
A Low Latency and Consistent Cellular Control Plane
Mukhtiar Ahmad, Syed Usman Jafri, Azam Ikram, Wasiq Noor Ahmad Qasmi,

Muhammad Ali Nawazish, Zartash Afzal Uzmi, Zafar Ayyub Qazi
Department of Computer Science, SBASSE, LUMS, Pakistan

ABSTRACT
5G networks aim to provide ultra-low latency and higher reliability
to support emerging and near real-time applications such as aug-
mented and virtual reality, remote surgery, self-driving cars, and
multi-player online gaming. This imposes new requirements on the
design of cellular core networks. A key component of the cellular
core is the control plane. Time to complete control plane operations
(e.g. mobility handoff, service establishment) directly impacts the
delay experienced by end-user applications. In this paper, we design
Neutrino, a cellular control plane that provides users an abstraction
of reliable access to cellular services while ensuring lower latency.
Our testbed evaluations based on real cellular control traffic traces
show that Neutrino provides an improvement in control procedure
completion times by up to 3.1× without failures, and up to 5.6×
under control plane failures, over existing cellular core proposals.
We also show how these improvements translate into improving
end-user application performance: for AR/VR applications and self-
driving cars, Neutrino performs up to 2.5× and up to 2.8× better,
respectively, as compared to existing EPC.

CCS CONCEPTS
• Networks → Control path algorithms; Network protocol de-
sign; Middle boxes / network appliances; Wireless access points, base
stations and infrastructure; Network reliability;

KEYWORDS
Cellular Core, Control Plane, Consistency
ACM Reference Format:
Mukhtiar Ahmad, Syed Usman Jafri, Azam Ikram, Wasiq Noor Ahmad
Qasmi, Muhammad Ali Nawazish, Zartash Afzal Uzmi, Zafar Ayyub Qazi.
2020. A Low Latency and Consistent Cellular Control Plane. In Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communi-
cation (SIGCOMM ’20), August 10–14, 2020, Virtual Event, NY, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3387514.3406218

1 INTRODUCTION
The next-generation cellular networks are envisioned to support
emerging and near real-time applications such as augmented and
virtual reality, remote surgery, self-driving cars, cognitive assistance
apps, and multi-player online gaming. Such applications require
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3406218

higher reliability and ultra-low latency, in the order of 10ms [53].
Consequently, 5G networks are aiming to support Edge Comput-
ing [53], with edge applications hosted closer to the users [21–23].

This, in turn, requires cellular providers to evolve their cellular
core;1 a key part of the cellular network which connects the IP
backbone with the base stations and implements cellular-specific
processing on user’s control and data traffic. In existing cellular
deployments, the cellular core functions are typically deployed in
remote data centers which can cause path inflation [60, 62]. In 5G
and beyond, cellular providers are expected to move these core
functions to the edge (e.g., cell towers and central offices), resulting
in a highly distributed core network architecture [24, 38, 48].

We postulate that the main challenge in providing low latency
and reliable access with an edge-based core stems from the com-
plexity of the control plane in the cellular core; unlike the internet
control plane, the cellular control plane needs to keep dynamic state
for each user device to support mobility. The cellular control plane
regularly updates this user state to both establish and retain user’s
data access. The control plane establishes the user’s data access to
the internet or to other operator services by setting up the connec-
tivity session for each device. This process requires installing states
at the user device, base station, and core network elements. When
moving to another base station, the control plane is responsible for
retaining the data access by migrating the ongoing session states
to the user’s new location. Upon failures, the control plane needs
to recover or recreate the session state.

Prior work [37] has shown that the time taken by the cellular
control plane to process control traffic can have a direct impact on
the delay experienced by user applications, e.g., control functions
can contribute up to 1 s delay in session establishment. Moreover,
mobile devices frequently generate control traffic; on average a mo-
bile device generates a session establishment request every 106.9 s.
In addition, failures of control plane functions can exacerbate these
delays [14, 37], causing disruptions in data access [46].

