaviour is crucial when modelling Li-ion battery aging because the
relationship between some battery stress factors and battery health is
substantially nonlinear. The outcomes of the studies described in above
sections which are based on SVR, GPR, RVM and ANN techniques
depict that these methods allow performing regressions on nonlinear
data, and they can only provide an estimated point in regression, but
ARIMA can only provide a linear auto-regression, hence it might not
be suited for predicting Li-ion battery aging.

6.3.3. Robustness

The review of different ML studies used for SOH and RUL estimation
shows that the most resilient mechanisms for dealing with tiny data
fluctuations and outliers include SVR, RVM, and GPR. SVR and RVM
have inherent sparse behaviour and robust mechanisms, allowing them
to deal with small data fluctuations and aberration, ignore tiny data
variations and discard immaterial data. GPR provide robustness when
facing minor deviations. However, some studies raise questions about
GPR’s robustness in practical applications, as actual operating condi-
tions may vary widely. There is no comparable mechanism in ARIMA
and ANNs to improve the robustness of the forecasts.

6.3.4. Complexity

The computation complexity is evaluated as the resources required
by a ML model. In particular, it focuses on the time and memory
requirements. The determination of a model computational complexity
is useful because by this way, one can suggest modifications that would
improve the computation results. Since the computation complexity is
generally difficult to quantify in the ML model, one common practice
is to characterize functions according to the correlation between run
time or space requirements and the input size. It is clarified here that
based ML approaches reduces the inherent complexity involved with
the battery degradation modelling as they attempt to learn by exam-
ples and are capable to capture complex degradation mechanisms and
relationships among collected battery data that are complex to describe
[29]. ML is a potential solution for batteries to deal with the operational
and degradation modelling complexities of EVs due its capacity to adapt
to non-linear battery state behaviour. It is noted that there is a trade-off
in balancing the model complexity and computational burdens for ML
methods-based SOH and RUL estimation.
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6.3.5. Interpretation of comparison

ML-based SOH and RUL prediction algorithms presented in the
review study have their own set of applications, and in some cases,
superior results can be obtained. Complexity and operation style of
each method differs, which can have an impact on practical applica-
tions. There is no single accurate method to model all current issues
related to the battery degradation. Hence, none of the aforementioned
methods can be considered an absolutely superior method, and a trade-
off among the desired accuracy, the output confidence interval, the
ability to deal with non-linearity, robustness, computation complexity,
the ability to deal with data sparsity, and generalization should be
considered for each particular situation.

6.4. Battery degradation models for EV applications

Li-ion batteries are increasingly being employed in a variety of
applications to deliver a variety of services, owing to their technological
and market maturity. Li-ion batteries have a high energy density, a
high power density, a long life, and are environmentally friendly, hence
they have a wide range of applications. However, their performance
degrades with aging and usage, resulting in a loss in both energy and
power capacity. The models used for algorithm development needs to
capture the impact of battery capacity degradation on various real-
world applications like EVs. ML is one of the progressive method
which is being studied as a new approach to improve the battery
degradation models. It is important to use ML methods to minimize
the computational burden of models, so that they can be used on-
board vehicles in real time. The ML based SOH and RUL estimation
presents very interesting results with quite high accuracy. Yet, unless
a significant amount of data from real EVs under different operating
conditions and for different battery types are available, this estimation
technique is hard to conduct. Besides, ML models are only as good as
the experimental data on which they are used, so minimizing errors in
battery data collection is critical. Due to a paucity of data on deteriora-
tion mechanisms mixed with the need for quick computation, battery
degradation models are frequently oversimplified, and thus not allow-
ing the users to observe the real impact of it on the EV applications.
Li-ion battery degradation can be estimated through the development
of aging models. The model development is typically necessary in order
to optimise the operation and performance of the battery particularly
for EV application. An assessment of the state-of-the-art ML based
Li-ion battery degradation models, including accuracy, computational
complexity, and amenability to algorithm development is already pre-
sented in the above sections. This section discusses the utilization and
implications of battery degradation models for EV related aspects. The
aspects which are discussed incorporate existing degradation models
with EV batteries through BMS and energy management, V2G services,
optimization strategies for accurate modelling, and optimized operation
and performance of the EV battery.

