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Sentiment classification is a popular text mining task in which textual content (e.g., a message) is assigned a
polarity label (typically positive or negative) reflecting the sentiment expressed in it. Sentiment classification
is used widely in applications like customer feedback analysis where robustness and correctness of results
are critical. In this article, we highlight that prediction accuracy alone is not sufficient for assessing the
performance of a sentiment classifier; it is also important that the classifier is not biased toward positive or
negative polarity, thus distorting the distribution of positive and negative messages in the predictions. We
propose a measure, called Polarity Bias Rate, for quantifying this bias in a sentiment classifier. Second, we
present two methods for removing this bias in the predictions of unsupervised and supervised sentiment
classifiers. Our first method, called Bias-Aware Thresholding (BAT), shifts the decision boundary to control
the bias in the predictions. Motivated from cost-sensitive learning, BAT is easily applicable to both lexicon-
based unsupervised and supervised classifiers. Our second method, called Balanced Logistic Regression (BLR)
introduces a bias-remover constraint into the standard logistic regression model. BLR is an automatic bias-
free supervised sentiment classifier.

We evaluate our methods extensively on seven real-world datasets. The experiments involve two lexicon-
based and two supervised sentiment classifiers and include evaluation on multiple train-test data sizes. The
results show that bias is controlled effectively in predictions. Furthermore, prediction accuracy is also in-
creased in many cases, thus enhancing the robustness of sentiment classification.
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1 INTRODUCTION

Sentiment classification is one of the most widely used tasks in text mining. It involves the labeling
of a textual document (e.g., message, sentence, review) with a polarity descriptor (e.g., positive or
negative) based on the sentiments and opinions expressed in the document. Sentiment classifica-
tion, which is a key step in the more general task of sentiment analysis, attempts to summarize and
organize the vast amounts of textual information available today in different domains. As such,
sentiment classification has a variety of applications such as customer feedback analysis, product
ranking, and recommender systems. Oftentimes, mission-critical decisions are based on the results
of sentiment classification. Therefore, it is important that sentiment classification’s results are not
only correct but also reliable.

In general, sentiment classification methods can be unsupervised or supervised in nature. Un-
supervised methods use a lexicon of polar words with their valence values to determine the po-
larity of a textual document. These methods have become very popular in recent years due to
their ease of use (no training data is required) and acceptable accuracy. Supervised methods are
standard text classification methods that require a labeled training dataset for learning a genera-
tive or discriminative model of classification. These methods are generally more accurate but are
constrained by the availability of reliable training data. Sentiment classification performance is
evaluated by its prediction accuracy—the proportion of correct classifications in a collection of
documents.

While prediction accuracy is a sound measure of a classifier’s performance it does not provide
a complete picture of performance and can be misleading at times (Zliobaite 2015). For example,
when labeling 100 documents classifier A produces 90 true positives and 10 false positives (ac-
curacy is 90%) while classifier B produces 5 false positives and 5 false negatives (accuracy is 90%
again). Classifier A is giving the misleading impression that all documents are positives, thus dis-
torting the true distribution of 90 positive and 10 negative documents. On the other hand, classifier
B’s prediction errors are balanced as it maintains the 90:10 distribution in the predictions. Obvi-
ously, classifier B will be preferred over classifier A even though both have the same prediction
accuracy. Recently, this issue has been identified and a technique for controlling it in lexicon-
based methods has been proposed (Igbal et al. 2015). However, a detailed analysis of the prob-
lem and methods for its solution in both unsupervised and supervised classifiers has not been
reported. This issue is different from that of class imbalance in classification in two ways: First,
it is not necessary that severe class imbalance exists in the training data for imbalanced predic-
tions; biased predictions can still occur due to classifier’s inductive bias. Second, biased predictions
also occur in unsupervised or lexicon-based sentiment classifiers where training data imbalance is
irrelevant.

In this article, we study prediction bias in sentiment classification and present methods for re-
moving it. First, we highlight the limitation of accuracy for assessing the performance of sentiment
predictions and the prevalence of imbalanced prediction errors in existing unsupervised and su-
pervised sentiment classifiers. We propose a measure for quantifying this bias and discuss why it
is not controlled in standard sentiment classifiers. Second, we present two methods for removing
prediction bias (or balancing prediction errors) in unsupervised and supervised classifiers. Our
first method is applicable to any lexicon-based or supervised classifier while our second method is
a constrained variant of logistic regression (LR). These methods provide an easy way of control-
ling prediction bias in practice. We evaluate our methods extensively on seven real-world datasets.
The results confirm that prediction bias is removed and, in most cases, prediction accuracy is in-
creased over a wide range of train-test data sizes in comparison with standard unsupervised and
supervised sentiment classifiers.
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In summary, this article makes the following key contributions:

(1) Studies imbalanced prediction errors in lexicon-based and supervised sentiment classi-
fiers, noting that this cannot be attributed to the class imbalance in the training data (for
supervised sentiment classification).

(2) Proposes a measure for quantifying prediction bias whose minimization ensures that the
distribution of polarities in the predictions is identical to the true distribution.

(3) Presents two easy-to-use methods for removing prediction bias in lexicon-based and su-
pervised sentiment classifiers.

(4) Demonstrates effectiveness of the proposed methods on benchmark datasets.

