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Problem

Suppose f , g such that

lim
x→x0

f (x) = 0 = f (x0)

lim
x→x0

g(x) = 0 = g(x0)
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Problem contd
And we want to evaluate

lim
x→x0

f (x)

g(x)

Naive substitution would give
indeterminate form[

0

0

]
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Problem contd
If f , g diffble at x0 their linear

approx is

f (x) = f (x0+h) ≈ f (x0)+hf ′(x0) = hf ′(x0)

g(x) = g(x0+h) ≈ g(x0)+hg ′(x0) = hg ′(x0)
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Problem contd

Then for x close to x0

f (x)

g(x)
≈ hf ′(x0)

hg ′(x0)
=

f ′(x0)

g ′(x0)
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l’Hopital for form [0/0]

Form [0/0]
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l’Hopital for form [0/0]
If f and g diffble at x0

And f (x0) = 0 = g(x0)

Then

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)

if this second limit exists.
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Warning

Can’t use l’Hopital on just any type
of limit
The proof uses the fact that we get the form

[0/0] if we try substitution.
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Example

Evaluate

L = lim
x→0

x2

2x
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Example
Contd

L = lim
x→0

x2

2x

[
0

0

]
= lim

x→0

2x

2

=
2 · 0

2
= 0
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Example

Evaluate

L = lim
x→0

1− cos(x)

x2
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Example contd

Working

L = lim
x→0

1− cos(x)

x2

[
0

0

]
= lim

x→0

sin(x)

2x

=
1

2
lim
x→0

sin(x)

x

=
1

2
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May need l’Hopital twice
Example

L = lim
x→0

x4

x3 + x2

[
0

0

]
= lim

x→0

4x3

3x2 + 2x

[
0

0

]
= lim

x→0

12x2

6x + 2
= 0
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Was there an easier way to do
that?

Sometimes another approach is more
efficient than l’H
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Directional limits

Directional limits
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l’H may also work for directional
limits of form [0/0]

Example

L = lim
x→1+

x − 1√
x − 1
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Example contd
Solution

L = lim
x→1+

x − 1√
x − 1

[
0

0

]
= lim

x→1+

1
1

2
√
x

= lim
x→1+

2
√
x

= 2
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Form [∞/∞]

Form
[∞
∞
]
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Rule for form [∞/∞]
If limx→x0 f (x) = ±∞

And limx→x0 g(x) = ±∞

And limx→x0 f
′(x)/g ′(x) exists then

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)

if this second limit exists.
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Example

Evaluate

L = lim
x→+∞

x2 + 1

1− x2
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Example contd
Working

L = lim
x→+∞

x2 + 1

1− x2

[∞
∞

]
= lim

x→+∞

2x

−2x

= lim
x→+∞

1

−1
= − 1
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Other forms

Other forms
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Rule only for two forms

For other forms must manipulate to
get these two forms



Outline Plausibility argument l’Hopital for form [0/0] Directional limits Form [ infty / infty] Other forms Problems

l’H sometimes for forms

Like

[0 · ∞], [1∞], [00]

[∞0], [∞−∞]

after manipulation. Example coming up.
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Problems

Problems
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Problem 1

Evaluate

lim
x→1

sin(2x2 − 2)

sin(3x − 3)
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Problem contd

Using l’Hopital

L = lim
x→1

sin(2x2 − 2)

sin(3x − 3)

[
0

0

]
= lim

x→1

4x cos(2x2 − 2)

3 cos(3x − 3)
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Problem contd

Substituting

L =
4 · 1 cos(2 · 12 − 2)

3 cos(3 · 1− 3)

=
4 cos(0)

3 cos(0)

=
4

3
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Problem 2

Evaluate

lim
x→1

x4 − 2x3 + 2x − 1

x2 − 2x + 1
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Problem contd

Using l’Hopital

L = lim
x→1

x4 − 2x3 + 2x − 1

x2 − 2x + 1

[
0

0

]
= lim

x→1

4x3 − 6x2 + 2

2x − 2

[
0

0

]
= lim

x→1

12x2 − 12x

2
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Problem contd

Using substitution

L = lim
x→1

12x2 − 12x

2

=
12 · 12 − 12 · 1

2
=0
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Problem 3

Evaluate

lim
x→0

tan−1(x)

x
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Problem contd

Using l’Hopital

L = lim
x→0

tan−1(x)

x

[
0

0

]
= lim

x→0

1
1+x2

1

= lim
x→0

1

1 + x2
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Problem contd

Using substitution

L = lim
x→0

1

1 + x2

=
1

1 + 02

=1
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Problem 4

Evaluate

lim
x→1−

sin−1(x)− π/2√
1− x2
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Problem contd
Using l’Hopital

L = lim
x→1−

sin−1(x)− π/2√
1− x2

[
0

0

]
= lim

x→1−

1/
√

1− x2

−x/
√

1− x2

= lim
x→1−

1

−x
=− 1
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Problem 5

Evaluate

lim
x→+∞

x · sin(1/x)
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Problem contd

Substitution would give the
indeterminate form

[0 · ∞]
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Problem contd

L’Hopital doesn’t work for this form.
So, we have to rearrange.
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Problem contd

