
Reflections on Teaching Refactoring: A Tale of Two 
Projects 

Shamsa Abid 
Computer Science Department 

SBA School of Science and Engg. 
Lahore Uni. Of Mgmt. Sciences 

(0092) 42 3560 8194 
shamsaabid123@gmail.com 

Hamid Abdul Basit 
Computer Science Department 

SBA School of Science and Engg. 
Lahore Uni. Of Mgmt. Sciences 

(0092) 42 3560 8194 
hamidb@lums.edu.pk 

Naveed Arshad 
Computer Science Department 

SBA School of Science and Engg. 
Lahore Uni. Of Mgmt. Sciences 

(0092) 42 3560 8194 
naveedarshad@lums.edu.pk 

 
ABSTRACT 
Teaching refactoring effectively while making students realize the 
importance and benefits of refactoring is a challenge. In this 
direction, an experiment was carried out while conducting the 
course project for the Refactoring and Design Patterns course. 
This paper discusses the results of the experiment that involved 
two different project schemes to carry out refactoring activities on 
the same code base.  One scheme was post-enhancement 
refactoring and the other was pre-enhancement refactoring. The 
aim of the experiment was to decide which scheme was beneficial 
in terms of better understanding, appreciation, and 
implementation of refactoring.  

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement - restructuring, reverse engineering, and 
reengineering. K.3.2 [Computer Science Education] Computer 
and Information Science Education – computer science education, 
curriculum. K.6.1 [Management of Computing and 
Information Systems]: Project and People Management - life 
cycle, Software Management – software development, software 
maintenance. 

General Terms 
Management, Measurement, Design, Experimentation, Human 
Factors 

Keywords 
Software refactoring, teaching refactoring, refactoring course 
project, student survey 

1. INTRODUCTION 
Refactoring is the process of transforming the internal structure of 
existing code, while keeping its functionality intact. It improves 
the design of code and makes it easier to maintain and understand 
[4]. Software refactoring is a highly desirable activity for good 
quality maintainable software [5], and for increased developers’ 
productivity [6]. In the past few years, software development has 
shifted from traditional software processes to agile software 

development. According to recent industry surveys12, agile 
methodologies are being used in almost three quarters of software 
development projects now. Since agile development stresses on 
working software and shorter release cycles with less upfront 
design, refactoring is a cornerstone of these methodologies.  To 
this end, it is important to cultivate the realization of the 
importance and benefits of refactoring in aspiring but novice 
developers. This responsibility of nurturing developers with the 
right principles and practices falls on the academia; wherein lies 
the challenge of figuring out the best approach to teach 
refactoring, which enhances students’ understanding and 
appreciation of refactoring. 
In this regard, an experiment was conducted to compare two 
schemes of carrying out the course project for the Refactoring and 
Design Patterns course, offered to Computer Science graduate and 
senior undergraduate students at Lahore University of 
Management Sciences. The Refactoring and Design Patterns 
course includes the teaching of software design patterns, design 
principles, and refactoring practices, which are then applied on 
the course project by the students. The course project is a crucial 
and practical part of the course. It comprises of refactoring a given 
code base, with the intent of improving the structure and design of 
the code with respect to its readability, maintainability, and 
changeability.  
The experiment was conducted on two groups of students (23 in 
all) who were required to work on one of the two different project 
schemes. In the first scheme, which we call post-enhancement 
refactoring, the students were asked to first perform a series of 
functional enhancements on the provided code. After that, they 
were required to perform an analysis of code quality metrics and 
code smells on the resultant code, and follow it up by refactoring 
the identified code smells. Code smells are a metaphor to describe 
code patterns that are generally associated with bad design and 
bad programming practices, and indicate that refactoring can be 
applied [4][9].  In the second project scheme, which we call pre-
enhancement refactoring, the students were asked to first analyze 
the code quality metrics and code smells, and refactor those 
smells. After that, they were asked to perform a series of 
functional enhancements on the refactored code. Both project 
schemes had a final phase of application of design patterns, after 
the enhancement and refactoring phases had been completed. The 
two project schemes are illustrated in Figure 1. The two schemes 
vary only in terms of ordering of project phases; whether 
refactoring is done prior to, or after the enhancement phase.  