The rest of the article is organized as follows. We discuss the related work in sentiment analysis
and discrimination-aware data mining in Section 2. In Section 3, we discuss the issue of prediction
bias in sentiment classification and propose a measure for quantifying it. Section 4 describes
our methods for bias-aware sentiment analysis. Section 5 presents the experimental setup and
datasets, and Section 6 discusses the experimental evaluation of our methods. We conclude our
article in Section 7.

2 RELATED WORK

Sentiment analysis is the task of extracting and summarizing sentiments expressed in a document,
while polarity detection or classification is the task of labeling a document as either positive or
negative w.r.t. sentiment. Much work has been done on sentiment analysis and several methods
have been developed for this purpose. Broadly, these methods can be categorized as either super-
vised or lexicon based. Lexicon-based sentiment analysis methods use pre-compiled dictionaries
of words with their intensity for positive or negative sentiment. These dictionaries are used to as-
certain the sentiment of new documents. Lexicon-based sentiment analysis methods, e.g., AFINN
(Nielsen 2011) and SentiStrength (Thelwall et al. 2010), have become very popular because of their
unsupervised nature and easy-use properties. In the literature, different dictionaries have been
presented for different contexts, e.g., PANAS-t and POMS-ex (Bollen et al. 2011) word lists were
created for the Web context (informal writing) and LIWC (Tausczik and Pennebaker 2010) was
developed for formal English writings. Although lexicon-based methods do not require a labeled
dataset for training, their coverage and performance can be affected by the context for which the
word list is prepared and the context of the documents. Many lexicon-based methods have been
proposed, but the literature suggests that SentiStrength (Thelwall et al. 2010) and AFINN (Nielsen
2011) are the most popular methods. Thus, despite the ease of use of lexicon-based methods they
are limited by their generalization performance.

On the other hand, supervised sentiment analysis methods require labeled data to learn a model
for predicting the sentiment for unseen documents. The major advantage of supervised methods is
their ability to adapt to and learn from the context given in the labeled data. Thus, labeled training
data is essential for this type of methods. In Igbal et al. (2015), it has been shown that supervised
methods do have the advantage of better generalization performance but they suffer from the
major problem of biased predictions.

Bias in sentiment analysis is a new research area but a substantial amount of work has been
done in the related field of discrimination-aware data mining and fairness in learning, first in-
troduced in Pedreshi et al. (2008) and Luong et al. (2011). Discrimination prevention, a key focus
area in discrimination-aware data mining, studies techniques for making classifiers learned over
biased/discriminatory datasets discrimination aware. Similarly, in sentiment analysis, we are inter-
ested in making polarity detection methods bias-free. As such, there are parallels to discrimination
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prevention techniques that involve classification algorithm tweaking (Calders and Verwer 2010;
Kamishima et al. 2011; Luong et al. 2011). In (Kamiran et al. 2012, 2018), a decision-theoretic frame-
work is presented for making any classifier learned over biased datasets discrimination-aware at
run-time. Likewise, methods have been proposed to control discrimination through constraint-
based learning, e.g., fair classification (Goh et al. 2016; Zafar et al. 2017) and privacy-preserving
analysis (Edwards and Storkey 2016), but little work has been reported on identifying and control-
ling bias in sentiment analysis.

In machine learning, the problem of class imbalance in general (e.g., see, He and Garcia (2009)
for a survey) and in sentiment classification in particular (e.g., Li et al. (2011) and Mountassir et al.
(2012)) has been studied extensively. This problem arises when the class imbalance in the training
data causes learned classifiers to predict all examples as belonging to the majority class. Methods
for handling class imbalance involve data preprocessing to create a more balanced dataset (e.g.,
Chawla et al. (2002)), specialized classifiers that adjust for class imbalance (e.g., Tang et al. (2009)),
and decision-theoretic adjustments at prediction time (e.g., Sun et al. (2007)). However, the class
imbalance problem differs from the one addressed in this article in the following ways: (1) Imbal-
anced prediction errors arise even when class imbalance in the data is not severe (due to predictor
bias), while works on handling class imbalance are concerned with severe class imbalance in data
(minority class examples are less than 10% of the entire data). (2) Works on handling class imbal-
ance focus on supervised learning while our work considers both supervised and unsupervised
models. In particular, to the best of our knowledge, our work is the first to address prediction
problems in unsupervised sentiment classification. (3) While different performance measures are
adopted in previous works on handling class imbalance we introduce and focus on a new measure
whose minimization ensures that the distribution of predicted polarities matches that in the data.
Given these differences, a direct empirical comparison with methods for handling class imbalance
in classification will not be very meaningful.

3 PREDICTION BIAS IN SENTIMENT CLASSIFICATION

In this section, we highlight the issue of prediction bias in sentiment classification and propose a
measure for quantifying it. We start with formalizing the problem setting and notation used in our
work. Subsequently, we motivate and present our measure for prediction bias and demonstrate its
prevalence in standard sentiment classifiers.

3.1 Problem Setting

We are concerned with a sentiment classifier C : d € D + {+, —} that labels a textual document d
from a domain of documents D as either positive (+) or negative (—) according to the sentiment
expressed in the document. Without loss of generality, we assume that the binary classification
is based on a scoring function S(-) such that S(d) > 6 implies that C(d) = + and S(d) < 6 implies
that C(d) = —. Here, 0 is a real number defining the decision boundary between the two classes.

