l'Hopital's rule

S Sial

Dept of Mathematics LUMS

Fall 2020-2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Plausibility argument
- l'Hopital for form [0/0]
- **Directional limits**
- Form [infty / infty]
- Other forms
- Problems

Plausibility argument

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Plausibility argument

Problem

Suppose f, g such that

$$\lim_{x\to x_0}f(x)=0=f(x_0)$$

$$\lim_{x\to x_0}g(x)=0=g(x_0)$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Problem contd And we want to evaluate

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}$$

Naive substitution would give indeterminate form

$\begin{bmatrix} 0\\ \overline{0} \end{bmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem contd If *f* , *g* diffble at *x*₀ their linear approx is

$$f(x) = f(x_0+h) \approx f(x_0)+hf'(x_0) = hf'(x_0)$$

$g(x) = g(x_0+h) \approx g(x_0)+hg'(x_0) = hg'(x_0)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem contd

Then for x close to x_0

$$rac{f(x)}{g(x)} \, pprox \, rac{h f'(x_0)}{h g'(x_0)} \, = \, rac{f'(x_0)}{g'(x_0)}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

l'Hopital for form [0/0]

Form $\left[0/0\right]$

l'Hopital for form [0/0]If f and g diffble at x_0

And
$$f(x_0) = 0 = g(x_0)$$

$$\lim_{x\to x_0}\frac{f(x)}{g(x)} = \lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

if this second limit exists.

Warning

Can't use l'Hopital on just any type of limit

The proof uses the fact that we get the form [0/0] if we try substitution.

Example

Evaluate

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example

Contd

$$L = \lim_{x \to 0} \frac{x^2}{2x} \quad \begin{bmatrix} 0\\ \overline{0} \end{bmatrix}$$
$$= \lim_{x \to 0} \frac{2x}{2}$$
$$= \frac{2 \cdot 0}{2}$$
$$= 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Evaluate

$$L = \lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example contd

Working

$$L = \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \quad \left[\frac{0}{0}\right]$$
$$= \lim_{x \to 0} \frac{\sin(x)}{2x}$$
$$= \frac{1}{2} \lim_{x \to 0} \frac{\sin(x)}{x}$$
$$= \frac{1}{2}$$

May need l'Hopital twice Example

Was there an easier way to do that?

Sometimes another approach is more efficient than I'H

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Directional limits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Directional limits

I'H may also work for directional limits of form [0/0]

Example

 $L = \lim_{x \to 1^+} \frac{x-1}{\sqrt{x}-1}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example contd

Solution

Form $[\infty/\infty]$

Rule for form $[\infty/\infty]$ If $\lim_{x\to x_0} f(x) = \pm \infty$

And $\lim_{x\to x_0} g(x) = \pm \infty$

And $\lim_{x\to x_0} f'(x)/g'(x)$ exists then

$$\lim_{x\to x_0}\frac{f(x)}{g(x)} = \lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

if this second limit exists.

Example

Evaluate

$$L = \lim_{x \to +\infty} \frac{x^2 + 1}{1 - x^2}$$

Example contd

Working

Other forms

Other forms

Rule only for two forms

For other forms must manipulate to get these two forms

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

I'H sometimes for forms

Like

$[0\cdot\infty], \quad [1^{\infty}], \quad [0^0]$

$[\infty^0], \quad [\infty - \infty]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

after manipulation. Example coming up.

Problems

Problems

Problem 1

Evaluate

$$\lim_{x\to 1}\frac{\sin(2x^2-2)}{\sin(3x-3)}$$

Problem contd

Using l'Hopital

$$L = \lim_{x \to 1} \frac{\sin(2x^2 - 2)}{\sin(3x - 3)} \quad \left[\frac{0}{0}\right]$$
$$= \lim_{x \to 1} \frac{4x \cos(2x^2 - 2)}{3 \cos(3x - 3)}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Problem contd

Substituting

$$L = \frac{4 \cdot 1 \cos(2 \cdot 1^2 - 2)}{3 \cos(3 \cdot 1 - 3)}$$
$$= \frac{4 \cos(0)}{3 \cos(0)}$$
$$= \frac{4}{3}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem 2

Evaluate

$$\lim_{x \to 1} \frac{x^4 - 2x^3 + 2x - 1}{x^2 - 2x + 1}$$

Problem contd

Using l'Hopital

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem contd

Using substitution

$$L = \lim_{x \to 1} \frac{12x^2 - 12x}{2} \\ = \frac{12 \cdot 1^2 - 12 \cdot 1}{2} \\ = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem 3

Evaluate

$$\lim_{x\to 0}\frac{\tan^{-1}(x)}{x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Problem contd

Using l'Hopital

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem contd

Using substitution

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで
Problem 4

Evaluate

$$\lim_{x \to 1^{-}} \frac{\sin^{-1}(x) - \pi/2}{\sqrt{1 - x^2}}$$

Problem contd Using l'Hopital

Problem 5

Evaluate

$\lim_{x\to+\infty}x\cdot\sin(1/x)$

Problem contd

Substitution would give the indeterminate form

 $[0\cdot\infty]$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Problem contd