To make matters worse, with 5G, the control traffic is expected
to increase rapidly [44, 47] because of (i) a shift to smaller cell sizes,
which will likely cause more mobility handoffs [13] and (ii) the
proliferation of IoT devices with high control to data traffic ratio
[35]. In addition, failures are expected to be commonplace in 5G
core networks; similar to large service provider networks [25], core
network deployments will be large and are increasingly based on
software-based network functions (NFs) running on commodity
hardware [24]. As a result, timely completion of control plane pro-
cedures in the presence of failures is going to be vital to provide
reliable and low latency data access to user applications.

We identify the following key challenges in an edge-based cellu-
lar core for providing reliable and low latency data access.

1Cellular packet core for 4G/LTE is called Evolved Packet Core (EPC) and for 5G
networks is referred to as 5G Core.

https://doi.org/10.1145/3387514.3406218
https://doi.org/10.1145/3387514.3406218

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Mukhtiar et al.

• UE-Core State inconsistency: Priorwork [37, 46, 56] has shown
that inconsistent user state, between the user equipment (UE)
and the core network, can cause significant disruptions in data
access for the users in 4G/LTE networks. We find that UE-Core in-
consistencies, and thus prolonged disruptions in data access, can
also occur in current 5G standardization proposals (§3). We also
find recent proposals for cellular control plane do not provide
consistency guarantees [14, 43] and, thus, offer no protection
against such disruptions in data access. We argue cellular control
plane needs to provide state consistency guarantees to provide
reliable data access. A key challenge in this regard is to design a
consistency protocol which provides fast failure recovery with
minimal failure-free overhead.

• Slow state updates: We show that one key reason for delays in
control traffic is slow processing of state updates between a user
device, base station, and cellular control plane. Existing 4G/LTE
networks and 5G proposals use ASN.1 [11, 20] for serializing
control updates. Our experiments on real control traffic traces
show that ASN.1 serialization can become a potential bottleneck
for latency-sensitive applications like real-time augmented and
virtual reality (§3).

• Frequent control handovers:Control handovers happenwhen
a user moves from one location domain to another, requiring
migration to a different control plane function (§3). A control han-
dover can cause significant delays in data access, up to 1.9 s [37].
In an edge-based cellular core, control handovers will happen
more frequently, making it important that these handovers be
completed quickly. A key challenge is to migrate user state
quickly to the appropriate control plane function.
To address the above challenges, we design, Neutrino, a cellular

control plane that provides users an abstraction of reliable access to
cellular services while ensuring lower latency. In designing Neutrino,
we synthesize several existing techniques in distributed systems.
Below, we describe the keys ideas in Neutrino:
• Consistent UE processing:We design a consistency protocol
that minimizes service disruption under failures by ensuring
that user devices are always able to receive Read your Writes
consistency[58]. The consistency protocol provides fast failure re-
covery and small failure-free overhead. It uses a primary-backup
state replication scheme, and consists of (i) per-procedure check-
pointing and non-blocking synchronization of state, (ii) fast in-
memory message logging, and (iii) a two-level failure recovery
protocol (§4.2).

• Fast serialization engine:We design a serialization scheme for
cellular state updates by optimizing FlatBuffers [28](§4.4). Our
scheme significantly speeds up the processing of state updates, by
up to 19.1× in comparison to ASN.1, while providing a relatively
smaller increase in bandwidth usage.

• Proactive geo-replication: We reduce the delay incurred in
control plane handovers by performing proactive geo-replication
of user state (§4.3). Our results show this can lead to 7× improve-
ment in completing control plane handovers.
We implement Neutrino, the redesigned cellular control func-

tions and control traffic aggregator nodes.2 It requires minimal
changes to base stations which, instead of ASN.1, use Neutrino’s
2These nodes act as front-end load balancers from base stations to cellular core [14].

Figure 1: 5G network architecture.