The sentiment classifier C(-) can be supervised or unsupervised in nature. An unsupervised
classifier does not have access to labeled examples from D but it relies upon background resources
like a polarity lexicon with polarity scores. A supervised classifier, on the other hand, is trained on a
random sample D;,, drawn from D. The performance of the classifier, unsupervised or supervised,
is evaluated on a test set 9;; drawn randomly from 9. As such, the train and test sets have the
same distribution of examples as in the original domain.

Given the above problem setting, the goal is to label the documents in 9, accurately and with-
out misleading biases. In general, a classifier with higher accuracy and lower bias will be preferred
over others with higher biases.
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3.2 Sentiment Classifiers

Popularly used sentiment classifiers are either lexicon-based or supervised in nature. We describe
these types of classifiers in the following subsections.

3.2.1 Lexicon-based Methods. Unsupervised lexicon-based methods for sentiment classifica-
tion do not require labeled data for learning but instead rely upon a predefined sentiment lexicon
or affective word list to predict the polarity of documents. These methods have become very pop-
ular in recent years because of their ease of applicability and strong performances (Gonalves et al.
2013).

Several lexicon-based methods are available with different word lists and word valence values. In
general, a typical lexicon-based sentiment classifier defines a list of words and phrases that convey
polarity sentiment in documents. Each word and phrase in this sentiment lexicon or affective
word list is given a valence value in the interval [+v, —v], where v is a non-negative number that
signifies the strength of polarity, and the sign of the valence value indicates the direction of the
polarity (positive or negative). Such a lexicon of words/phrases and their valence values is usually
developed manually by linguists.

Given a document d to be classified, the lexicon-based classifier computes score S(d) from the
words and phrases in d that match those in the lexicon and by applying a combination operation
on the valence values of these words/phrases (unmatched words/phrases are given zero valence
values). Commonly used operations include maximum valence (e.g., SentiStrength) and weighted
average valence (e.g., AFINN). Subsequently, document d is classified as either positive or negative
by the following decision rule:

+ when S(d) > 6
— otherwise ’

aa:{ (1)

Here, 0 defines the decision boundary. Usually, 8 = 0 as positive scores signify positive sentiment
in most lexicon based methods.

Lexicon-based sentiment classifiers involve empirically established parameters and as such do
not provide any guarantees regarding accuracy or bias in the predictions. Furthermore, these meth-
ods incorporate significant inductive bias as they are learned from specific domains using specific
techniques and hence their performances do not generalize consistently in other domains.

3.2.2  Supervised Sentiment Classifiers. Supervised sentiment classifiers are standard text clas-
sifiers trained on a collection of positive and negative documents. Despite the recent popularity
of unsupervised sentiment classifiers, supervised classifiers are still preferred when labeled data is
available due to their strong generalization performance. Among the various text classifiers, naive
Bayes (NB) classifier and LR are known to produce robust sentiment classification. While both of
these classifiers are probabilistic techniques, NB is generative in nature and LR is discriminative
in nature.

Supervised classifiers require a labeled train set 9, for learning. Let t; € {1, 0} be the label for
document d; € D;,,, where 1 = + and 0 = —. Furthermore, supervised classifiers usually require
that documents are represented in a vector space. Let x; = [x1;, X2;, . - - » xari] T be the representation
of document d; such that x;; > 0, Vi, j, where M is the vocabulary size (number of distinct words or
terms) in Oy, . The element x;; quantifies the importance of term j in document d; and/or document
collection according to a term weighting scheme (e.g., term frequency, TFIDF).

For NB classifier, the scoring function for a document d; is defined as

G plilti=1) L p(ti = 1)
S(di) = > log +log ™

A ®)
p(xjilti = 0) p(ti =0)

j=1
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Table 1. Truth Table for Sentiment Prediction

Actuall, Predicted— | Pos(+) | Neg(-) | Sum
Pos (+) TP FN N},

Neg (-) FP TN | N,

Sum N/, N;, Ny

Here, p(x;j;|t;) and p(t;) is the probability of term given class and probability of class, respectively.
These probabilities are estimated from the train set D;,. With this scoring function, the classifi-
cation is given by Equation (1) with 6 = 0.

For LR, the scoring function for a document d; is given by

1
S(di) =vyi = , . ®3)
1 —exp(—wp — Z?L WjXji)

where w; (j =0, ..., M) are parameters of the model estimated by minimizing the cross-entropy
of y and ¢ over the train set:

Ntn
min )" ~t;logy; — (1 ;) log(1 - y;). (4)
w -

i=1

With the scoring function given by Equation (3), the label for d; is again given by Equation (1)
but now with 6 = 0.5. This is because the scoring function is actually the posterior probability
p(x;|t; = 1) which when greater than 0.5 indicates that x; corresponds to a positive document.

3.3 Measuring Prediction Bias

As stated earlier, the performance of a sentiment classifier C(-) is evaluated by predicting the labels
for all documents in Dy;. Let N}, and N;; be the number of positive and negative documents,
respectively, in D;;, and N;; = N}, + N;, is the total number of documents in the test set. These
numbers reflect the distribution of polarities in the domain of analysis.

Table 1 shows the truth table for the sentiment classifier over the test set. Each cell in this table
gives the number of examples correctly or incorrectly predicted by the classifier. For example,
TP (true positives) and FN (false negatives) are the numbers of examples correctly predicted as
positive and incorrectly predicted as negative, respectively, by the classifier. The row and column
sums are given in the respective rightmost and bottom cells of the table.

