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INCIDENT DETECTION

By Hojjat Adeli1 and Asim Karim2

(Reviewed by the Urban Transportation Division)

ABSTRACT: Traffic incidents are nonrecurrent and pseudorandom events that disrupt the normal flow of traffic
and create a bottleneck in the road network. The probability of incidents is higher during peak flow rates when
the systemwide effect of incidents is most severe. Model-based solutions to the incident detection problem have
not produced practical, useful results primarily because the complexity of the problem does not lend itself to
accurate mathematical and knowledge-based representations. A new multiparadigm intelligent system approach
is presented for the solution of the problem, employing advanced signal processing, pattern recognition, and
classification techniques. The methodology effectively integrates fuzzy, wavelet, and neural computing tech-
niques to improve reliability and robustness. A wavelet-based denoising technique is employed to eliminate
undesirable fluctuations in observed data from traffic sensors. Fuzzy c-mean clustering is used to extract signif-
icant information from the observed data and to reduce its dimensionality. A radial basis function neural network
(RBFNN) is developed to classify the denoised and clustered observed data. The new model produced excellent
incident detection rates with no false alarms when tested using both real and simulated data.
INTRODUCTION

According to one estimate, about 60% of the total vehicle-
hours of delay on urban freeways is caused by traffic incidents
(Lindley 1987). In most urban areas the situation is worsening
with increasing traffic and limited expansion of the existing
highway infrastructure. In fact, most major urban freeways
regularly operate at levels above their design capacities.

In the United States the Intermodal Surface Transportation
Efficiency Act of 1991 and the National Highway System Des-
ignation Act of 1995 realize the significance of the situation
and require all urban areas with populations >200,000 to im-
plement a congestion management system (Cottrell 1998). A
number of major U.S. cities already have a freeway manage-
ment system in place, with remote detection of traffic char-
acteristics and a central operations center. However, few make
use of an automatic incident detection algorithm for rapid
identification and localization of incidents. In most cases, de-
tection of incidents is done by human operators monitoring
video camera outputs and/or from information obtained from
the news media.

Considerable research has been done on the development of
traffic incident detection algorithms in the past 3 decades. The
lack of their widespread use is primarily due to their unreli-
ability. In the simplest case, incident detection is a classifica-
tion problem with two desired output classes: incident detected
and no-incident detected. The misclassification of an incident
into no-incident detected and no-incident conditions into in-
cident detected (false alarm) reduces the reliability of the al-
gorithm and makes it less effective for general use.

This article presents a new systematic approach to the traffic
incident detection problem, employing advanced signal pro-
cessing, pattern recognition, and classification techniques. The
developed model judiciously integrates fuzzy logic, wavelet
theory, and neural network computation techniques into an ef-
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ficient, reliable, and robust algorithm. One key feature of the
new model is noise elimination and signal enhancement to
improve detection and reduce false alarms. The collection and
transmission of data introduces random noise that masks the
observed signal and throws off any algorithm based on them.
This article presents an advanced denoising technique based
on wavelet theory to overcome this problem and improve the
efficiency and effectiveness of the algorithm.

INCIDENT DETECTION ALGORITHMS

Several algorithms have been suggested over the years for
automatic freeway incident detection based on traffic data ob-
tained from fixed detectors. The traffic characteristics obtained
from these detectors and commonly used as input for the al-
gorithms are the traffic occupancy (the fraction of time a lo-
cation is occupied by a vehicle expressed as a percentage),
flow rate (the number of vehicles passing a location in a unit
amount of time), and speed.

The approaches used for the incident detection algorithms
range from simple magnitude comparisons to model-based
predictions. The California algorithm (Payne and Tignor 1978)
is a popular algorithm that compares temporal and spatial oc-
cupancy data to predetermined thresholds in it algorithm logic.
The thresholds are calibrated for each on-line implementation
based on the trade-off desired between the detection rate and
false alarm rate. The California algorithm is an example of a
multidetector, comparative algorithm. On the other hand, the
McMaster algorithm (Persaud and Hall 1989; Persaud et al.
1990) is a single-detector algorithm that is based on a catas-
trophe theory/model of the traffic flow. The traffic model par-
titions the flow rate–occupancy behavior among different traf-
fic states. This information is then used in the algorithm logic
together with the speed data to detect the onset of congestion
due to a traffic incident.