6.4.1. Utilization of battery degradation models in EVs

Safety and reliability of Li-ion batteries is critical for the large-scale
penetration of EVs. The main limitation of the Li-ion based EV batteries
resides in the aging as battery undergoes a sophisticated degradation
process during EV operations. Degradation occurs over time under
specific driving conditions, and it results in decreased driving range due
to reduced capacity, decreased charging/discharging efficiency due to
increased resistance, and the critical need for battery replacement when
capacity falls below the degradation limit [84]. The charging strategy of
EVs is one of the most significant contributor to battery aging. Excessive
charging time reduces the practicality of EVs, negatively impacting
the user experience and reducing user confidence, while an excessive
charging current causes the battery temperature to increase rapidly,
resulting in capacity degradation and a significant reduction in the
service life. The potential influential factors affecting the EV usage and
energy consumption are mostly related to battery states, battery aging,
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driving behaviour, and environmental conditions [224,225]. There are
two concerns in the Li-ion battery application, including the expensive
energy capacity as the battery cost accounts for a large portion of the
total cost of an EV, and the limited driving environment, which limits
the performance and adoption of EV. Therefore, mitigating the battery
capacity degradation through proper modelling, prolonging the battery
life and optimizing battery capacity and energy management are the
main goals of maximizing the overall lifetime value of EVs.

One of the most challenging task in modelling the degradation trend
of the EV battery is to identify factors that are causing it. Many factors
from the environment interact to produce diverse degradation effects
on EV batteries, which makes it difficult to establish a degradation
model through existing methods. Degradation comprehension is a dif-
ficult task, and throughout the years, numerous studies explored the
battery degradation models [226]. The diversity and the multitude of
existing studies dealing with battery degradation provide a reasonable
information, which investigate EV battery aging factors, effects, and
characteristics. Based on the explored aspects, many studies further
investigated the methods applied to model the degradation mechanisms
in EV battery [227].

6.4.2. Integration of degradation models with BMS

Failure of a Li-ion battery in EV can result in hazardous conditions
such as fires and explosions, as well as increased maintenance or
replacement expenses. Li-ion battery health in EV needs to be examined
on a frequent basis in order to discover flaws, and addressing safety
concerns [46]. The BMS features battery faults detection system and
provides early alerts and reports regarding battery aging information
to ensure battery safety [112]. The BMS in an EV ensures the safe
and reliable operation of the battery pack by continuously monitoring
the states of the battery and making the battery operate within the
appropriate voltage and temperature windows [25]. As a result, the ir-
reversible damage to the battery is avoided, thus effectively prolonging
battery lifetime [228].

The integration of accurate degradation models with BMS enhances
its ability to extend battery life of EV by ensuring that operations are
optimized for battery longevity. BMS enables model-based estimation
of battery states such as SOC, SOH and RUL. It measures and quantify
the evolution of the electrical performances of EV batteries and predict
accurately their RUL in real use [229]. The implementation of robust
and accurate ML techniques in BMS can protect cells and battery packs
by assuring proper operational voltage and temperature ranges, ensur-
ing safe operation, extending battery service life, and keeping batteries
in a healthy state [123]. Current, voltage, and temperature sensors, as
well as vehicle control, are all BMS inputs that can serve as crucial
input features for ML algorithms while SOH and RUL can act output
features. This represents that the BMS can very well oversee the battery
safety and reliability, and improve battery life when integrated with ML
algorithms. Furthermore, accurate ML based degradation models once
integrated with BMS allows EV batteries to be used to their greatest
capability and life expectancy before being replaced. To ensure the
safe operation of battery packs, further improvements in the BMS and
degradation models are necessary so that batteries in EVs are capable
of delivering the required power and energy for an extended driving
range.

6.4.3. Energy management, optimization strategies, and battery degradation
modelling

The degradation models are used to examine and optimize the
energy management strategy, with an emphasis on increasing battery
lifespan, in addition to application design utility. The combination of
accurate degradation models and optimized energy management strate-
gies in EVs has the ability to improve the battery life. Various studies
proposed different optimization techniques which considers the battery
degradation models for the optimal battery size, DOD and energy
management in EVs [230]. Since charging behaviour affects battery
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life, optimized EV charging frameworks including energy manage-
ment and battery degradation models are significant for EV application
prospects Some studies also consider battery degradation model as a
key aspect to assess the operational costs of the EV battery, and to
achieve economy-conscious battery charging management by coupling
the battery degradation model indicators which include battery SOC,
charging current, terminal voltage, and temperature, and are then
applied to capture the nonlinear electrical, thermal, and degradation
dynamics of a Li-ion battery [231,232]. The analysis of these studies
demonstrates that an optimized EV power management strategy which
concurrently accounts for battery degradation model and capacity loss,
can effectively deals with the dynamic EV operations and extend its
battery lifetime.