FlatBuffers-based serialization engine. In rolling out 5G deploy-
ments, carriers are expected to make major upgrades on base sta-
tions [13], hence, we expect upgrading the serialization engine
would not be a hindrance in adopting Neutrino.

We evaluate Neutrino’s performance by replaying real control
traffic traces through a DPDK-based traffic generator in our testbed.
Our results show an improvement in control procedure completion
times by up to 3.1× without failures, and up to 5.6× under control
plane failures, over existing EPC. Neutrino handles bursty IoT con-
trol traffic better than existing EPC, showing up to 2× improvement
in median control procedure times (§6.3 and §6.4). We also quantify
the impact of Neutrino on application performance: for AR/VR
applications and self-driving cars, Neutrino performs 2.5× and 2.8×
better, respectively, as compared to existing EPC. Neutrino also
improves video startup latency by up to 37× and reduces page load
times by 3.2× (§6.6). In comparison to recent proposals, Neutrino
performs 3.4× and 1.3× better than SkyCore [40] and DPCM [37],
respectively (§6.3). To motivate Neutrino’s design choices, we also
perform a factor analysis (§6.7).

2 BACKGROUND AND MOTIVATION
2.1 Cellular Network Architecture
Figure 1 shows a simplified 5G network architecture, consisting of
three main types of components: Base Stations (BS), Control Plane
Functions (CPF), and User Plane Functions (UPFs).3 This high-level
5G network architecture is similar to that in 4G/LTE wherein each
User Equipment (UE) is provided radio access via a nearby base
station. The user plane functions are responsible for delivering
data and voice traffic, over the core network infrastructure, to/from
the internet and operator’s multimedia services, respectively. The
control plane functions facilitate data delivery by providing support
for user mobility, session management, radio resource allocation,
and authentication.

The control plane establishes the user’s data access to the internet
or to other operator services by setting up the connectivity session
for each device. This process requires installing states at the user
device, the base station, and core network elements. When a user
moves closer to a new base station, a handover takes place during
which the control plane is responsible for retaining the data access
by migrating the ongoing session states to the user’s new location.

3In 5G nomenclature, the base station is referred to as the gNodeB or simply the gNB,
and the key control plane function which interfaces with the base stations, is called
Access and Mobility Management Function (AMF).

A Low Latency and Consistent Cellular Control Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

In the event of a failure, the control plane needs to recover or
recreate the session state.

To support user mobility over a wider area, the cellular deploy-
ments are divided into location domains.4 Each domain has multiple
BSs and UPFs, and is managed by a set of CPFs. When a user device
moves from one location domain to another, it triggers a control
handover to a different set of CPFs and UPFs.

2.2 Impact of Cellular Control Processing
The cellular control plane is critical in providing low latency data
access to mobile users. Prior studies have shown:
• Control plane latency directly impacts data latency: A 19-
month study [37] conducted across fourmajor US carriers, showed
that control functions contribute 72.5–999.6ms latency in session
establishment. The control handover can cause up to 1.9 s for the
delay in data access.

• Mobile devices frequently generate control traffic:The same
study showed that on-average a mobile device generates session
establishment request every 106.9 s. With high-mobility applica-
tions (like autonomous vehicles) and smaller cell sizes in 5G,5 we
would expect a rapid increase in the frequency of control traffic.

• Failures exacerbate control plane delays: Failures in the con-
trol plane can exacerbate these control plane delays [14, 37, 46],
causing up to 11 s delay in data access. These failures happen
rather frequently; 4-5% of the control connection requests expe-
rience some sort of failure [37].

2.3 Cellular Edge Applications
One of the key goals in 5G is to build support for Edge Computing
to enable latency-sensitive applications [23].6 Cellular providers
have already started testing/deploying edge applications:
• Edge-based video analytics: Verizon, has recently conducted
edge computing tests over its 5G network. It hosted anAI-powered
face recognition application inside its edge network. The test
consisted of transmitting video of a crowd over Verizon’s 5G net-
work to an edge application, which would scan the faces in that
crowd for potential matches against a database. The goal was to
show police could use edge computing functions to quickly find
someone in a crowd, rather than having to wait for that video to
be sent to a distant data center to be analyzed [38].