Naturally, we prefer that the classifier makes as few errors as possible, i.e., (FP + FN) is as small
as possible (or accuracy is as high as possible). Although error rate ((FN + FP)/N;;) or accuracy
((TP + TN)/Ny,;) is a sound measure of performance it does not provide a complete picture and
may hide biases in the predictions (Zliobaite 2015). For example, consider a domain whose test set
has Ny; = 100, N/, = 70,and N}, = 30 examples. A classifier that labels all examples as positive (i.e.,
TP =70, FN =0, FP = 30, and TN = 0) will have an accuracy of 70%. The same accuracy can be
produced by another classifier with TP = 55, FN = 15, FP = 15, and TN = 15. The latter classifier,
however, maintains the same distribution of 70 positives and 30 negatives in the prediction, i.e.,
N}, = N}, and N;, = N;,). The first classifier, on the other hand, gives the misleading impression
that all documents are positive in the domain, i.e., N/, = 100 and N;, = 0.

This bias results from the imbalance in prediction errors, i.e., when FP is not equal to FN. This
leads to the following definition for Error Imbalance (EI) or Polarity Bias Rate (PBR).
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Definition 1 (PBR, EI). The PBR of a sentiment classifier on N;; examples is defined as
FP-FN . 5)
tt

PBR ranges from —1 to +1, where positive values indicate bias toward incorrect positive pre-
dictions. PBR can also be expressed as the difference between the proportion of predicted posi-
tive examples (TP + FP)/N;; = N},/Ny;) and the proportion of actual positive examples ((TP +
FN)/Ny; = N}, /Ny;). For convenience, PBR can also be given as a percentage. Considering the
example introduced earlier, the bias of the first classifier is PBR = 0.3 or it produces 30% more
positives than in the actual distribution in the domain.

PBR =

It is worth noting that in most applications of sentiment analysis errors in labeling positive
and negative documents (i.e., false positives and false negatives) are equal. In other words, the
cost of misclassifying positive and negative documents is the same. Hence, minimizing the error
rate (or maximizing the accuracy) is a goal of sentiment classification. Nonetheless, to provide
a broader perspective of performance, especially when the distribution of positive and negative
documents differ greatly, the average recall can also be computed. The average recall is defined
as 0.5(% + %) (i.e., average of sensitivity and specificity). Also, note that when PBR is
equal to zero, recall for positive class (and negative class) become equal to precision for positive
class, thus corresponding to the break-even point in the ROC space. Therefore, it is redundant to
provide the values for average precision.

Numerous measures have been proposed for text classification problems. Different measures
have their pros and cons that make them less appropriate for certain tasks. The F1-score is the
harmonic mean of precision and recall of a selected class (e.g., positive sentiment) while in sen-
timent analysis classification performance on both classes are equally important (Sokolova and
Lapalme 2009). The AUC is meant for evaluating and comparing classifiers rather than quantifying
performance for a single operating condition. More precisely, the AUC is obtained by sweeping
through all operating conditions (e.g., classification thresholds) for a classifier while in practice
classification is done using a single operating condition.

Sokolova and Lapalme (2009) provide a detailed analysis of different measures for text classifi-
cation. They note that for sentiment analysis and other human-annotated data classification tasks
accuracy is the most appropriate performance measure.

3.4 Prediction Bias in Sentiment Classifiers

In this section, we highlight that standard supervised and unsupervised sentiment classifiers are
often biased. We discuss the performance characteristics of two lexicon-based (SentiStrength and
AFINN) and two supervised (NB and LR) sentiment classifiers on seven benchmark datasets.
Table 2 shows the key characteristic of these datasets,! including their positive-negative example
distribution. In addition to reporting accuracy and PBR (bias), we also report average recall—-mean
of recall for positive and recall for negative documents.

3.4.1 Lexicon-based Methods. Table 3 gives the accuracy, PBR, and average recall of AFINN and
SentiStrength on benchmark datasets. These results are on 40% samples of the respective datasets.
The distribution of positive and negative examples of the respective datasets is maintained in the
samples used for testing.

These results confirm that significant bias can exist in the predictions of lexicon-based classi-
fiers. In all but one case (SentiStrength on Movie Review), this bias is toward positive predictions.

IThelwall (2013), Pang and Lee (2004), and Maas et al. (2011).
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Table 2. Datasets and Their Key Characteristics

| Data | #Docs | % Pos | % Neg |
Movie Review 2,000 50 50
BBC 1,000 9.9 90.1
Digg 1,084 | 195 | 805
Runner World 1,046 46.3 53.7
Twitter 4,242 31.6 68.4
YouTube 3,407 48.9 51.1
Large Movie Review | 25,000 50 50

Table 3. Accuracy, PBR (Bias), and Average Recall in Existing Lexicon-based
Sentiment Classifiers—Results on 40% Test Set

| | AFINN [ SentiStrength |

| Data || Accuracy | PBR | Avg.Recall || Accuracy | PBR | Avg. Recall |
Movie Review || 63.13 | 15.38 63.13 5450 | —39.50 54.50
BBC 69.50 23.00 65.95 84.25 7.75 72.98
Digg 74.48 12.53 71.52 79.12 7.42 73.95
Runner World 64.20 16.71 65.25 68.02 0.48 67.88
Twitter 69.30 11.02 69.18 72.89 12.14 73.81
YouTube 73.44 1.47 73.46 77.04 4.18 77.12