                                                                 
1https://www.planbox.com/blog/agile/scrum/research/2013-Study-

reveals-Statistics-on-Agile-Market-Share.html 
2 http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. Copyrights for components 
of this work owned by others than ACM must be honored. Abstracting with 
credit is permitted. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. Request 
permissions from Permissions@acm.org. 
ITICSE’15, July 4–8, 2015, Vilnius, Lithuania. 
© 2015 ACM ISBN 978-1-4503-3440-2/15/07…$15.00 
DOI: http://dx.doi.org/10.1145/2729094.2742617 

225

http://dx.doi.org/10.1145/2729094.2742617


The objective of the experiment was to evaluate the performance 
and feedback of the students working on the two different project 
schemes. By evaluating the performance and feedback of the 
students, we were able to make conclusions as to which project 
scheme resulted in a better performance of students; in terms of 
better quality refactorings, better quality of resulting code, better 
understandability, and better appreciation of refactoring.  
In this paper, we address the following research questions:  
RQ1: What is the better scheme to teach refactoring? Should 
students perform refactoring first or enhancement first?  
We compare the teaching effectiveness of the two project schemes 
with respect to understanding and appreciation of refactoring. We 
draw conclusions after detailed analysis of students’ performance 
and evaluation of their project deliverables.  
RQ2: How to make students realize the benefit of refactoring?  
We investigate which project scheme was better able to highlight 
the benefits of refactoring. The answer is found through the 
feedback obtained from the surveys conducted.  
RQ3: Which student group is more satisfied?  
To answer this, we analyze which project scheme is personally 
favored by students, by analyzing students’ feedback. 
The remainder of this paper is organized as follows. Section 2 
describes the related work. In Section 3, we discuss the 
experimental setup for our research methodology. We give details 
on how the course project was carried out, and how the data was 
collected. In Section 4, we present the results of our analysis and 
discuss the threats to validity. Section 5 concludes the paper and 
mentions future work.  

 

2. RELATED WORK 
To the best of our knowledge, our study is the first of its kind to 
compare two approaches to conducting a refactoring course 
project, with the intent of enabling better understanding, 
appreciation, and implementation of refactoring techniques among 
students. 
Work has been done in the domain of teaching refactoring with 
innovative techniques. One such technique by Smith et. al., [1] 
recommends structuring the lesson plans in a way that every 
lesson plan would cover a few refactorings, which would be 
performed as a hands-on activity incrementally as the lessons 
proceed. In our course, the students are expected to perform 
refactorings studied in class on their project as the lectures 
proceed. They are not restricted to a certain set of refactorings, 
and depending on the code smells, they are free to perform 
relevant refactorings.  The students working on enhancements are 
free to perform opportunistic refactoring wherever the need arises. 
Students are given the flexibility to choose to refactor while 
working on enhancements. Their technique also contrasts with 

ours in the use of enhancement activity to make the students 
realize the need for the refactored code. 
Dibble and Getswicki [2] advocates the need for dual analysis 
using automated and manual methods. We also require students to 
first perform a full fledge analysis of code smells using automated 
and manual inspection techniques, and then perform refactoring 
on the problem areas detected.  
Murphy-Hill and Parnin [7] have observed that refactoring is 
often interleaved with changes to a project’s functionality. Their 
observation was that refactoring was seldom done exclusively; 
rather it was mostly performed in conjunction with other code 
changes. In view of this observation, it was expected that our 
students working on the pre-enhancement refactoring scheme 
would write refactored code while working on the enhancements. 
However, the deadlines forced them to abandon refactoring 
entirely during enhancement.   
It was observed by DeMeyer et. al. [1] that having a good 
example to teach refactoring is important, and they used a LAN 
Simulation example to work on, using a variety of refactoring 
tools. They propose using that example as a benchmark and 
common example for students and researchers, suggesting its 
benefits of being small enough to be easily understood, yet 
representative of real-world tasks. El_Ramly [3] has shared 
similar experiences in teaching a software re-engineering course, 
and emphasized the need for real industrial examples for better 
understanding and appreciation of re-engineering concepts among 
students. From the students’ feedback, we have also felt that 
students need to work on a real industrial project to better 
understand the implications of changing an unknown legacy code. 
Our approach also gives the students exposure to a real industrial 
example to work on. The use of a real life industrial example 
served the purpose of better appreciation of refactoring techniques 
among students.  