L'Hopital doesn't work for this form. So, we have to rearrange.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem contd

Rearranging and using l'Hopital

$$egin{aligned} \mathcal{L} &= \lim_{x o +\infty} x \cdot \sin(1/x) \ &= \lim_{x o +\infty} rac{\sin(1/x)}{1/x} & \left[rac{0}{0}
ight] \ &= \lim_{x o +\infty} rac{-x^{-2}\cos(1/x)}{-x^{-2}} \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Problem contd

Simplifying and substituting

$$L = \lim_{x \to +\infty} \frac{-x^{-2} \cos(1/x)}{-x^{-2}}$$
$$= \lim_{x \to +\infty} \cos(1/x)$$
$$= \cos(0)$$
$$= 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem 6

Why does l'Hopital fail for

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem 7

Evaluate

$$\lim_{x \to +\infty} \frac{\sqrt{4x^6 + x^5 + x^2 + 1}}{5x^3 - x + 7}$$

Problem 8

Show

$$\lim_{x\to\pi^-}(x-\pi)\tan\frac{x}{2} = -2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem 9

Show

$$\lim_{x \to 0} \left(\frac{1}{1 - \cos x} - \frac{2}{\sin^2 x} \right) = -\frac{1}{2}$$

Problem 10

Evaluate

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{\tan x}{1 + \tan x}$$

Problem 11

Why can't l'Hopital be used for

$$\lim_{x\to 3}\frac{x^2-1}{x-3}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Mean Value Theorem

S Sial

Dept of Mathematics LUMS

Fall 2020-2021

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Outline

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Speeding fine

Rates of change

Rolle's theorem

Functions with zero derivative

Problems

Mean value theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mean value theorem

Speeding fine

Speeding fine

Speeding fine - theorem of the mean policeman

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem of the mean policeman https://vimeo.com/101691769

On the motorway

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Slip shows AVG speed exceeded INStantaneous speed

Should you get speeding fine?

Rates of change

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rates of change

Average change of a function over an interval [a, b]

One definition

$$rac{f(b)-f(a)}{b-a}$$

Rates of change

Instantaneous change at $c \in [a, b]$

f'(c)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rates of change

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Relationship between avg /inst change?

Rolle's theorem

Rolle's theorem

Recall extreme value theorem

- If f conts on [a, b] then
- f achieves a max at least once on [a, b] and f achieves a min at least once on [a, b].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rolle's theorem

Rolle's theorem

If f is conts on [a, b] and diffble on (a, b)and f(a) = f(b),

then there is a $c \in (a, b)$ so that f'(c) = 0 .

What does Rolle's theorem say about ..

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$y = x^5 + x^3 + 7x - 2$$
 on $[-1, 1]$

$$y = |x|$$
 on $[-1, 1]$

$$y = x^4$$
 on $[-1, 1)$

Proof

f conts on [a, b] so attains a max and a min somewhere on [a, b]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof contd

f diffble on (a, b) so ...

If max or min at $c \in (a, b)$ then f'(c) = 0 .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof contd

If max AND min is at endpoints and not in interior,

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

then function constant and f' = 0 everywhere.

Example

Consider $f : [-\pi, \pi] \to \mathbb{R}$ defined by

$$f(x) = \sin(x)$$

What does Rolle's Theorem tell us?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example contd

Continuity

The sin function is conts everywhere, so in particular it is conts on $[-\pi, \pi]$.

Differentiability

The sin function is diffble everywhere, so in particular it is diffble on $(-\pi, \pi)$.

Example contd

We can apply Rolle's theorem There is a $c \in (-\pi, \pi)$ such that

$$f'(c) = 0$$

$$\cos(c) = 0$$

Mean value theorem

Theorem If f conts on [a, b] and diffble on (a, b), then there is a $c \in (a, b)$ so that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example contd

Continuity and differentiability

y is a polynomial function, so it is conts and diffble everywhere. In particular, it is conts on [-1,2] and diffble on (-1,2).
Example contd

Then the MVT implies that there is a $c \in [-1, 2]$ such that

$$y'(c) = \frac{y(2) - y(-1)}{2 - (-1)}$$
$$3c^2 + 4c - 1 = \frac{14 - 2}{3} = 4$$

Proof of MVT

Define function g by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof contd

g conts on [a, b] and diffble on (a, b)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why?

Proof contd

Proof contd

$$g(a) = f(a)-f(a)-\frac{f(b)-f(a)}{b-a}(a-a) = 0$$

$$g(b) = f(b)-f(a)-rac{f(b)-f(a)}{b-a}(b-a) = 0$$

Proof contd

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Rolle's theorem applies

Why?

Proof contd

Then there is some $c \in (a, b)$ so that

$$g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Proof contd

Then there is some $c \in (a, b)$ so that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about the speeding fine?

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

How does MVT apply?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Functions with zero derivative.