Table 4. Accuracy, PBR (Bias), and Average Recall in Existing Supervised
Sentiment Classifiers—Results on 40% Test Set

| || Logistic Regression || Naive Bayes |

| Data || Accuracy | PBR | Avg.Recall || Accuracy | PBR | Avg. Recall |
Movie Review 78.88 6.375 78.88 57.75 29.50 57.75
BBC 60.00 32 59.54 57.25 31.25 50.01
Digg 55.68 26.22 54.88 62.41 16.71 56.36
Runner World 59.19 -9.79 58.24 58.23 —6.92 57.49
Twitter 69.95 -8.25 61.72 64.64 —0.24 58.99
YouTube 68.09 0.22 68.07 60.53 12.47 60.79

Also, there appears to be no relation between bias and the underlying distribution of positive and
negative documents. Since it is impossible to determine a priori the direction and magnitude of
bias in lexicon-based classifiers, their results should be verified before using them for important
decision-making tasks.

3.4.2 Supervised Sentiment Classifiers. Table 4 shows the accuracy, PBR, and average recall of
LR and NB classifier on 40% test sets after learning on the respective remaining 60% training sets
of the benchmark datasets. The test sets are identical to those used in evaluating lexicon-based
methods (see Table 3).

These results confirm that significant bias also exists in supervised sentiment classifiers. The
bias is primarily positive but again no general patterns between bias and dataset characteristics
are obvious. Nonetheless, the presence of bias implies that supervised classifiers should also be
used with care as they can distort the polarity mix of the predictions.
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Unlike unsupervised methods, supervised classifiers learn from labeled documents from the do-
main of analysis. They, therefore, have the opportunity to tune their performance accordingly.
The NB classifier is heavily dependent on the veracity of its underlying assumptions (e.g., inde-
pendence of terms given class) and probability estimation errors. Thus, its performance is hard to
characterize in practice on real-world datasets. On the other hand, LR optimizes a performance
criterion—the cross-entropy—directly over the train set. However, minimizing the cross-entropy
does not guarantee that the errors are balanced in the predictions. In general, different inductive
biases in classifiers produce varying performances on test sets that do not ensure balanced predic-
tion errors.

4 BALANCING ERRORS IN SENTIMENT CLASSIFICATION

We present two methods for balancing the errors in the predictions of sentiment classifiers. The
first method, called Bias-Aware Thresholding (BAT), can eliminate bias in any lexicon-based or su-
pervised sentiment classifier while our second method, called Balanced Logistic Regression (BLR),
modifies the standard LR optimization task by introducing an error-balancing constraint.

4.1 Bias-Aware Thresholding (BAT)

BAT removes prediction bias in a sentiment classifier by moving its decision boundary until its
prediction errors (false positives and false negatives) are balanced. BAT can be applied to both un-
supervised and supervised sentiment classifiers without requiring modifications to the respective
methods; it only modifies the threshold of the respective decision rule. As such, BAT is widely
applicable and easy-to-use.

Consider a sentiment classifier C(-) having scoring function S(-). For a given document d, BAT
classifies the document according to the following decision rule:

+ when S(d) > 6+6

Cpar(d) = {_ otherwise ©

where ¢ € R is a boundary shift parameter. A positive value of § will shift the boundary toward
the positive region potentially reducing false-positive errors and increasing false-negative errors
in the prediction while a negative value for § will have the opposite effect.

For probabilistic sentiment classifiers like NB and LR, BAT can be related to cost-sensitive learn-
ing in which specific errors (false positives or false negatives) are reduced by shifting the decision
boundary (Elkan 2001; Kamiran et al. 2012). Specifically, shifting the decision boundary by increas-
ing § increases the cost for false positives while decreasing the value of § increases the cost for
false negatives, thus forcing fewer errors of the respective type in the predictions.

Some labeled documents are needed to estimate the value of §. For supervised sentiment clas-
sifiers, the value of § is fixed over the train set. For unsupervised lexicon-based classifiers, a small
number of labeled documents is sufficient to estimate the value of § accuracy (as verified in our
experiments).

Algorithm 1 outlines the working of the BAT.

4.2 Balanced Logistic Regression (BLR)

BLR is a constrained LR model for bias-free supervised sentiment classification. BLR incorporates
a constraint for balancing prediction errors in the standard LR optimization formulation. As such,
BLR learns a bias-free model automatically without requiring any user input.

Consider a standard LR model C(-) with the scoring function S(-) defined in Equation (3). The
parameters w of the standard LR model are found by minimizing the unconstrained optimization
problem defined in Equation (4). On the other hand, BLR estimates the parameters w by solving
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ALGORITHM 1: BAT—Bias-Aware Thresholding

1: Required: Standard sentiment classifier C(d) with scoring function S(d) and parameter 6, Doc-
uments d € D, Threshold §

2: Output: Label (+ or —) for documents d € D

3: foralld € D do

4. if S(d) > 6 + 6 then

5 Cpar(d) = +

6: else

7: Cpar(d) = -

8

9

end if
: end for

the following constrained optimization problem:

Ntn
min " ~t;logy; — (1 - t;) log(1 - yy), )
i=1
Nin
Subject to L Zt-l( i £0.5)—(1—t;)I(y; >0.5)| < e (8)
] N |£ it\yi = 0. i (Yi . < €.

i=1
Here, I(-) is an indicator function that returns 1 when its argument is true and 0 otherwise, and
€ > 0is a small number. The objective of this optimization problem is still the minimization of the
cross-entropy between y and ¢ over the train set but now a minimum is desired that also satisfies
the constraint that PBR is less or equal to the small number €.