Traffic data usually exhibit sudden and large changes in
magnitude that reduce the reliability of algorithms. Statistical
techniques for preprocessing the raw data have been proposed
in the past (Cook and Cleveland 1974; Dudek et al. 1974;
Ahmed and Cook 1982; Stephanedes and Chassiakos 1993).
Dudek et al. (1974) used the standard normal deviate of the
data in their threshold-based algorithm, whereas Cook and
Cleveland (1974) proposed the use of double exponential
smoothing of traffic data in a similar algorithm logic. Ahmed
and Cook (1982) presented a short-time time-series moving
CEMBER 2000



average model of occupancy data to determine large deviations
and predict incidents. The Minnesota algorithm (Stephanedes
and Chassiakos 1993) uses a moving average smoothing ap-
proach to remove high frequency components in observed
data. The smoothed data are then employed in the algorithm
logic for incident detection.

More recently research has concentrated on model-free in-
telligent system approaches to the solution of the incident de-
tection problem. These algorithms are either based on fuzzy
logic theory (Chang and Wang 1994; Lin and Chang 1998;
Weil et al. 1998), neural network techniques (Cheu and Ritchie
1995; Dia and Rose 1997; Amin et al. 1998), or hybrid fuzzy
logic and neural network approaches (Hsiao et al. 1994; Geng
and Lee 1998). Fuzzy logic theory provides a tool for reason-
ing about complex systems that effectively utilizes imprecise
and linguistic input (Zadeh 1978). Chang and Wang (1994)
and Lin and Chang (1998) proposed a fuzzy expert system
approach for the incident detection problem. The idea is to
build a fuzzy knowledge base from the raw data in the form
of fuzzy rules that are then processed by a fuzzy inference
system to identify and classify the relevant traffic states. The
authors of these articles described the development of the
fuzzy rules but presented no tested implementation of the al-
gorithm. Weil et al. (1998) proposed a fuzzy logic model of
traffic flow based on a fuzzy partitioning of the traffic data
into daily and weekly flow patterns. Using an unsupervised
learning technique, the patterns in each partition are classified
into two traffic states, normal or abnormal, where the abnormal
state corresponds to congested flow. This research also does
not present any implementation results.

Artificial neural networks (ANNs) are powerful pattern rec-
ognizers and classifiers (Adeli and Hung 1995; Adeli and Park
1998). They operate as black box, model-free, and adaptive
tools to capture and learn significant structures in data. The
use of ANNs for the identification of incident patterns in traffic
data is presented by Cheu and Ritchie (1995). Three ANN
architectures—multilayer perceptron, self-organizing feature
map, and adaptive resonance theory Model 2—are investi-
gated and compared with three common conventional algo-
rithms using simulated data. Dia and Rose (1997) used field
data to test a multilayer perceptron ANN as an incident detec-
tion classifier. Amin et al. (1998) proposed a control model
for advanced traffic management. The traffic flow prediction
module is based on a radial basis function network that can
potentially be used for congestion detection. Hsiao et al.
(1994) presented a hybrid fuzzy logic–neural-network ap-
proach for the solution of the traffic incident detection prob-
lem. They used fuzzy logic rules to partition and classify ob-
served occupancy, flow rate, and speed data into possible
incident or no-incident conditions. A neural network is used
to learn the membership grades needed for fuzzy reasoning.
Geng and Lee (1998) used the fuzzy cerebral model arithmetic
computer ANN architecture to learn incident patterns in traffic
data. The incorporation of fuzzy logic into ANN learning
makes the process more amenable to performance analysis and
system output validation. The authors, however, do not present
any numerical results.

A judicious combination of artificial intelligence techniques
and a multiparadigm approach has the best potential to provide
an effective solution to the incident detection problem (Adeli
and Hung 1995). Work during the past 30 years on developing
a model-based solution, either mathematical or symbolic, has
not produced reliable solutions that can be adopted widely in
practice. Currently available algorithms can miss up to 30%
of incidents and can produce a fraction of a percent of tests
in false alarms. These performance indicators may look good,
but when the algorithm is implemented on an urban freeway
management system with hundreds or even thousands of de-
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tector stations, it can produce an unacceptable number of
missed detections and false alarms. As a result, the total cost
of operation of these algorithms in a practical environment is
often too high to justify their deployment. The primary reason
for the poor performance of incident detection algorithms is
the complexity of the problem, which does not lend itself to
accurate conventional mathematical and knowledge-based rep-
resentation. On the other hand, ANN techniques are self-or-
ganizing and learn from examples. However, it is imprudent
to ignore the known behavior of traffic flow completely. This
new approach, to be described subsequently, is based on a
judicious integration of various problem-solving paradigms.