We saw that constant functions have derivative zero. Do any others?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

Suppose f conts on [a, b] and diffble on (a, b). Suppose f'(x) = 0, all x in (a, b).

Then f(a) = f(b).

Proof

MVT applies so there is a $c \in (a, b)$ so that

$$0 = f'(c) = \frac{f(b) - f(a)}{b - a} \Rightarrow f(b) = f(a)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Theorem

Suppose f conts on [a, b] and diffble on (a, b). Suppose f'(x) = 0, all x in (a, b).

Then f constant on [a, b].

Proof

Consider subinterval [a, y]Then f conts on [a, y] and diffble on (a, y)and f'(x) = 0 for all $x \in (a, y)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof contd

Apply lemma

f(y) = f(a)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Proof contd

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

But y is any point in (a, b) so f(x) = f(a)all x in (a, b).

Problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problems

Problem 1

Establish the identity

$$|\cos(a) - \cos(b)| \leq |a - b|$$

Problem 1 contd

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Consider cos on [a, b]

Conts on [a, b]?

Diffble on (a, b)?

Problem 1 contd

Apply MVT: There is a $c \in (a, b)$ so that

$$rac{\cos(b)-\cos(a)}{b-a} \;=\; -\sin(c)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Problem 1 contd

A little algebra

$$\cos(b) - \cos(a) = -\sin(c)(b - a)$$

 $|\cos(b) - \cos(a)| = |-\sin(c)||b - a|$
 $|\cos(b) - \cos(a)| \le |b - a|$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 $(\mathsf{as} \mid \mathsf{sin} \mid \leq 1)$

Problem 2

Can we apply the MVT to

 $f(x) = \frac{1}{x}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

on $\left[-1,1\right]$?

Problem 3

Can we apply the MVT to

$$f(x) \;=\; |x-5|$$
on $[-10,12]$?

Problem 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 + x$ Show that f is 1-1.

Problem contd

Proof by contradiction

We will suppose that f is not 1-1 and get a contradiction. Then it will follow that f is 1-1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem contd

Suppose f is not 1-1. Then there are $a, b \neq a \in \mathbb{R}$ such that

$$f(a)=f(b)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem contd

Check conditions for Rolle's thm f is a polynomial fn and so conts on [a, b] and diffble on (a, b) and f(a) = f(b).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Problem contd

Rolle's thm implies There is a $c \in (a, b)$ such that

$$f'(c) = 3c^2 + 1 = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem contd

Contradiction

$$3c^2 + 1 = 0$$

is a contradiction that arises from supposing f is not 1-1. We conclude that f is 1-1.

Problem 5

Problem Let $f : [a, b] \to \mathbb{R}$ be conts on [a, b] and diffble on (a, b). Let $f'(x) \neq 0$ for any $x \in (a, b)$. Then f is 1-1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem contd

Proof by contradiction

We will suppose that f is not 1-1 and get a contradiction. Then it will follow that f is 1-1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem contd

Suppose f is not 1-1. Then there are $c, d \neq c \in [a, b]$ such that

$$f(c)=f(d)$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Problem contd

Check conditions for Rolle's thm f is [a, b] and so conts on $[c, d] \subset [a, b]$. f us diffble on (a, b) and so diffble on $(c, d) \subset (a, b)$. And f(c) = f(d).

Problem contd

Rolle's thm implies There is a $k \in (c, d)$ such that

$$f'(k) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem contd

Contradiction

$$f'(k)=0$$

is a constradiction that arises from supposing f is not 1-1. We conclude that f is 1-1 on [a, b].

Problem 6

Problem

Let f be conts on [a, b], diffble on (a, b), and f'(x) > 0 on (a, b). Show that f is strictly increasing on [a, b].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
What do we need to show? Want to show that for $c, d > c \in (a, b)$ we have that

f(d) > f(c)

What do we know? f is conts on [a, b] and so conts on $[c, d] \subset [a, b]$. f is dffble on (a, b) and so diffble on $(c, d) \subset (a, b)$.

Apply the MVT There is a $k \in (c, d)$ such that

$$f'(k) = \frac{f(d) - f(c)}{d - c}$$

$$f(d)-f(c) = \underbrace{(d-c)}_{>0}\underbrace{f'(k)}_{>0} > 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem contd

Conclusion

As c and d > c arbitrary points of the domain of f, we conclude that f is strictly increasing.

Problem 7

Problem

Let f be conts on [a, b], diffble on (a, b), and $f'(x) \ge 0$ on (a, b). Show that f is increasing on [a, b].

Sketch of proof

Using the same approach as in the previous problem, we will get this time $f(d) - f(c) \ge 0$, so the function value is either the same or larger.

Problem 8

Problem

Let f be conts on [a, b], diffble on (a, b), and f'(x) < 0 on (a, b). Show that f is strictly decreasing on [a, b].

Problem contd

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sketch of proof Very similar to previous proof, with f(d) - f(c) < 0.

Problem 9

Problem

Let f be conts on [a, b], diffble on (a, b), and $f'(x) \le 0$ on (a, b). Show that f is decreasing on [a, b].