• Accelerating onlinemobile gaming: China mobile in partner-
ship with Tencent Cloud is providing accelerated online mobile
gaming experience through its 5G-based edge deployment [57].
Many multi-player online games (e.g., Fortnite) need sub-100ms
latency for smooth player control which can be hard to provide
with remote clouds.

• Real-time augmented/virtual reality (AR/VR): Typical dis-
plays on AR/VR devices have a refresh rate of between 60Hz and
90Hz which translates into delay budgets of 11.1ms and 16.7ms,
respectively. To enable real-time AR/VR, Verizon now provides
support for offloading mobile headsets’ graphical computations
to Verizon’s 5G wireless edge [34].

4Termed as tracking/registration area in 4G/5G.
55G base stations are expected to also support millimeter-wave and underutilized UHF
frequencies between 300MHz and 3GHz, leading to smaller cell sizes.
6This is referred in the 5G world as Multi-access Edge Computing (MEC).

Figure 2: An example scenario resulting in inconsistent user
state between the UE and core network.

To support edge applications, cellular core functions also need to be
provisioned at the edge. We consider a deployment model (details
provided in §4.3) where cellular core functions are hosted on the
edge: cell towers or central offices.7

3 CHALLENGES
In this section, we discuss the key challenges in providing low
latency and reliable access in an edge-based cellular control plane.

3.1 User State Inconsistency
A common strategy to provide fault tolerance in the cellular control
plane is to replicate the UE state across multiple CPFs [14]. With
partition tolerance, this replication strategy makes it impossible to
simultaneously provide availability and state consistency across
replicas (CAP Theorem). Given this fundamental constraint, recent
proposals [14, 43] on cellular control plane simply do not provide
any consistency guarantees. For example, SCALE [14] updates the
UE state on the replicas asynchronously, only when a UE transitions
from the connected state to an idle state. Between these transitions,
there can be many UE state changes, and, therefore, SCALE cannot
guarantee that a replica will always have the updated UE state. 5G
core system architecture as proposed in 3GPP also does not provide
any protocol to keep CPFs consistent [8].

Sacrificing consistency in UE state across replicas leads to an in-
consistent user state between the UE and the core network, causing
major delays [46, 56]. We use Figure 2 and illustrate this through
the following example:
(1) UE attaches to the network by executing an Initial Attach pro-

cedure8 on the CPF through the base station.
(2) After the completion of the Initial Attach procedure, and before

updating the UE state at the replica, the CPF fails.
(3) At this stage, the user state at the UE is Attached whereas it is

Not Attached at the core network.
(4) At the stage, if the user receives a voice call or downlink data,

the core network will not be able to send it to the UE.
(5) The UE will get the connectivity back when it either re-executes

Attach or sends a location update message and it fails.
A similar case in the context of 4G/LTE networks was observed

in [46] leading to the UE not having data access for several minutes.
An important point to note is that in case of a CPF failure, a UE

7Telecom providers have many small central offices that were traditionally used to host
switching equipment and serve as aggregation points. These are now being considered
to host edge applications and core functions [38, 39].
8Refers to a sequence of request/response control messages between the UE/BS and
CPF to create necessary UE control state.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Mukhtiar et al.

Figure 3: Page load time and video startup delay.

can be used to recreate a consistent UE state at the core network
by issuing a Re-Attach request [37].