WAVELET, MULTIRESOLUTION, AND
TIME-FREQUENCY ANALYSIS

Basic Concept

Wavelet analysis is a transformation method in which the
original signal is transformed into and represented in a differ-
ent domain that is more amenable to analysis and processing.
The concept of wavelet analysis is similar to that of Fourier
analysis in that both techniques decompose the original signal
into a linear combination of elementary functions. However,
unlike the sine and cosine harmonics used in the Fourier anal-
ysis, wavelet analysis uses a more flexible wave function
called a wavelet that is localized both in time and frequency.
The result is a more informative and useful decomposition of
the signal. For example, because of the compact support of
wavelets (i.e., the function exists only over a subset of the
input space and vanishes outside it), it is possible to localize
signal features in both time and frequency by analyzing the
magnitudes of the wavelet coefficients. Fourier analysis, on
the other hand, uses periodic functions with infinite support
(i.e., the functions exist over the entire input space), making
it unsuitable for transient signal analysis. The following par-
agraphs briefly introduce the mathematics of wavelet and mul-
tiresolution analysis.

A signal x(t) [ S can be written as a linear combination of
elementary functions cj,k(t)

x(t) = w c (t), j, k [ Z (1)j,k j,kO
j,k

where {wj,k} = set of coefficients corresponding to the expan-
sion set {cj,k}; and Z = space of integers. A 2D decomposition
is necessary to provide time and frequency resolution, which
is indicated by the subscripts j and k. The signal space S may
be the space of discrete-time sequences or continuous-time
functions. Eq. (1) is an expansion series representation of the
original signal. The choice of the set {cj,k} determines the
usefulness of the transformation.

In general, the expansion set chosen must be able to rep-
resent the original signal in a compact manner. In other words,
the choice should result in a representation in which most of
the coefficients {wj,k} are insignificant in magnitude. Another
consideration in the choice of the expansion set is ease of
computation of both the expansion set and the corresponding
expansion coefficients. In wavelet analysis, elementary func-
tions are obtained in a structured manner from a single func-
tion in the following form:

1 t 2 k
c (t) = c , j > 0, k [ Z (2)j,k S DjjÏ

where c is called the mother or generating wavelet. The in-
tegers j and k represent the scaling and translation values, re-
spectively. In most practical uses, the scaling in (2) is done in
powers of 2. For this dyadic formulation (2) can be rewritten
as

j/2 jc (t) = 2 c(2 t 2 k), j > 0, k [ Z (3)j,k
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When an orthonormal basis is used as the expansion set, the
coefficients of the expansion can be computed by an inner
product of the signal with the corresponding wavelet

w = ^x, c & = x(t)c (t) dt (4)j,k j,k j,kE
Eq. (1) with the coefficients given by (4) is called the discrete-
time or continuous-time wavelet transform. It is called a dis-
crete-time wavelet transform or discrete wavelet transform
(DWT) when x is a discrete-time sequence and a continuous-
time transform or continuous wavelet transform when x is a
continuous-time function. In the following discussion it is as-
sumed that the signal is a discrete-time function and (1) rep-
resents the DWT of the function.

Multiresolution Analysis

Multiresolution analysis provides a powerful framework for
analyzing functions at various levels of detail or resolution
(Mallat 1989). Multiresolution analysis entails a sequence of
nested closed approximation subspaces Vm (m [ Z ), satisfying
the following properties:

? ? ? , V , V , V , V , V , ? ? ? (5)22 21 0 1 2

2<V = L (R) (6)m
m[Z

ùV = {0} (7)m
m[Z

x(t) [ V ⇔ x(2t) [ V (8)m m11

x(t) [ V ⇒ x(t 2 j ) [ V , j [ Z (9)0 0

and there exists a scaling function w [ V0 such that w0,k (k [
Z) forms a basis of V0. The scaling function wj,k is defined as
in (3). In (5)–(9), V0 , V1 means that V0 is a subspace of V1,
< represents the union of spaces, ù represents the intersection
of spaces, the overbar denotes the closure of the space, L2(R)
is the space of all square integrable functions of real variables,
and ⇒ and ⇔ stand for one-way and two-way implications,
respectively.