6.4.4. V2G services and EV battery degradation

The dynamics of EV have a different impact on the predictive
behaviour of the battery degradation models when compared to con-
trolled charging events or the V2G interactions. The impact on battery
degradation from delivering V2G services is investigated in a study
and found that the battery degradation is most dependent on energy
throughput, and is most sensitive to DOD when providing ancillary
services [233]. The study also evaluated that the provision of V2G
services requires multiple battery pack replacements over EV lifetime.
Conversely, a study investigated the impacts of EV battery degrada-
tion and the battery life cycle on V2G system [234]. The analysis of
various studies shows that the battery degradation models reviewed
in this articles, along with several other challenges, has an additional
challenge to deal with the V2G aspect of the EVs. However, the com-
bination of battery degradation models and optimal strategies like
EV charge/discharge optimization model, frequency regulation, and
power peak load levelling helps in enhancing the battery reliability and
extending its lifetime.

6.5. Challenges and future directions

Battery degradation model development is vital from a research
viewpoint in order to find routes for improvement in battery perfor-
mance and extending the life of the batteries that are to be used for
various applications. Significant improvement has been made in the
ML techniques for battery degradation modelling, and SOH and RUL
estimation over the last decade. However, the current ML research in
SOH/RUL estimation domain has gaps and faces several challenges, in
terms of accurate modelling and application to battery health and safety
management The challenges and future directions are summarized from
the perspective of ML techniques for battery degradation modelling and
SOH/RUL estimation and application.

6.5.1. Challenges
Following are the challenges related to ML algorithms in modelling
battery degradation and in determining SOH and RUL for a battery:

» ML techniques used in SOH and RUL estimation lack the informa-
tion of battery aging mechanism.

ML algorithms lack useful battery pack data for accurate predic-
tion which most real-life applications generate whereas experi-
ments are being done at a cell level.

The diversity of degradation paths create challenges for accurate
ML estimation and prediction. Different aging conditions can
present the same capacity at a certain stage and vary significantly
in the next stage, which substantiate the necessity to develop a
robust model.

The common parameters of BMS output include voltage, current,
and temperature, can be manifested as the input features for ML
algorithms. The extraction and estimation of these measured pa-
rameters is a significant challenge in comprehensively modelling
the battery degradation based on the collected data.
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Prediction capability of algorithms largely varies due to difference
in testing conditions and real-life practical conditions of training
and testing of algorithms.

RUL has an explicit threshold, which can be defined with the help
of the capacity of the battery. However, the RUL threshold for
the battery degradation based parameters is vague, and requires
extensive experiments accurate prediction.

Balancing the model complexity and computational burdens for
ML methods based SOH and RUL estimation is another challenge.
Many of the studies carried out experiments on cells cycling
under constant current with fixed ambient temperature [26,223,
235]. A few battery degradation are carried out under dynamics
driving profiles [21,140,236], which shows the validation of the
reviewed ML based SOH and RUL estimation methods for real-
world application is insufficient, which is another challenge in
this area.

6.5.2. Prospects and future directions

Based on the previous sub-section, there are still wide range of
challenges in the ML based research and industrial implementation for
battery degradation. To better conduct future studies, we discuss the
following critical tasks and potential research directions.

Detailed degradation mechanism studies at different levels are
necessary to comprehensively estimate battery SOH and RUL.
Most of the degradation tests are based on single stress factor and
are performed at cell-level, which is not favourable for a thorough
understanding of the battery degradation involving inconsistency.
Therefore, degradation tests at the cell level as well as pack
level which include multiple stress factors such as dynamically
changing current and temperature need to be conducted.

Offline development of DDMs which update dynamically to be-
come self-improving models can be used to improve the accuracy
and precision. Deep learning ANN methods have been proved
to have strong self-learning capability. Use of such self-learning
algorithms is recommended for accurate SOH and RUL prediction.
The estimation of the SOH and RUL and their features extraction
under dynamic discharging and controllable charging process is a
critical task. Therefore, the ML based estimation method should
take all the battery operation features into account. It is quite
necessary to conduct further research from the perspective of
the effect of data quality and quantity on battery SOH and RUL
estimation.

The development of an appropriate ML-based hybrid model for
estimating SOH and RUL while taking into account various model
disturbances and uncertainties needs to be studied further.