3. EXPERIMENTAL SETUP AND 
EXECUTION 
3.1 Course Project Details 
3.1.1 Project Domain 
To conduct this course project, we used a real-life software from 
the industry - with appropriate permissions. It is a smart phone 
application implementing a Goods Collection System. The same 
code was provided to all the students. It was confirmed that the 
code had enough refactoring opportunities by the Teaching 
Assistant (TA) of the course, who was among the developers of 
the application. 

3.1.2 Two Project Schemes 
The experiment involved the execution of two different project 
schemes: Project ER was done with the enhancement followed by 
refactoring scheme (post-enhancement refactoring), whereas 
Project RE followed the refactoring followed by enhancement 
scheme (pre-enhancement refactoring). One group of student 
teams worked on Project ER, while the other worked on Project 
RE. The students formed their own teams and were randomly 
assigned a project scheme. Each team had two to three members 
each. Each team worked independently on their projects. The 
functional enhancements required in Project ER were different 
from those of Project RE; however, they were of the same 
difficulty level.   

Figure 1. A comparison of two project schemes 

226



3.1.3 Weekly Meetings 
Weekly assessment meetings were held not only to assist the 
students with their problems but also to monitor their progress 
actively. It was felt very useful to talk to the students during their 
projects to know what kind of issues they were facing, and how 
well their work was progressing. 

3.2 Project Phases and Milestones 
The phases of each project scheme were clearly defined and 
distributed across a fixed timeline. During the execution of the 
projects, some deadlines had to be extended according to 
students’ demand. Following is a breakdown of the work carried 
out across the major phases, and the project evaluation activities. 

3.2.1 Pre-Project Survey 
On the very first day of the course, a survey was conducted to 
assess the technical skills of the students, and their industrial and 
academic background. It was important to see if all the students 
were sufficiently equipped with the programming skills to be able 
to work on the course project. Also, an initial opinion of the 
students’ perception of the importance of refactoring was 
obtained, and it was found that everyone agreed on its importance 
at the very start of the course.  

3.2.2 Project Setup and Transfer of Domain 
Knowledge  

The TA transferred the domain knowledge through a demo and a 
tutorial at the start of the project. The running application was 
shown during the demo, and functional specifications for Project 
ER enhancement requirements were shared and discussed. 
Students not familiar with Eclipse IDE3 and Android SDK4 were 
given a startup tutorial on important topics like setting up these 
platforms, running the emulator, and debugging etc. The structure 
of the code was discussed and some important code files were 
explained in more detail to enable the students to get a better feel 
of the code. Since almost everyone was familiar with Java, it was 
assumed that the technology hurdle could be overcome by 
providing minimal assistance in the enhancement phase. 

3.2.3 Project ER (Post-Enhancement Refactoring)   
Enhancement (3 weeks) 
In this phase, the students doing Project ER were provided with a 
set of enhancement features to be implemented in the current 
application. Screenshots of desired screens and use case 
descriptions were provided for understanding the new 
requirements. They were supposed to meet the deadline, and were 
left free to code as they like. It was expected that they would code 
quick and dirty, and that was what actually happened. 
Code smells and statistics (10 days) 
In this phase, the students were asked to inspect their code for 
smells, using both automated and manual detection techniques. 
They were also asked to compute some of the major code metrics 
like LOC, complexity, depth, number of classes, number of calls, 
coupling, statements per method etc. This was meant to serve as a 
baseline for comparison with their post refactoring code status. 
Some of the tools used for identifying code smells and code 
metrics were Sonar Qube5, SourceMonitor6, FindBugs7 and 
                                                                 
3 https://eclipse.org 
4 http://www.android.com/ 
5 http://www.sonarqube.org/ 
6 http://www.campwoodsw.com/sourcemonitor.html 

PMD8. A UML class diagram of the code was also required, 
which would enable them to study the associations and level of 
coupling between the classes. 
Refactoring and code statistics (4 weeks) 
In this phase, the entire project code had to be properly refactored. 
The students were asked to refactor the problems identified in the 
previous phase, using either Eclipse’s built-in automated 
refactoring capability, or some other refactoring tool, or manually. 
At the end of the phase, they were asked to compare their 
resulting code metrics with the ones taken earlier to quantify the 
improvements.  
Design Patterns (3 weeks) 
In this phase, the students were asked to redesign and reorganize 
the code, keeping in mind the design principles and design 
patterns taught in the class. They were asked to identify the 
problem areas in the existing code which could be improved with 
the application of suitable design patterns, and then modify the 
code accordingly. 
Final report (4 days) 
The students were asked to submit a detailed consolidated project 
report, documenting work done in all the project phases along 
with the enhanced, redesigned, refactored, and fully functional 
code. The reports evaluated the variations in code metrics and 
code smells after each phase was completed, and conclusions 
were drawn by observing changes in code metrics across all 
phases. The students were asked to justify how their new design 
was more reusable, flexible, and extendable after refactoring. 