If (5)–(9) hold, then there exists a set of functions cj,k [(3)]
such that cj,k (k [ Z) spans Wj, which is the orthogonal com-
plement of the spaces Vj and Vj11. More specifically, if {w0,k}
spans V0 then {c0,k} spans W0 such that

V = V ! W (10)1 0 0

and, in general
2L (R) = ? ? ? ! W ! W ! W ! W ! W ! ? ? ? (11)22 21 0 1 2

where ! represents a direct sum. This means that, by starting
from a representation of a function belonging to a coarse sub-
space, higher detail or resolution can be obtained by adding
spaces spanned by cj,k at a higher resolution (i.e., given by the
next higher value of j).

The function x(t) can then be represented

x(t) = c w (t) 1 d c (t) (12)j ,k j ,k j,k j,kO OO0 0
k k j=j 0

where the first term is a coarse resolution at scale j0 and the
second term adds details of increasing resolutions. Eq. (12)
also can be viewed as the time-frequency decomposition of
x(t), where the second term provides the frequency and time
breakdown of the signal. The nesting of spaces achieved by
multiresolution and time-frequency analysis is shown concep-
tually in Fig. 1. Note that spaces spanned by different scales
of wavelets are orthogonal to each other because they do not
overlap (nonoverlapping functions are always orthogonal).
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FIG. 1. Multiresolution Function Space Decomposition Using
Wavelet Analysis

Computation of DWT

In practical wavelet analysis of discrete signals one usually
does not have to deal with the functions themselves but instead
works with discrete coefficients. If {wj,k} and {cj,k} form an
orthonormal basis of L2(R), which is true for most wavelet
systems used in practice, the expansion coefficients cj,k and dj,k

can be found by taking the inner products of the basis func-
tions and the original signal. Using the properties of the wave-
let system, (4) can be written in terms of the coefficients as
follows (Burrus et al. 1998):

c = c [k] = h [m 2 2k]c [m] (13)j,k j 0 j11O
m

d = d [k] = h [m 2 2k]c [m] (14)j,k j 1 j11O
m

The sequences h0 and h1 are called filter coefficients, whose
values are known for each type of wavelet system that may
be used for analysis. The initial scaling coefficients cj are taken
equal to the original discrete signal. Eqs. (13) and (14) provide
a recursive way to compute the DWT of a signal. Note that
these computations have a finite time complexity as the co-
efficients are of finite length. The inverse DWT is used to
reconstruct the signal from the wavelet coefficients using (12).
This work uses Daubechies’s wavelet system of length 8 (Dau-
bechies 1992). For a more detailed coverage of DWT and its
computation, see Samant and Adeli (2000).

SELECTION OF TYPE AND NUMBER OF
TRAFFIC DATA

It is important to carefully choose the number, type, and
format of input data to be used for the incident detection al-
gorithm. Most currently used sensors provide the speed, oc-
cupancy, and flow rate values at a given location every 20 to
30 s. Therefore, the choice for the type of traffic data has to
be restricted to these three types. From these three data types
only those that exhibit consistently identifiable patterns for in-
cident and no-incident traffic flow conditions should be se-
lected.

In this work, a pattern consists of a time history of data
rather than a single-time data value. This pattern preserves the
temporal nature of traffic flow and makes distinguishing be-
tween patterns produced by incident and no-incident condi-
tions easier. The distinguishing feature adopted in this work is
the shape of the time history and not any particular magnitude.
To achieve this, each pattern is normalized to eliminate the
effect of data magnitudes on the classification process. This
approach also eliminates algorithm calibration and transfer-
ability issues caused by location specific conditions and tem-
poral traffic flow variations. A single-station noncomparative
ECEMBER 2000



FIG. 2. Typical Time Histories Upstream of Incident (a) Occu-
pancy Plot; (b) Speed Plot

approach is adopted in this research. This decision is based on
the analysis of patterns on both the upstream and downstream
sides of a incident. The upstream and downstream patterns
produced by an incident do not develop at the same time.
Therefore, mixing them reduces the reliability of the algo-
rithm. Furthermore, using patterns from adjacent stations
makes the algorithm dependent on several factors such as in-
cident characteristics, distance between stations, and existence
of on- and off-ramps between the stations. The result is cali-
bration problems and poor performance of the algorithm.