3.2 Slow State Updates
We show that one key reason for the slow processing of state up-
dates between a user device, base station, and cellular control plane
in 5G and existing 4G/LTE is the slow serialization of control mes-
sages. Control messages between the UE/BS and CPF are serialized
using ASN.1 [11]. Our experiments on real control traffic traces
show that ASN.1 serializing can become a potential source of a bot-
tleneck in edge-based cellular core deployments.9 Figure 3 shows
the impact of using a faster serialization on video startup delay and
page load times. We observe that by changing the serialization, we
could significantly improve page video startup delay (up to 37×)
and page load time (up to 3.2×).10

ASN.1 is used in cellular networks because it provides (i) back-
ward compatibility with existing cellular networks and (ii) small
encodedmessage size, however, it is very slow at encoding/decoding
cellular control messages. Our analysis of cellular control messages
based on 3GPP standard [11] and real control traces [45] shows that
a single control message can consist of multiple elements and the
data in these messages is organized hierarchically, with potentially
multiple nested elements. When decoding these messages, ASN.1
has to (i) traverse all the previous bytes before accessing a field
and (ii) perform additional memory allocations during decoding,
increasing the overall processing time.

3.3 Frequent Control Plane Handovers
An edge-based cellular deployment will be highly geo-distributed.
As UEs can be mobile, one challenge is to ensure that the UEs are
mapped to close-by edge nodes to ensure low latency. However,
if done naively,11 this can also introduce frequent CPF handovers,
causing extra delays in the processing of control traffic. Control
handovers are known to cause significant delays in data access [37],
often unacceptable for latency sensitive applications. In our experi-
ments with a self driving car application, we observe that during
control handovers, up to 90% of the application deadlines can be
missed (§6.6).

4 DESIGN
To address the challenges in section §3, we design, Neutrino, a new
cellular control plane. In this section, we first describe our goals
in designing Neutrino and the resulting approach (§4.1). We then
describe in detail (i) the design of Neutrino’s consistency protocol
9We used Packed Encoding Rules (PER) of ASN.1 in our experiments.
10For details regarding the experimental setup, please refer to §6.
11For example, always mapping the UE to the closest edge node.

that provides reliable state access by guaranteeing Read your Writes
to every mobile user, while incurring little overhead (§4.2), (ii) the
design of a proactive geo-replication scheme that helps in reduc-
ing the delay in control handovers (§4.3), and (iii) the design of a
serialization scheme that speeds up user state updates (§4.4).

4.1 Design Goals and Approach
The primary goal driving the design of Neutrino is to provide low
control plane latency to support latency-sensitive applications
in an edge-based cellular core. Neutrino aims to provide low la-
tency under (i) normal scenarios without any failures, (ii) with CPF
failures, and (iii) in scenarios with frequent control handovers. Neu-
trino aims to provide the UEs with consistent processing under
failures: any CPF replica processing a UE traffic, always operates on
the latest UE state, guaranteeing “Read your Writes” consistency to
the mobile client. Also, Neutrino’s performance should scale well
with the number of devices and the volume of the signaling traffic.

Below, we provide an overview of the key ideas behind Neu-
trino’s design:

• Replication with Two-levels of Failure Recovery:
– Replicated UE State Store: In Neutrino, UE control state is repli-
cated to provide fault tolerance. We use a primary-backup
scheme. The replicas are updated asynchronously, resulting
in non-blocking, thus fast execution of control updates in the
non-failure case. The motivation is to add minimal delay on the
critical path of control traffic processing. Replicas are updated
after the completion of every control procedure. However, as
our synchronization protocol is non-blocking it does not ensure
that replicas are always consistent.

– Two-level Failure Recovery: To ensure consistent processing of
UE traffic, we provide two levels of failure recovery. We keep
an in-memory log of control messages at the control traffic
aggregator node, and in the event of a CPF failure, if a replica
CPF is not up to date, we replay these messages at the replica
CPF to reconstruct the lost state. In the event of a CTA failure,
the UE Re-Attaches to the network through a new CTA and
recreates a consistent UE state at a new CPF.

• Proactive Geo-Replication: To minimize overheads of control
handovers, we use proactive structured geo-replication, building
on the idea of Geographical Hash Tables [52]. The key idea is
to proactively replicate user state in a wider geographical area,
to reduce the overhead of a UE moving from one geographical
region to another. Neutrino implements this idea by using mul-
tiple consistent hash rings; these rings represent progressively
larger geographical regions, and proactively replicates UE state
in a CPF in a larger region to minimize control handover delays.
We describe the detailed procedure in §4.3.