3.2.4 Project RE (Pre-Enhancement Refactoring) 
The phases of Project RE were identical to that of Project ER, 
only the sequence of refactoring and enhancement phases was 
interchanged.  
Code smells and statistics (1 week) 
Refactoring and code statistics (4 weeks) 
Enhancement (3 weeks and 5 days) 
Design Patterns (3 weeks) 
Final Report (4 days) 
The students working on Project RE were encouraged to write 
clean code during their enhancement phase. Furthermore, they 
were asked to report if they felt their refactoring proved useful to 
write new enhancements easily. It was expected that some of them 
would code quick and dirty, and some would perform 
opportunistic refactoring, and almost all would need to perform a 
final round of refactoring on the entire code. A final code metrics 
analysis would reveal if their enhanced code was better or worse 
than their refactored code. 
After culmination all phases of both projects, a comparison was 
made on the refactorings performed by the two groups.  

3.2.5 Pre Refactoring Survey 
A survey was conducted a week after the project initiation (while 
one group was working on their enhancement phase while the 
other had just completed their code smells detection and metrics 
analysis phase). This survey questioned students on their opinion 
on conducting refactoring before or after enhancement, 
considering a real-life scenario at their workplace. It was asked on 

                                                                                                           
7 http://findbugs.sourceforge.net/ 
8 http://pmd.sourceforge.net/ 

227



which factors the decision to refactor first would depend. Their 
opinion on their value perception towards refactoring for ease of 
maintenance was also taken. In the end, they were asked to 
provide the lessons they learnt, and the challenges they faced 
during their current phase. 

3.2.6 Post Refactoring Survey 
The third survey was conducted after both groups had finished 
their refactoring phases. The students were again asked which 
project scheme they thought was better. Their opinion about the 
benefits of each scheme was also taken. As a self-assessment of 
the work performed, they were asked to rate the quality and 
amount of refactoring they had performed on their project. They 
were also asked whether the course had motivated them to start 
refactoring at their workplace, and whether it increased their value 
perception toward refactoring. In the end, open-ended suggestions 
and feedback regarding the project were recorded.  

3.2.7 Final Presentation 
The students delivered a final presentation, detailing the work 
done throughout the project lifecycle. Together with the course 
instructor and the TA, an external guest with 5 years of industrial 
software development experience was also invited as an unbiased 
evaluator to give feedback regarding the work done by the 
students. The projects were evaluated on the basis of 
identification of problems in code, and quality of refactorings 
performed. It was assessed whether the refactorings contributed 
significantly to the improvement in code metrics, reduction in 
code smells, understandability, and ease of maintenance. It was 
also gauged by the way the students communicated their work, 
how well the students understood the benefits and application of 
refactoring techniques.  

4. ANALYSIS AND DISCUSSION  
To understand and decide which project scheme was better, we 
analyzed the results of our surveys, performed quantitative 
analysis of students’ code and submitted reports, and used 
analytical feedback from the industry expert to draw conclusions. 

4.1 Pre-Project Survey Results 
In the first survey, it was observed that: all of the 23 students were 
graduate students and had previously taken object oriented 
programming courses, 16 had medium to high Java proficiency, 
all of the students had worked on Eclipse, 14 had worked on 
Android, all of them rated the importance of refactoring as high 
(even those who were not familiar with the theory and principles 
of refactoring had a preconceived notion of its importance), 12 
claimed to be slightly familiar with the concepts of refactoring 
and code smells whereas the rest were not familiar, 9 had less than 
a year industry experience, 6 had 1 to 3 years industry experience, 
and 7 had 4 to 6 years experience working in the industry. These 
results ensured that all the experimental subjects had the required 
level of expertise to enable us to conduct the experiment, without 
posing a major threat to its validity in terms of outliers.  