Unlike standard LR, BLR solves a non-linear constrained optimization problem with the added
complexity that the constraint is not continuous as it involves counts of errors. Such an optimiza-
tion problem can be solved by a general non-linear constraint optimization technique like interior
point. However, such techniques can be slow. But, its computational time is not a deciding factor
since optimization is done off-line and once for a given dataset; there is really no practical differ-
ence between a few seconds and a few minutes. The BLR algorithm is shown in Algorithm 2. In
our implementation, we solved the optimization problem using MATLAB’s fmincon.?

5 EXPERIMENTAL SETUP AND DATASETS

In this section, we introduce the datasets and outline our experimental setup.

5.1 Datasets

Table 2 summarizes the key characteristics of our evaluation datasets. In all, we conduct experi-
ments on seven datasets described below.

The Movie Review dataset (Pang and Lee 2004) is a collection of comments on movies obtained
from Internet Movie Database (IMDB). The dataset contains 1,000 positive and 1,000 negative
comments.

The Web 2.0 dataset is a human-labeled dataset made available by the SentiStrength research
group (Thelwall 2013). It includes a wide range of messages, tweets, reviews, and comments from
different sources. We use collections from the following: (1) BBC forum, (2) Digg, (3) Runners World
forum, (4) Twitter, and (5) YouTube. Each document in the collection is labeled with positive and
negative sentiment scores. To assign a binary polarity label to a document we subtract its negative

Zhttps://www.mathworks.com/help/optim/ug/fmincon.html.
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score from its positive score and label it as positive if this difference is greater than zero and label
it as negative otherwise.

The Large Movie Review dataset (Maas et al. 2011) is a large collection of movie reviews. It
contains a total of 50,000 reviews with an equal percentage of positive and negative reviews. The
original dataset is divided into test and training sets of 25,000 reviews each. We performed exper-
iments using the training dataset only.

ALGORITHM 2: BLR—Balanced logistic regression

1: Required: Train documents D;,, Test documents D,
2: Output: Label (+ or —) for documents d € Dy,
3: S(-) « Scoring function for BLR by solving constrained optimization problem for D;,
4: for alld € D;; do

5. if S(d) > 0.5 then
6 Cgrr(d) =+
7 else

8 Cgrr(d) = -
9 end if

10: end for

5.2 Experimental Setup

We compare BAT with two popular lexicon-based sentiment classifiers (AFINN and SentiStrength).
Since BAT requires the selection of parameter or threshold §, we evaluate BAT s performance after
fixing the threshold on varying sizes of labeled data. As this setting becomes identical to that of
supervised classification, we also compare BAT with supervised classifiers when they are learned
over the same set of labeled data. We compare BLR with standard LR on varying training data
sizes.

For each experiment of the BAT, the value of threshold § that produces the smallest absolute
PBR on the labeled data is selected. This is done through iterative line search. More precisely, when
PBR is positive then the value of § is increased by a fixed proportion and when PBR is negative
then the value of § is decreased by a fixed proportion. These steps are repeated until PBR becomes
close to zero. Subsequently, this value is used while predicting the labels of new documents.

We use Python implementation of AFINN and Java implementation of SentiStrength available
from the respective websites. While using these implementations no additional preprocessing of
the text documents is done. For NB and LR classifiers, we use the implementation provided in
RapidMiner. Standard text preprocessing of tokenization, stop word removal, and stemming is
performed on the text documents. We report prediction accuracy and PBR on different sizes of the
datasets. We also report average recall to understand its tradeoff with accuracy and PBR.

6 RESULTS AND DISCUSSION

We divide the presentation of experimental results into two parts starting with unsupervised sen-
timent classification followed by supervised sentiment classification.

6.1 Unsupervised Sentiment Classification

We conduct two categories of experiments. First, we evaluate the performance of BAT with chang-
ing values of its threshold §. We do this for both BAT combined with AFINN and BAT combined
with SentiStrength. Second, we compare the performance of BAT/AFINN with NB classifier and

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 3, Article 33. Publication date: June 2019.



33:12 M. Igbal et al.

90 T T T T
MovieRevVieWS =t
BBC =tp
85 Digg ==t |
RunnerWorld
— TWiItter
=80k YouTube i
>
2
5
875+ ]
< |
70 + .
635 5 10 15 20 25
PBR (%)

Fig. 1. Performance of BAT when combined with AFINN (BAT-AFINN).

LR. In these experiments, the NB, LR, and the threshold & of BAT are learned from labeled datasets
and performance is measured over the respective remaining test datasets. The baselines for our
evaluations are standard AFINN and SentiStrength (for the first category of experiments) and stan-
dard NB and LR (for the second category of experiments).