The speed and occupancy upstream of a capacity-reducing
obstruction are found to exhibit the most significant and con-
sistent change relatively independent of the flow rate [Figs.
2(a and b)]. Consequently, the upstream speed and occupancy
time-series data are used as input for the new model. Each
pattern of traffic consists of N data points for the occupancy
and the speed values obtained at the lane sensor immediately
upstream of the incident location. From the algorithmic per-
formance point of view, the smallest number that can produce
accurate results must be chosen. Computationally, however,
DWT requires N to be a power of 2. Numerical experiments
indicate N = 16 provides accurate results and is therefore used
JOURNAL OF TR
in the model. The 16 data points constitute 5 min and 20 s of
data, if data are obtained every 20 s. This represents a suffi-
cient amount of data to characterize before and after incident
traffic flow conditions and establish the defining shape of the
traffic pattern. Eight data points did not produce good perfor-
mance, whereas the performance with 32 data points was iden-
tical to that for 16 data points. The normalized occupancy and
speed data streams obtained from a given sensor location are
denoted by the sequences xO[n] and xS [n], respectively, where
n = 1 to 16.

WAVELET-BASED DENOISING

When a signal is transformed into the wavelet domain, it
often becomes less complicated to effectively reduce noise and
outliers in the signal. This ease is usually due to a degree of
separation of noise and signal in the wavelet domain. For ex-
ample, if the noise is made up of localized high frequency
components in a predominantly low frequency signal, then the
signal can be denoised by the following procedure. Take the
DWT of the signal, selectively discard the higher scale coef-
ficients, and then reconstruct the signal by taking the inverse
DWT. This technique is not optimal and automatic for use in
a real-time intelligent system environment. In particular, no
definite criteria are available to determine which wavelet co-
efficients to discard to produce the best results.

In recent years, formal wavelet-based denoising techniques
have been presented in the literature (Donoho 1993, 1995;
Polchlopek and Noonan 1997). These techniques perform a
nonlinear filtering on the transformed signal, modifying the
wavelet coefficients in such a way that the inverse transfor-
mation yields a denoised signal.

Donoho (1995) presented a technique in which the wavelet
coefficients are passed through a nonlinear threshold filter. The
resulting coefficients then represent an optimally denoised
DWT of the original signal. To denoise each of the data se-
quences xO[n] and xS [n], the following procedure is employed:

• Calculate the DWT of x[n] to obtain the noisy wavelet
coefficients {dj,k}. The 16 data points can be resolved into
four different frequency bands or scales. The coarsest
scale j0 resolved in the DWT is 2, producing 22 = 4 scaling
coefficients. At this scale also the general shape of the
original sequence is preserved. The number of wavelet
coefficients obtained is (24 2 22) = 12, corresponding to
the two highest scales. Applying the soft thresholding on
these coefficients will effectively remove the higher fre-
quency components without distorting the signal.

• Filter the wavelet coefficients using the soft-thresholding
nonlinearity h(d ) = sgn(d )(ud u 2 t)1 where (?)1 is equal
to (?) when (?) is positive and zero otherwise and the
function sgn(?) returns the sign of its argument. The
threshold t is given by t = where N (equal to2 log(N)Ï
16 in our test example) is the total number of data points.

• Perform the inverse DWT using the scaling and the fil-
tered wavelet coefficients.

The denoised signals corresponding to xO[n] and xS [n] are de-
noted by x̄O[n] and x̄S [n]. These signals will be cleaner ver-
sions of the original corrupted signal.

FUZZY DATA CLUSTERING

Data clustering techniques extract significant features from
data based on given criteria. The goal is to reduce the dimen-
sionality of the data without losing important information
needed for a particular problem. Dimensionality reduction is
needed to reduce data processing complexity and increase ro-
bustness and efficiency. The data clustering problem can be
ANSPORTATION ENGINEERING / NOVEMBER/DECEMBER 2000 / 467



stated as follows: Given a set of vectors X = {x1, x2, x3, . . . ,
xn} find the set Z = {z1, z2, z3, . . . , zc} where 2 # c < n and
x, z [ Rp, such that Z properly characterizes X. The vectors
zi represent classes or clusters in X. In general, data clustering
techniques are either based on statistical or fuzzy logic theory.
It has been shown that most of these techniques have similar
properties and produce comparable results (Dave and Krish-
napuram 1997). However, fuzzy logic approaches have the ad-
vantage of effective handling of imprecision.