BMS should include a platform based on big data, cloud com-
puting, cloud storage and other emerging technologies which can
solve the difficulty of data acquisition and improve the accuracy
and robustness of onboard algorithms in real-time applications.
Current battery health management activities may face additional
obstacles as a result of the potential of battery failure. As a result,
efforts must be made to offer appropriate machine learning-based
solutions that take into account the uncertainties in estimation
findings and system operations.

Development of the battery model which is more suitable for
parameter characterization of degradation process for which ML
based hybrid methods can be new research direction to improve
the model performance and accuracy.

SOH values are frequently used as training data in the con-
struction of degradation models. Such SOH values are regarded
accurate in the literature. In a real-world scenario where degra-
dation models are applied onboard and updated online, training
data is typically estimated using estimation methods, which can
result in some inaccuracy in the estimations, affecting the overall
effectiveness of the ML-based degradation model. Therefore, a
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good degradation model should be developed with a precise
estimation algorithm which is robust when dealing with input
data uncertainty.

These recommendations will make a big difference in terms of accu-
rate battery degradation modelling, as well as SOH and RUL estimation.
This assessment will give researchers and manufacturers a concrete
understanding of how to progress Li-ion battery development in the
future, particularly for EV applications.

7. Conclusion

This review article systematically presents state-of-the-art machine
learning methods and technologies for battery degradation modelling
associated with both SOH and RUL estimation. We present a compre-
hensive classification and sub-classification of several machine learning
algorithms described in the literature, and we investigate these strate-
gies in light of the growing interest in applying them to develop
more accurate Li-ion battery degradation models. Specifically, we have
classified and summarized all those machine learning approaches based
on technical merits, which are directly or indirectly used for battery
degradation modelling and accuracy improvement. In particular, the
major performance aspects of machine learning approaches such as ap-
proach selection, non-linear data handling capability, robustness, and
complexity are elaborated in relation with the corresponding battery
degradation modelling.

In this study, a comprehensive introduction to battery degradation is
given along with the factors and potential causes of model inaccuracy.
A clear link between SOH and RUL is established corresponding to
battery degradation modelling. A technical framework for SOH and
RUL estimation and prediction to model the battery degradation is then
developed. Battery degradation modelling and analysis is also described
using machine learning methods as they are gaining increased attention
for both health estimation and lifetime prediction problems. The need
and importance to use machine learning methods for battery degrada-
tion modelling are then demonstrated. A separate classification of the
several machine learning based Li-ion battery degradation models for
SOH estimation and RUL prediction proposed in the literature is then
presented along with their corresponding evaluation outcomes. Finally,
the article summarizes and compares the characteristics of the existing
ML methods in order to find the most suitable adaptive models for Li-
ion battery SOH and RUL estimation. It also discusses about the aspects,
challenges and future directions related to applicability of ML methods
for battery safety, reliability and its life improvement through battery
degradation modelling.

In summary, the identification and development of the self-adaptive
modelling approaches in the field of battery aging modelling is still in
its early stages, and their use for industrial use may be limited, so ad-
ditional research and development is needed before these models gain
true commercial acceptance. In the perspective of machine learning,
this article only introduces the SOH and RUL prediction research status.
The SOH and RUL prediction methods can also be discussed in further
depth, as well as the contrasts between them. More study may be
done utilizing real-world applications to evaluate current battery degra-
dation modelling methodologies. Reduced laboratory battery testing
labours, improved forecast accuracy, and model adaptability can all be
enhanced by battery degradation modelling methodologies combined
with more extensive validation. Certain recommendations are made
with the goal of advancing the state-of-the-art by suggesting practical
techniques to construct self-adaptive Li-ion battery aging models.

The battery health management system has the potential to be
revolutionised by machine learning techniques, which are supported
by a platform of open-source tools and data sharing. Further study
into enhancing these SOH and RUL estimation approaches for Li-
ion batteries would aid in achieving sustainability, particularly in the
EV sector. The rise of the electric vehicle market, which uses Li-ion
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batteries, as well as improved production and recycling methods, would
benefit the global environment by lowering GHG emissions. Through
this paper, the authors hope that anyone interested in ML based bat-
tery degradation modelling can benefit from this work. Engineers can
choose appropriate ML methods to estimate the better SOH and RUL
according to the certain requirements. Researchers can get inspirations
to further improve these methods. We also hope that this review will
be a beneficial source to aid the design and operation of battery health
estimation, and remaining life prediction systems, whilst apprising
about the aspects related to battery reliability and life improvement
to research community, simultaneously.
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