4.2 Pre Refactoring Survey Results 
This survey questioned students on their opinion on conducting 
refactoring before or after enhancement in a real-life scenario at 
their workplace. In response, 36% said that they would enhance 
with refactoring in parallel, and end with full fledge refactoring. 
The top two factors that affect their decision to refactor turned out 
to be the project deadline, and whether the code is self-written or 
not. 91% rated refactoring as highly important. 81% agreed that 

refactoring improved readability. Surprisingly, the number of 
students voting for pre-enhancement refactoring scheme was 
equal to the number of students voting for post-enhancement 
refactoring scheme. 64% selected that refactoring first gives you a 
chance to improve code so that smells are not accumulated. 64% 
selected that enhancement first gives you a chance to understand 
existing code. 73% agreed that refactoring first would take longer, 
but it would enable quicker enhancement. 82% thought it was 
easier to enhance after refactoring, and 55% thought it was easier 
to refactor after enhancing. In reply to when they would perform 
refactoring at their workplace, 45% said they would refactor as a 
personal principle.  
Some of the student responses in favor of refactoring first are as 
follows: 
“If you know what you are going to code next, you can keep it in mind 
while refactoring” 

“If everything is clean already, new enhancements are not likely to 
create mess and it is easier to know where to add which type of code. So, 
it saves time.”  
Some of the student responses describing the benefits of doing 
enhancement first are as follows: 
“By wrestling with bad code and then looking at the refactored version 
we can imagine how easy it (enhancement) could have been.” 

“There isn’t any overhead of doing refactoring again.” 

4.3 Post Refactoring Survey Results 
The third survey was conducted after both groups had finished 
their refactoring phase. The students were again asked which 
project scheme they thought was better. Table 1 indicates that 
Project ER was favored slightly more that Project RE.  

Table 1. Students’ votes in favor of referred project scheme 

 Project 
ER 

Project 
RE 

Total number of students  13 9 

Number of responses 10 9 

Number of votes in favor 11 8 
 
From Table 1, we were able to derive the answer to RQ3: Which 
student group is more satisfied? By noting that four students from 
Project RE were in favor of Project ER, whereas three students 
from Project ER were in favor of Project RE, we can say that 
Project ER students were more satisfied with their scheme of 
work.   
When asked about the benefits of each scheme, students of Project 
ER in favor of Project ER scheme expressed their views as 
follows: 
“Doing enhancement first helps in gaining the domain knowledge and 
code review while we are learning different code smells. We can get to 
know the code flow, coding conventions, project domain. Once 
enhancement is completed, we can easily refactor it later.” 

“It helped me to understand the flow of code first and give me the idea 
that what are the required refactoring to improve this code.” 

“My major reason is that in the case of this project, making 
enhancements in the code gave me a chance to get familiar with the 
domain and technology of the project which later made it easier for me to 
perform refactoring.” 

228



Following are the comments of Project RE students in favor of 
Project ER: 
“Because when you do enhancement you actually understand code by 
debugging. After complete understanding of code one can easily refactor. 
Moreover, in Project RE you have to do refactoring again after 
enhancement. Project RE approach works if the code is yours, or you 
understand code to refactor it without any danger of code/functionality 
loss.” 

“If we do enhancements first that will make sure better understanding of 
code and its work flow. During refactoring we mostly tried to follow 
rules with lesser familiarity with code.” 

“Since the domain was new to me, writing a code would have given more 
familiarity to the domain rather than reading it, and/or refactoring it.” 
Some other findings from the third survey are: 15% respondents 
were highly satisfied with the quality and amount of refactoring 
done on their projects while 80% were satisfied on a medium 
scale, 95% affirmed that the course had motivated them to start 
refactoring at their workplace, and everyone agreed that it had 
increased their value perception toward refactoring. The students’ 
unanimous agreement on becoming familiar with the advantages 
and benefits of refactoring answered RQ2. How to make students 
realize the benefit of refactoring? It was seen that both project 
schemes were equally effective in making students realize and 
appreciate the benefits of refactoring. 