The fuzzy c-mean (FCM) clustering algorithm (Bezdek
1981; Cannon et al. 1986) performs a fuzzy partitioning of the
data set into classes. This is in contrast to crisp assignment of
data vectors to distinct classes employed in classical statistical
clustering techniques. The prefix c in the fuzzy c partitions
refers to the number of classes in each partition. The clustering
problem can be posed as a constrained optimization problem
as follows:

Minimize:

n c

b 2J (z) = A ix 2 z i (15)b ij i jOO
i=1 j=1

Subject to:

c

A = 1, 1 # i # n (16)ijO
j=1

A $ 0, 1 # i # n, 1 # j # c (17)ij

where Jb = objective function for a given value of b; Aij =
membership grade of vector i in class j; and i?i denotes the
euclidean norm. The parameter b represents the degree of
fuzziness in the data. This value is often in the range 2 $ b
> 1. Larger values are selected for fuzzier data situations. A
value of b = 1.5 is chosen in the test example in this work.
Note that c, the number of classes desired, is an input param-
eter. The classes are identified by the cluster centers zi, and
the membership of a vector in a given class is determined by
its euclidean distance from the class center.

In a general FCM formulation, the membership grades Aij

are also optimization variables. However, this formulation
leads to a nonconvex optimization problem that does not al-
ways produce a global optimal solution (Al-Sultan and Fediki
1997). When using an iterative procedure for solving the op-
timization problem one uses the following membership grade
function based on the euclidean norm (Bezdek 1981):

1/(b21) 21c t 2ix 2 z ii jt11A = , 1 # i # n, 1 # j # cij FO S D Gt 2ix 2 z ii kk=1

(18)

where the superscript t denotes the iteration number.
To cluster the denoised data sequences x̄O[n] and x̄S [n] one

defines the feature or traffic pattern matrix X = {x1, x2, x3,
. . . , xn} where the vector x i is given by

x = {x̄ [i], x̄ [i]}, 1 # i # N (19)i O S

and uses the FCM algorithm in the following form:

1. Select an initial fuzzy c partition by setting up the mem-
bership grades Aij such that (16) is satisfied. Select a
value for b > 1. Set the iteration counter t = 0.

2. Calculate the class centers for the traffic pattern X.

n

mA xij iO
i=1tz = , 1 # j # c (20)nj

mAijO
i=1
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FIG. 3. RBFNN for Discriminating Incident and No-Incident
Patterns

3. Calculate the updated membership grade using (18).
4. If the maximum change in the membership grade is <ε,

or

t11 tmaxuA 2 A u < ε, 1 # i # n, 1 # j # c (21)ij ij

stop. Otherwise, update t = t 1 1 and go to Step 2.

This algorithm is efficient and usually converges in a few it-
erations.

The FCM algorithm is used to reduce the dimensionality of
the feature matrix to obtain c cluster centers z i where 1 < c <
N. In the test example, the 16 pairs of occupancy and speed
data are reduced to 4 (i.e., c = 4) representative samples. This
reduced data set contains the most significant features of the
original data and is then used for classification of traffic signals
into incident and incident-free signals. It should be noted that
these computations are efficient as the FCM algorithm con-
verges in <10 iterations and the dimensionality of the data is
small.

RADIAL BASIS FUNCTION NEURAL NETWORK
(RBFNN) CLASSIFIER

The RBFNN learns an input-output mapping by covering
the input space with basis functions that transform a vector
from the input space to the output space (Moody and Darken
1989; Poggio and Girosi 1990). Conceptually, the RBFNN is
an abstraction of the observation that biological neurons ex-
hibit a receptive field of activation such that the output is large
when the input is closer to the center of the field and small
when the input moves away from the center. Structurally, the
RBFNN has a simple topology with a hidden layer of nodes
having nonlinear basis transfer functions and an output layer
of nodes with linear transfer functions.

Fig. 3 shows the topology of the RBFNN for the classifi-
cation of traffic data into two states: incident and no incident.
Therefore, only a single node in the output layer is required.
The input vector is denoted by x, and the output is denoted
by y. The number of input nodes is equal to Ni, which is equal
to the product of the number of clusters c (equal to 4 in this
test example), and the dimension of each cluster (equal to 2,
when occupancy and speed is used as in this example). The
number of nodes in the hidden layer is equal to the number
of cluster centers, 1 < Nc < Np, for the entire training instances
where Np is the total number of training instances. The cluster
centers mi (1 # i # Nc) are obtained using the FCM algorithm.