• Fast Serialization Engine: In §3, we showed that slow control
updates can become a bottleneck in enabling latency-sensitive ap-
plications in an edge-based cellular core deployment. We show in
§6.7.4, multiple existing serialization schemes provide faster con-
trol message processing than ASN.1; we evaluate FlexBuffer [26],
Protocol Buffers [27], Fast-CDR [3], LCM [5], and FlatBuffers [28]
with ASN.1 [1]. We observe that FlatBuffers provides the best
trade-off in terms of performance and expressiveness. It signif-
icantly speeds-up message processing time and can be used to

A Low Latency and Consistent Cellular Control Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

FlatBuffers-based
 (de)/serialization

In-Memory
Log

Load
Balancer

FBs based
Serialization Engine

Per
Procedure
CPF State
Syncing

Primary Control
Plane Function

(CPF)

CPF Replicas

Control Traffic Aggregator
(CTA)

BSUE

Figure 4: Neutrino’s system architecture diagram.

express different types of control messages, e.g., cellular control
message widely use unions and unsigned data types which are
not supported by LCM. However, for cellular control messages,
the encoded message sizes in FlatBuffers can be significantly
larger than ASN.1 messages. To address this issue, we optimize
FlatBuffers for cellular control traffic, resulting in lower encoded
message sizes and slightly faster message processing times. We
describe these optimizations in §4.4.

Resultant Architecture: Neutrino is an edge-based cellular core
design, which re-architects the implementation of the key cellular
control plane entity; referred to as Mobility Management Entity
in 4G/LTE packet core [10], and Access and Mobility Management
Function (AMF) and Session Management Function (SMF) in 5G [8].
We introduce Control Traffic Aggregator (CTA), a new addition in
our design, which is similar to a front-end load balancer between
the BS and control plane. Besides acting as a load balancer, the CTA,
in addition, helps in maintaining the state consistency. In existing
architectures, either front-end load balancers [14, 43] or the BS
itself implements load balancing [7] for control traffic, however
there is no support for state consistency.

BSs directly connect to the CTA. The CTA is responsible for (i)
message logging, (ii) forwarding traffic to/from appropriate CPF,
and (iii) CPF failure detection and recovery. CPF is the key con-
trol plane entity which (i) stores and updates user state based on
requests from the UE/BS, (ii) creates, deletes and modifies data
sessions on the key data plane entity UPF (User Plane Function),
(iii) handles UE registration and mobility across the BSs and (iv)
check-points user state on the replica CPF(s) upon procedure com-
pletion. UE’s requests are served by one CPF at a time which is
called primary CPF. An up-to-date CPF replica becomes primary
in case the primary CPF fails. Figure 4 shows the overall flow of
control traffic inNeutrino. BSs route control traffic to a nearby CTA.
CTAs are responsible for mapping requests from UEs to a CPF, and
routing responses back to the UE.

4.2 Consistency Protocol
User equipment (UE) is served by a single CPF at a time. This CPF
is responsible for updating and storing the UE state (which includes
the BS ID, data plane endpoint identifiers, and user tracking area).
UE state updates are mainly originated from the UE (or a BS on
behalf of the UE) and executed by the CPF and propagated to the
rest of the network functions (NFs). These updates are generally

in the form of request/response message patterns. Control proce-
dures such as service establishment and handover to another BS are
composed of several control messages.

4.2.1 UE State Consistency. The UE state between the UE and
CPF needs to be consistent (see section 3.1). For example, UE and
CPF should have the same copy of the tracking area list [11], oth-
erwise, the core network (CN) may not be able to page or deliver
downlink data to the UE. This state consistency requirement for a
UE in a cellular system maps to Read your Writes consistency: The
effect of an update operation by a process (UE) on a data item 𝑥 (UE
state) will always be seen by a successive read operation on 𝑥 by the
same process (same UE) [15, 16, 19, 58, 59].