4.4 Quantitative and Qualitative Analysis 
Our quantitative analysis is based on counting the number of big 
refactorings performed by students in each project scheme. 
Refactorings that consists of multiple smaller refactorings, and 
solve a bigger architecture or design level problem, are 
considering as big refactorings. The code smells indicating the 
need for big refactorings were instances of god classes, divergent 
change, shotgun surgery, feature envy, inappropriate intimacy 
and middleman. Some of the big refactorings performed were 
Extract Hierarchy, Separate Domain from Presentation, and 
using the MVC Pattern. 
We compared the average number of big refactorings performed 
by students working on Project ER to those working on Project 
RE. It was seen that students of Project ER performed 70% more 
big refactorings than students of Project RE. Therefore, we 
deduce that the Project ER scheme results in better quality 
refactoring.  
A qualitative analysis of our work through interviews and 
meetings with students and general observations by the course 
instructor, teaching assistant and external evaluator reveals that 
the primary reason Project ER students had a better understanding 
of the project was their ability to comprehend the structure of the 
code during the enhancement phase before moving on to code 
refactoring. Their better quality of work was entirely due to the 
opportunity to enhance existing code whereas the Project RE 
students were seen to gain little understanding by only conducting 
code analysis using tools or manually. It can be inferred that the 
best manual analysis is only possible while actually working on 
enhancing given code. The Project ER students gained more 
experience by working on the code whereas the Project RE 
students had to rely on basic code metrics for guiding their 
refactoring efforts. Since the Project ER provided the opportunity 
for students to better understand the code, therefore, they were 
able to produce better results by performing better quality of 
refactoring. Responses from students from the ER group were 
indicative of higher satisfaction after refactoring and they were 
better able to analyze their code for the possibility and 

opportunities of using relevant design patterns. On the other hand, 
the efforts by students to apply design patterns were forceful 
rather than intuitive. Overall, the main reason why Project ER is a 
better scheme to enhance students learning and makes them 
perform better quality refactoring is that it helps them gain insight 
into the core architecture of the project by enhancing first, thereby 
gaining experience of the issues and code smells.  

4.5 Industry Expert’s Analysis 
As mentioned earlier, an expert from the software industry was 
invited during the presentations of the students work. It was 
overall noted by the expert that the Project ER groups performed 
better than the Project RE groups; 80% students from Project ER 
were rated above average as compared to only 25% students from 
Project RE who got this rating. It was also observed by the expert 
that the Project ER group members had a better understanding of 
the problems in their code, and they performed refactorings that 
had a stronger impact. This observation corroborates with the 
quantitative analysis of results from students’ code submissions. 
The chart in Figure 2 shows the marks obtained in the final 
evaluation by the student groups working on the two different 
project schemes, as assigned by the external evaluator. The 
observation from this chart is that the students working on Project 
ER have outperformed those working on Project RE. This 
answers RQ1: What is the better scheme to teach refactoring? 
Should students perform refactoring first or enhancement first? 
Since the performance of students working on Project ER is 
better, we can say with confidence that the better approach to 
teaching refactoring would be to make the students perform 
enhancements before refactoring activities. 
 

 
Figure 2. Final evaluation scores of student groups 

4.6 Surprises 
For the students who were working on Project RE (pre-
enhancement refactoring scheme), it was assumed or expected 
that they would write clean code during their enhancement phase 
after having refactored their code, however, that was not the case. 
Similarly, 73% students thought that if you refactor before 
enhancement, the refactoring will take longer, but the 
enhancement will take less time. However, it turned out that 
refactoring did not decrease code enhancement time. 

4.7 Summary of Results 
In short, we found the following answers to our research 
questions from this experiment:  
RQ1. What is the better scheme to teach refactoring? Should 
students perform refactoring first or enhancement first? 

229



The students who performed enhancement first were better able to 
understand the structure of code, and it was easier for them to 
detect potential areas to refactor. Students who refactored before 
enhancement performed mostly superficial refactorings like 
renaming, removing comments, removing dead code etc., and the 
code enhancement phase was not made much easier. Also, the 
overall performance of students working on post-enhancement 
refactoring scheme was better, as measured in the final 
evaluations. Therefore, post-enhancement refactoring is the better 
scheme to teach refactoring effectively. 
RQ2. How to make students realize the benefit of refactoring? 
Both the schemes to carry out refactoring were equally effective in 
increasing the value perception towards refactoring. However, the 
post-enhancement refactoring scheme resulted in better quality 
refactorings. 
RQ3. Which student group is more satisfied?  
Project ER students were slightly more satisfied with their scheme 
of work because they found it easier to analyze and refactor code 
after performing enhancement. 