The connection from the input node i to the hidden node j
is assigned the weight mji corresponding to the ith component
of the vector mj. Each hidden node produces an output that is
a function of the euclidean distance of the input vector x from
CEMBER 2000



the cluster center mj. This work uses the Gaussian (bell-
shaped) function as the transfer function for the hidden nodes.
The output of the hidden node j is then given by

2ix 2 m ij
f = exp 2 (22)j S D22s j

where the factor sj controls the spread or range of influence
of the Gaussian function centered at mj. The output y of the
network is given by

Nc

y = f l (23)j jO
j=1

where lj = weight of the link from the hidden node j to the
output node. The output value of 1 corresponds to an incident
classification, whereas a value of 21 corresponds to a no-
incident classification.

The variables lj and mji are found by training the neural
network off-line. The FCM algorithm is used to obtain Nc clus-
ter centers mi from the Np training instances x. The RBFNN
is trained to find the weights lj by minimizing the error be-
tween the network computed output y and the desired output
yd. In other words, to train the network for lj one solves the
following unconstrained optimization problem:

Nc

i imin E(l) = uy 2 y u (24)dO
i=1

The gradient descent optimization algorithm is used to solve
this optimization problem.

The spread parameters sj also can be treated as variables.
However, one finds that there was no improvement in the per-
formance of the classification when the spread parameter is
allowed to adapt. At the same time, including the parameter
in the learning process slows down the training. In this work,
the following expression is used to preassign the value of sj:

Nc

1
s = im 2 m i, 1 # j # N (25)j j i cO3Nc i=1

This equation approximates the spread parameter sj as one-
third of the mean distance between the cluster center at j and
all other cluster centers. In this way an adequate amount of
overlap of the basis functions is achieved for classification
purposes.

EXAMPLE

The new incident detection algorithm is tested using
both simulated and real traffic data. The simulated data are
generated from the simulation package Traffic Software Inte-
grated System (TSIS) (available via the Internet at ^http://
www.fhwa-tsis.com&). The TSIS uses a microscopic stochastic
model to simulate traffic flow on freeways. A variety of pa-
rameters can be specified to simulate different traffic flow sce-
narios. By changing the random number seeds for each sim-
ulation run, a representative sample is obtained for training
and testing. The real traffic data are obtained from the Freeway
Service Patrol Project’s I-880 database in California (^http://
www.path.berkeley.edu/fsp/&). The model is trained using sim-
ulated data only. The trained model is then tested using both
simulated and real traffic data.

The simulated training and testing data are generated from
simulating traffic on a straight stretch of a two-lane (in one
direction) freeway. Traffic enters the freeway section from one
end and exits from the other. Pairs of loop detectors are spaced
450–750 m (1,500–2,500 ft) apart. A total of 150 800-s sim-
ulations were performed with data obtained in 20-s intervals.
Ninety of these simulations involve a traffic incident, whereas
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FIG. 4. Normalized Occupancy Plots Obtained from Simulat-
ing Traffic on Two-Lane Freeway (Incident Occurs at Time 400 s)

the remaining 60 do not have any incident. Each incident is
modeled by the blockage of one lane and the reduction in
capacity of the adjacent lane. The blockages are evenly dis-
tributed between the two lanes and are located at varying dis-
tances from an upstream detector station. The entry flow rate
is varied in the range 2,000–2,500 vehicles/h. Low demand
conditions are adopted for evaluation because these are the
conditions under which currently available incident detection
algorithms perform poorly.

Thirty incident and 30 no-incident patterns were used for
training. It was found that the basic shapes of the occupancy
and speed plots are similar in different incident simulation
runs; the primary difference is that they are time shifted de-
pending on the location of the incident downstream of a de-
tector station and the flow rate at the time of the incident.
Therefore, to ensure that the incident patterns are consistent,
they are extracted from the 800-s simulations such that the
effects of the blockage are pronounced during the last few
values of the sample. Fig. 4 shows the normalized occupancy
plots for two simulation runs. Fig. 4(a) is for an incident 244-
m downstream of the detector station, and Fig. 4(b) is for an
incident 122-m downstream of the detector station. Fig. 5
shows the corresponding occupancy incident patterns extracted
from these simulations and used for training. Notice the sim-
ilarity of the form of the two patterns. This pattern extraction
is essential for robust classification. For the test example, the
RBFNN learned the patterns with a cumulative mean square
error of <0.003 in a few seconds on a Pentium II 400 MHz
machine.