Figure 1 shows the performance of BAT when combined with lexicon-based method AFINN
(BAT-AFINN) on different datasets. In this figure, prediction accuracy is given on the y-axis and
prediction bias measured via PBRis given on the x-axis. Each line gives performances for a different
dataset, and each point on the line shows the accuracy and PBR values for a specific threshold 6.
The threshold § = 0 for the rightmost point on each line and § increases for points on the left. It
is clear from this figure that standard AFINN (the rightmost point on each line) exhibits a strong
bias toward positive sentiment. When AFINN is combined with BAT bias reduces gradually to zero
and there is also a gradual increase in accuracy, with an increase in threshold 8. This observation
confirms that AFINN’s predictions have a systematic bias and changing the prediction threshold
not only reduces this bias but also increases prediction accuracy.

Figure 2 shows the performance of BAT when combined with SentiStrength (BATSS). We do
not report results of SentiStrength on the five Web 2.0 datasets because these datasets were used
in the development of SentiStrength lexicon. Unlike the observation made for AFINN in Figure 1,
SentiStrength exhibits a systematic bias toward negative sentiment (the leftmost point on each
line). When SentiStrength is combined with BAT and threshold ¢ is decreased from zero bias re-
duces and accuracy increases. Again, this is a beneficial trend that is similar to that observed for
BAT-AFINN.

The preceding experiments highlight that different lexicon-based methods can have different
biases on different datasets. To apply BAT combined with a lexicon-based method on a given
dataset, it is necessary to find the parameter/threshold § that reduces the bias to the desired level
(ideally to zero). For this purpose, some labeled examples for the dataset are needed. Once an
appropriate threshold has been selected using the labeled examples, this can then be used for
predicting the polarity of new examples. Given this procedure, the following two questions arise:
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Fig. 2. Performance of BAT when combined with SentiStrength (BAT-SS).

(1) how large should the labeled dataset be to reliably tune the threshold? (2) How well would a
supervised method perform when learned on such a labeled dataset?

To address these questions, we conduct additional experiments. We hold-out varying sizes of
each dataset and, for each size, we learn the following: (a) the threshold § that reduces the bias on
this dataset to zero, and (b) a standard NB and LR classifier on this dataset. We then compare the
performances of BAT-AFINN using the learned threshold with the learned NB and LR classifiers
on the remaining portion of the respective datasets.

Figures 3 and 4 show the performance of BAT combined with AFINN and NB classifier and LR,
respectively, over the test portions after learning from varying sizes of the datasets (each sub-
figure shows results for one dataset). The x-axis in each sub-figure gives the training data size as
a percentage of total data size and the y-axis gives the percent accuracy or PBR.

The following observations can be made from Figures 3 and 4:

(1) The threshold learned over the training data translates nicely to the test data by producing
PBR values close to zero on the test data.

(2) Even when a very small training data size is used (2.5%) the performance of BAT-AFINN
remains strong. In fact, there is no practically noticeable difference in PBR between 2.5%
and 20% sizes of training data.

(3) NB and LR classifiers, on the other hand, produce varying non-zero biases. For some
datasets, this bias is positive while for others it is negative.

(4) More interestingly, in the vast majority of cases, the accuracy of BAT combined with
AFINN beats that for NB and LR classifiers.

6.2 Supervised Sentiment Classification

Supervised sentiment classification can use standard text classifiers like NB classifier and LR. As
discussed earlier, BAT can be combined with any sentiment classifier to produce bias-aware pre-
dictions while BLR learns a bias-aware LR model for sentiment classification. We conduct two
categories of experiments for evaluating supervised sentiment classification.
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Fig. 3. Comparison of BAT-AFINN with naive Bayes classifier on training dataset of varying sizes.

First, we evaluate the performance of BAT when combined with standard logistic regression
(BAT-LR) and standard NB classifier. In these experiments, NB and LR are learned over training
datasets while the threshold of BAT combined with NB and LR is selected over the same datasets;
performance is measured over the respective test datasets. Second, we compare the performance of
BLR with standard LR. In these experiments, LR and BLR are learned from same labeled datasets
and performance is measured over the respective remaining test datasets. In all cases, the test
dataset is unexposed during learning, and we conduct experiments with varying training-test sizes.
For performance, we report both PBR and accuracy percentages. The baselines for our evaluations
are standard LR and standard NB classifier. In the end, we also evaluate the tradeoff between accu-
racy/bias and average recall and compare it with that of standard supervised sentiment classifiers.
Figures 5 and 6 show the performance comparison of the BAT-LR and BAT when combined
with standard naive Bayes (BAT-NB) with standard LR and NB, respectively. The x-axis in each
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Fig. 4. Comparison of BAT-AFINN with logistic regression on training dataset of varying sizes.

sub-figure gives the training data size as a percentage of total data size and the y-axis gives the
percent accuracy or PBR.

It is clear from these figures that BAT-NB and BAT-LR consistently outperform standard NB
and standard LR w.r.t. bias and accuracy. That is, the shift in decision boundary learned by BAT
over the training data (the threshold §) makes the predictions over the test data less biased (PBR
is close to zero) and more accurate. This result is similar to that observed for BAT combined with
lexicon-based methods, hence confirming the effectiveness and generality of BAT for bias control
in sentiment classification.

We now compare BLR with standard LR. Figure 7 shows the performance of standard LR with
BLR over the respective remaining test portions after learning from varying training dataset sizes
(shown on the x-axis of each sub-figure). In each sub-figure, prediction accuracy and prediction
bias measured via PBR is given on the y-axis.
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Fig. 5. Comparison of BAT-LR with standard logistic regression on training dataset of varying sizes.
The following observations can be made from Figure 7:

(1) LR produces varying non-zero biases. For some datasets, this bias is positive while for
others it is negative.