4.8 Threats to Validity 
4.8.1 Internal Threats 
Our claim regarding the success of the Project ER scheme to 
enable students to better understand the need, application and 
benefits of refactoring is measured only through their performance 
in the project and their feedback. It is possible that some 
confounding factors may have promoted to the success of Project 
ER scheme, including the previous experience and expertise of 
the students. The results of the survey may not be totally accurate 
because a few students were unable to respond. It is also 
noteworthy that three out of four teams in Project RE were 
comprised of two members only, whereas two out of five teams in 
Project ER were comprised of two members. Although the 
evaluation was done keeping the size of the teams in mind, 
however, we cannot ignore the possibility of team size affecting 
the students’ performance in the project. Even though the project 
started out with an equal number of teams in both the project 
schemes, and an equal number of students in each team, however, 
when some students opted out of the course once the project 
started, it was too late to change the grouping structure to balance 
the number of students in each project scheme. The sample size of 
our experiment is 23 students only, which might affect the validity 
of our results.   

4.8.2 External Threats 
We think that our experiment might produce different results and 
different user feedback if the project domain and technology 
platform are changed. It is possible that switching a real life 
industrial example with an open source project having a familiar 
domain or with a project that the students have already worked 
upon in the past would produce different results. Other factors 
such as the timespan given to refactor code, the quality of 
lectures, and the students’ technical skills might affect the validity 
of our results. 

5. CONCLUSIONS AND FUTURE WORK 
In the end, we can conclude that both project schemes were 
comparable in terms of increasing the students’ value perception 
towards refactoring, however, the post-enhancement refactoring 

resulted in an overall better quality of refactorings performed and 
better final code structure. It was concluded that the student 
groups who performed post-enhancement refactoring performed 
better in project assessments, because of their better 
understanding of the problems in code. It was also deduced that 
self-written code is better refactored than foreign code. 
In terms of the quality of refactorings done, we can say that those 
who followed post-enhancement refactoring scheme performed 
better quality of refactorings, and their analysis of problems in 
code was also better. Therefore, we can safely conclude that they 
had a better learning experience by performing more important 
and relevant refactorings than the other group. On the other hand, 
it was observed that the refactoring performed by students on 
Project RE were superficial, and theirs was a different set of 
refactorings compared to the other group who knew where the 
problems were in their own enhancement. 
For better statistical results we plan to re-execute the same 
experiment with more participants. We propose future research 
directions on conducting refactoring course projects by 
investigating another project scheme that would involve multiple 
enhancements and refactoring phases, one after the other, so that 
the overall effect of refactoring in parallel with enhancement is 
gained. In future, we might use a project that has a simpler 
domain, and give flexibility for variation in technology.  

6. ACKNOWLEDGEMENTS 
We would like to thank Techlogix Pvt. Ltd. for providing us with 
the source code and Saima Mushtaq for being the evaluator.  

7. REFERENCES 
[1] Demeyer, S., Van Rysselberghe, F., Girba, T., Ratzinger, J., 

Marinescu, R., Mens, T., & El-Ramly, M. (2005, September). The 
LAN-simulation: a refactoring teaching example. In Principles of 
Software Evolution, Eighth International Workshop on (pp. 123-
131). IEEE. 

[2] Dibble II, C., & Gestwicki, P. (2014). Refactoring code to increase 
readability and maintainability: a case study. Journal of Computing 
Sciences in Colleges,30(1), 41-51. 

[3] El-Ramly, M. (2006, May). Experience in teaching a software 
reengineering course. In Proceedings of the 28th international 
conference on Software engineering (pp. 699-702). ACM. 

[4] Fowler. M. Refactoring: Improving the Design of Existing Code. 
Addison-Wesley, 1999. 

[5] Kim, M., Zimmermann, T., & Nagappan, N. (2012, November). A 
field study of refactoring challenges and benefits. In Proceedings of 
the ACM SIGSOFT 20th International Symposium on the 
Foundations of Software Engineering (p. 50). ACM. 

[6] Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. 
(2008). A case study on the impact of refactoring on quality and 
productivity in an agile team. In Balancing Agility and Formalism 
in Software Engineering (pp. 252-266). Springer Berlin Heidelberg. 

[7] Murphy-Hill, E., Parnin, C., & Black, A. P. (2012). How we 
refactor, and how we know it. Software Engineering, IEEE 
Transactions on, 38(1), 5-18. 

[8] Smith, S., Stoecklin, S., and Serino, C. "An innovative approach to 
teaching refactoring." ACM SIGCSE Bulletin 38.1 (2006): 349-353.  

[9] Van Emden, E., & Moonen, L. (2002). Java quality assurance by 
detecting code smells. In Reverse Engineering, 2002. Proceedings. 
Ninth Working Conference on (pp. 97-106). IEEE. 

 

230