Testing of Algorithm Using Simulated Data

To test the algorithm, the output from the RBFNN is passed
through a threshold t of 0.3. An output greater than or equal
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FIG. 5. Occupancy Incident Patterns Extracted from Simula-
tions Presented in Fig. 4

to 0.3 is classified as an incident. Otherwise, it is classified as
no incident. The model is tested using the simulated data by
presenting each of the 90 800-s simulations as a continuous
stream of data. An output is produced every 20 s after the first
320 s (16 data points). An incident is detected when the output
becomes greater than the threshold for the first time. All 60
incidents were detected correctly during the testing of the
model. Therefore, the detection rate is 100%. Also, none of
the no-incident simulations or the incident simulations before
the occurrence of the incident (a total of 360 patterns) were
misclassified as an incident. Therefore, the false alarm rate is
zero.

The time to detection tends to be somewhat large for flow
rates less than the freeway capacity. Fig. 6 shows the variation
of the mean detection time of the algorithm with preincident
flow rate and distance from the upstream detector station.

Testing of Algorithm Using Real Data

The I-880 database contains loop detector and incident data
for a 14.8-km (9.2-mi) long segment of the freeway from Oak-
land to San Jose, Calif. The number of lanes in each direction
varies from three to five. The incident data is recorded by
human observers traversing this segment of the freeway in
patrol vehicles. Several incident characteristics are recorded
including the type of incident, the location of the incident, and
the time of occurrence of the incident. For the testing of the
new incident detection algorithm, the southbound data are
processed to extract 21 incidents that block one or more lanes.
The loop detector data are averaged over a 30-s time interval.
The incident detection model detected 20 of the 21 incidents,
resulting in a detection rate of 95.2%. The traffic pattern cor-
responding to the missed incident did not exhibit the charac-
teristics of an incident condition. This appears to be an error
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FIG. 6. Mean Detection Time of Incident as Function of Flow
Rate and Distance from Upstream Sensor

in the incident data. The incident data, in general, are not ac-
curate, as the location of incidents are reported approximately
(like 1 mi from an exit) and the time of the incident is actually
the time at which a patrol vehicle observed the incident and
not the time at which the incident occurred. As a result, it is
not possible to determine the time to detection, which in these
tests varied from negative to positive values.

Four hours of incident-free traffic data are used for testing
the false alarm performance. In all, 30 patterns were presented
to the model. The new incident detection model correctly iden-
tified all 30 patterns as no-incident patterns. Thus, the false
alarm rate is zero.

Note that the model trained using simulations is tested on
both simulated and real data without modification. Also, the
simulated data are available at 20-s intervals, and the real data
are available at 30-s intervals. The model does not require any
calibration and can be used at all locations once it has been
trained.

CONCLUSIONS

A new multiparadigm intelligent system methodology is
presented for the solution of the traffic incident detection prob-
lem. The methodology effectively integrates fuzzy, wavelet,
and neural computing techniques to improve reliability and
robustness of the algorithm. A wavelet-based denoising tech-
nique is employed to eliminate undesirable fluctuations in ob-
served data from traffic sensors. Fuzzy clustering is used to
extract significant information from the observed data and to
reduce its dimensionality. An RBFNN is developed to classify
the denoised and clustered observed data. The new method-
ology has been implemented in the combination of C11 and
MATLAB programming environments.

The algorithm was tested using both simulation and real
data. One hundred fifty simulation runs were performed by
changing the blocked lane, the distance of the blockage from
the upstream sensor, and the flow rate. Under these conditions
the algorithm produces the detection rate of 100% and the
false alarm rate of zero. Real traffic data were obtained from
the I-880 database. The algorithm correctly identified 20 out
of 21 lane-blocking incidents and did not signal a false alarm
in 4 h of incident-free data.

The methodology presented provides a solid function for
further research and development. The writers are currently
investigating approaches to improve the mean detection time
without sacrificing the excellent reliability of the algorithm.
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