Rearranging and using l’Hopital

L = lim
x→+∞

x · sin(1/x)

= lim
x→+∞

sin(1/x)

1/x

[
0

0

]
= lim

x→+∞

−x−2 cos(1/x)

−x−2
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Problem contd

Simplifying and substituting

L = lim
x→+∞

−x−2 cos(1/x)

−x−2
= lim

x→+∞
cos(1/x)

= cos(0)

=1
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Problem 6

Why does l’Hopital fail for

lim
x→+∞

√
x2 + 1

x
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Problem 7

Evaluate

lim
x→+∞

√
4x6 + x5 + x2 + 1

5x3 − x + 7
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Problem 8

Show

lim
x→π−

(x − π) tan
x

2
= − 2
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Problem 9

Show

lim
x→0

(
1

1− cos x
− 2

sin2 x

)
= − 1

2
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Problem 10

Evaluate

lim
x→π

2
−

tan x

1 + tan x
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Problem 11

Why can’t l’Hopital be used for

lim
x→3

x2 − 1

x − 3
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Speeding fine - theorem of the
mean policeman

Theorem of the mean policeman

https://vimeo.com/101691769
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On the motorway

Slip shows AVG speed exceeded
INStantaneous speed

Should you get speeding fine?
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Rates of change

Rates of change
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Average change of a function over
an interval [a, b]

One definition

f (b)− f (a)

b − a
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Rates of change

Instantaneous change at c ∈ [a, b]

f ′(c)
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Rates of change

Relationship between avg /inst
change?
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Rolle’s theorem

Rolle’s theorem
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Recall extreme value theorem

If f conts on [a, b] then

f achieves a max at least once on [a, b] and

f achieves a min at least once on [a, b].
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Rolle’s theorem

Rolle’s theorem

If f is conts on [a, b] and diffble on (a, b)

and f (a) = f (b) ,

then there is a c ∈ (a, b) so that f ′(c) = 0 .
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What does Rolle’s theorem say
about ..

y = x5 + x3 + 7x − 2 on [−1, 1]

y = |x | on [−1, 1]

y = x4 on [−1, 1)
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Proof

f conts on [a, b] so attains a max
and a min somewhere on [a, b]



Outline Speeding fine Rates of change Rolle’s theorem Functions with zero derivative Problems

Proof contd

f diffble on (a, b) so ..

If max or min at c ∈ (a, b) then f ′(c) = 0 .
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Proof contd

If max AND min is at endpoints and
not in interior,

then function constant and f ′ = 0

everywhere.
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Example

Consider f : [−π, π]→ R defined by

f (x) = sin(x)

What does Rolle’s Theorem tell us?
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Example contd

Continuity
The sin function is conts everywhere, so in

particular it is conts on [−π, π].

Differentiability
The sin function is diffble everywhere, so in

particular it is diffble on (−π, π).
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Example contd

We can apply Rolle’s theorem
There is a c ∈ (−π, π) such that

f ′(c) = 0

cos(c) = 0
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Mean value theorem

Theorem
If f conts on [a, b] and diffble on (a, b) ,

then there is a c ∈ (a, b) so that

f ′(c) =
f (b)− f (a)

b − a
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Example
What does MVT say about ..
y = x3 + 2x2 − x on [−1, 2]
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Example contd

Continuity and differentiability
y is a polynomial function, so it is conts and

diffble everywhere. In particular, it is conts

on [-1,2] and diffble on (-1,2).
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Example contd

Then the MVT implies that
there is a c ∈ [−1, 2] such that

y ′(c) =
y(2)− y(−1)

2− (−1)

3c2 + 4c − 1 =
14− 2

3
= 4
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Proof of MVT

Define function g by

g(x) = f (x)− f (a)− f (b)− f (a)

b − a
(x − a)
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Proof contd

g conts on [a, b] and diffble on (a, b)

Why?
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Proof contd

Proof contd

g(a) = f (a)−f (a)−f (b)− f (a)

b − a
(a−a) = 0

g(b) = f (b)−f (a)−f (b)− f (a)

b − a
(b−a) = 0
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Proof contd

Rolle’s theorem applies

Why?
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Proof contd

Then there is some c ∈ (a, b) so that

g ′(c) = f ′(c)− f (b)− f (a)

b − a
= 0
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Proof contd

Then there is some c ∈ (a, b) so that

f ′(c) =
f (b)− f (a)

b − a
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What about the speeding fine?

How does MVT apply?
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Functions with zero derivative

Functions with zero derivative.
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Functions with zero derivative

We saw that constant functions have
derivative zero. Do any others?
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Functions with zero derivative

Lemma
Suppose f conts on [a, b] and diffble on

(a, b) . Suppose f ′(x) = 0 , all x in (a, b) .

Then f (a) = f (b) .
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Proof

MVT applies so there is a c ∈ (a, b)
so that

0 = f ′(c) =
f (b)− f (a)

b − a
⇒ f (b) = f (a)
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Functions with zero derivative

Theorem
Suppose f conts on [a, b] and diffble on

(a, b) . Suppose f ′(x) = 0 , all x in (a, b) .