(2) In some cases, LR performs extremely poorly and produces higher absolute PBR than ac-
curacy, e.g., in BBC dataset.

(3) BLR consistently produces PBR close to zero, thus confirming that its constraint-based
learning over the training data translates nicely to the test data.

(4) BLR not only reduces prediction bias measured via PBR toward zero but also improves
the prediction accuracy by a significant amount.

(5) More importantly, in the vast majority of cases, BLR outperforms standard LR w.r.t. to
both bias and accuracy.
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Fig. 6. Comparison of BAT-NB with standard naive Bayes classifier on training dataset of varying sizes.

Tables 5 and 6 show accuracy, PBR, and average recall of BAT combined with AFINN and Sen-
tiStrength and BLR on the benchmark datasets. These results are based on the same 60%-40%
training-test sets used to produce results for standard supervised sentiment classifiers shown in
Table 4. The key observation from these tables is that average recall remains relatively unaffected
after the shift in decision boundary (BAT) or incorporation of bias constraint (BLR) in datasets
having little to no class imbalance (i.e., the proportion of positive and negative documents is al-
most identical). On the other hand, average recall drops (although accuracy remains high or even
increases) for datasets having a significant class imbalance (e.g., BBC dataset). This is because the
recall for the minority class drops significantly as its errors are increased to achieve balance in
errors from the minority and majority classes. However, since the cost of misclassifying positive
and negative documents in sentiment analysis is usually identical higher accuracy and lower pre-
diction bias are sufficient measures of performance for practical sentiment analysis.
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Fig. 7. Comparison of BLR with standard logistic regression on training dataset of varying sizes.

6.3 Key Points

Our evaluation of standard and bias-aware sentiment classifiers has highlighted the following key

points:

(1) Imbalanced prediction errors can distort the true distribution of sentiments in the predic-
tions. This is an important issue in practice that has not received much attention before.
(2) Existing lexicon-based and supervised sentiment classifiers can produce varying polar-
ity biases in their predictions. This is because these methods do not control prediction

bias explicitly, and in general, incorporate differing inductive biases that produce varying
performances in practice.
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Table 5. Accuracy, PBR (Bias), and Average Recall in BAT When Combined with Supervised
Sentiment Classifiers—Results on 40% Test Set

| | Logistic Regression [ Naive Bayes |

| Data || Accuracy | PBR | Avg.Recall || Accuracy | PBR | Avg. Recall |
Movie Review 78.25 —0.25 78.25 68.75 -1 68.75
BBC 89.75 —6.75 55.44 86.75 —4.25 52.64
Digg 76.33 0 62.29 77.49 —8.59 55.8
Runner World 58.95 0 58.72 58.47 191 58.39
Twitter 66.82 0.41 61.79 64.64 —0.94 58.69
YouTube 68.15 0 68.14 62.44 —3.08 62.35

Table 6. Accuracy, PBR (Bias), and Average Recall
in BLR—Results on 40% Test Set

| | BLR |

| Data || Accuracy | PBR | Avg. Recall |
Movie Review 82.00 01.25 82.00
BBC 86.50 -02.00 57.07
Digg 79.12 | —18.10 49.14
Runner World 60.86 —06.68 60.15
Twitter 69.54 —04.07 63.02
YouTube 71.75 00.37 71.75

(3) Imbalance in prediction errors does not appear to be related to the class imbalance in the
dataset; existing sentiment classifiers produce varying imbalanced prediction errors on
datasets with no class imbalance.

(4) Since false positives and false negatives have equal cost, accuracy and PBR provide a com-
plete picture of a sentiment classifier’s performance; average recall becomes useful when
severe class imbalance costs in the dataset.

(5) BAT is an effective, easy-to-use method for balancing prediction errors in lexicon-based
and supervised sentiment classifiers. BLR is a parameter-free balanced variant of LR for
supervised sentiment classification.

7 CONCLUSION

Systematic bias in polarity predictions can jeopardize decisions based on automatic sentiment
analysis of textual content. Prediction polarity bias can produce excessive false positives or false
negatives that distorts the true sentiment distribution of the dataset. In this article, we study the
problem of bias in polarity prediction in detail focusing on both supervised and lexicon-based
methods. We define a measure, named PBR, for quantifying this bias. Subsequently, we develop
two approaches for controlling bias in supervised and lexicon-based sentiment classifiers. Our
first approach, called BAT, combines with any lexicon-based or supervised sentiment classifier to
make it bias aware. Specifically, BAT introduces a prediction threshold that penalizes systematic
errors to reduce bias and improve accuracy. BAT is simple yet effective, and can be readily used in
practice. Our second approach, called BLR, is a constrained variant of standard LR that enforces
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that prediction errors are balanced. BLR is an automatic bias-free supervised sentiment classifier
that requires no user-specifiable parameters.

We evaluate our approaches on seven real-world datasets. BAT is combined and compared
with lexicon-based methods AFINN and SentiStrength, and supervised classifiers NB and LR. BLR
is compared with standard Logistic Regression. The experimental results confirm that our ap-
proaches control bias effectively while maintaining (usually improving) prediction accuracy.

This topic has much potential for further research with significant implications for practition-
ers. The reasons for biases and more effective solutions for their control need to be investigated.
Moreover, extensive experimental evaluations and their relation to linguistics may yield additional
insights into the problem.
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