Then f constant on [a, b] .
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Proof

Consider subinterval [a, y ]

Then f conts on [a, y ] and diffble on (a, y)

and f ′(x) = 0 for all x ∈ (a, y).
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Proof contd

Apply lemma

f (y) = f (a)
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Proof contd

But y is any point in (a, b) so

f (x) = f (a)

all x in (a, b) .
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Problems

Problems
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Problem 1

Establish the identity

| cos(a)− cos(b)| ≤ |a − b|
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Problem 1 contd

Consider cos on [a, b]

Conts on [a, b] ?

Diffble on (a, b) ?
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Problem 1 contd

Apply MVT: There is a c ∈ (a, b) so
that

cos(b)− cos(a)

b − a
= − sin(c)
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Problem 1 contd

A little algebra

cos(b)− cos(a) = − sin(c)(b − a)

| cos(b)− cos(a)| = | − sin(c)||b − a|
| cos(b)− cos(a)| ≤ |b − a|

(as | sin | ≤ 1 )
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Problem 2

Can we apply the MVT to

f (x) =
1

x

on [−1, 1] ?
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Problem 3

Can we apply the MVT to

f (x) = |x − 5|

on [−10, 12] ?
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Problem 4

Problem
Let f : R→ R be defined by

f (x) = x3 + x

Show that f is 1-1.
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Problem contd

Proof by contradiction
We will suppose that f is not 1-1 and get a

contradiction. Then it will follow that f is

1-1.
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Problem contd

Suppose f is not 1-1.
Then there are a, b 6= a ∈ R such that

f (a) = f (b)
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Problem contd

Check conditions for Rolle’s thm
f is a polynomial fn and so conts on [a, b]

and diffble on (a, b) and f (a) = f (b).
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Problem contd

Rolle’s thm implies
There is a c ∈ (a, b) such that

f ′(c) = 3c2 + 1 = 0
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Problem contd

Contradiction

3c2 + 1 = 0

is a contradiction that arises from supposing

f is not 1-1. We conclude that f is 1-1.
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Problem 5

Problem
Let f : [a, b]→ R be conts on [a, b] and

diffble on (a, b). Let f ′(x) 6= 0 for any

x ∈ (a, b). Then f is 1-1.
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Problem contd

Proof by contradiction
We will suppose that f is not 1-1 and get a

contradiction. Then it will follow that f is

1-1.
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Problem contd

Suppose f is not 1-1.
Then there are c, d 6= c ∈ [a, b] such that

f (c) = f (d)
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Problem contd

Check conditions for Rolle’s thm
f is [a, b] and so conts on [c, d ] ⊂ [a, b]. f

us diffble on (a, b) and so diffble on

(c, d) ⊂ (a, b). And f (c) = f (d).
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Problem contd

Rolle’s thm implies
There is a k ∈ (c, d) such that

f ′(k) = 0



Outline Speeding fine Rates of change Rolle’s theorem Functions with zero derivative Problems

Problem contd

Contradiction

f ′(k) = 0

is a constradiction that arises from supposing

f is not 1-1. We conclude that f is 1-1 on

[a, b].



Outline Speeding fine Rates of change Rolle’s theorem Functions with zero derivative Problems

Problem 6

Problem
Let f be conts on [a, b] , diffble on (a, b) ,

and f ′(x) > 0 on (a, b) . Show that f is

strictly increasing on [a, b] .
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Problem contd

What do we need to show?
Want to show that for c, d > c ∈ (a, b) we

have that

f (d) > f (c)
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Problem contd

What do we know?
f is conts on [a, b] and so conts on

[c, d ] ⊂ [a, b].

f is dffble on (a, b) and so diffble on

(c, d) ⊂ (a, b).
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Problem contd

Apply the MVT
There is a k ∈ (c, d) such that

f ′(k) =
f (d)− f (c)

d − c

f (d)− f (c) = (d − c)︸ ︷︷ ︸
>0

f ′(k)︸︷︷︸
>0

> 0
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Problem contd

Conclusion
As c and d > c arbitrary points of the

domain of f , we conclude that f is strictly

increasing.
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Problem 7

Problem
Let f be conts on [a, b] , diffble on (a, b) ,

and f ′(x) ≥ 0 on (a, b) . Show that f is

increasing on [a, b] .
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Problem contd

Sketch of proof
Using the same approach as in the previous

problem, we will get this time

f (d)− f (c) ≥ 0, so the function value is

either the same or larger.
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Problem 8

Problem
Let f be conts on [a, b] , diffble on (a, b) ,

and f ′(x) < 0 on (a, b) . Show that f is

strictly decreasing on [a, b] .
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Problem contd

Sketch of proof
Very similar to previous proof, with

f (d)− f (c) < 0.
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Problem 9

Problem
Let f be conts on [a, b] , diffble on (a, b) ,

and f ′(x) ≤ 0 on (a, b) . Show that f is

decreasing on [a, b] .
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