If the state of a UE is maintained at just one CPF, the Read your
Writes consistency is readily maintained. This is because, even if
the CPF fails, the control messages never have to operate on stale
data. In this case, the CPF failure event forces the UE to Re-Attach
and recreate a consistent UE state [37]. It may be noted that even
though Re-Attach is a valid option in the existing cellular systems
to maintain consistency, it can lead to long delays in data access.

4.2.2 Consistency versus Availability. To increase the availability,
our design allows replication of the UE state from the primary CPF
onto 𝑁 backup CPFs. A backup CPF takes over when the primary
CPF fails and, therefore, the replicated UE state on the backup CPFs
should remain consistent with that on the primary CPF.

If the state replication amongst the CPFs (from primary to back-
ups) is done synchronously, it will lead to failure-free overheads (in
terms of extra delays12) in the control plane, undermining the origi-
nal design goal. Therefore, Neutrino chooses asynchronous updates
of the UE state. Whenever a control procedure completes at the
primary CPF, we replicate the user state onto the backup CPFs. We
pick per-procedure state synchronization because it adds a smaller
delay in the Procedure Completion Times (PCT) as compared to
per-message synchronization (depicted in Figure15).

4.2.3 The CTA Message Log. Since the UE state updates from
the primary CPF to the backup CPFs are asynchronous, there is
no inherent consistency guarantee (similar to SCALE [14], also
see section 3.1). Thus, there may be a case that on the failure of a
primary CPF, none of the backup CPFs are up-to-date. In such a
situation, Read your Writes consistency is ensured by maintaining
a temporary message log at the control traffic aggregator (CTA).
The complete process is as follows:

(1) On receiving each control message, the CTA associates with
it a logical clock (for tracking all messages and keeping those
in order) and writes it to volatile memory. After appending
the logical clock to the message, it is also forwarded to the
primary CPF.

(2) When a control procedure completes, the primary CPF sends
state updates, for the particular UE, to all the backup CPFs
along with the logical clock of the last message of the pro-
cedure; this logical clock is used to identify the end of a
particular procedure in the log.

(3) Every replica node (backup CPFs) sends an ACK to the CTA
after successful state synchronization. Reception of the ACK

12The primary CPF would block the state write acknowledgement and, therefore, will
not be able to timely respond to the control plane messages from the UE/BS.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Mukhtiar et al.

at the CTA ensures that the backup replica has up-to-date
state for the UE which can be used to serve the UE in the
event the primary CPF fails.

(4) CTA stores the ACK received from all the replicas with the
last message of the procedure in the store.

To keep the CTA message log size in check, the CTA periodically
scans the message store and prunes all the messages corresponding
to a procedure for which ACKs have been received from all the
backup CPFs.

4.2.4 Out-of-date Backup CPFs. We now describe the process
of marking a UE state as outdated in a replica.

(1) The CTA periodically scans the last message of every proce-
dure in the log store and if:

(a) An ACK is not received from one or multiple replicas for a
configurable timeout (e.g., 30 seconds in our case, because
procedure completion times are at most a few seconds),
it informs the corresponding replica(s) that the particular
UE’s state is outdated and also provides (i) the list of CPFs
(if exists) having up-to-date UE’s state, and (ii) the logical
clock associated with the last message of the procedure
(this is used to ignore the reception of outdated state).

(b) Replica(s) mark the state of the particular UE outdated.
(c) If a CPF is successful in fetching up-to-date UE’s state

from the list of CPFs provided by the CTA, it marks UE’s
state up-to-date.

(d) CTA deletes all the messages belonging to this procedure.
(2) If a replica receives state update for a UE, which was pre-

viously marked outdated, UE’s state in the CPF is marked
up-to-date.

(3) If a CPF receives a request from a UE for which it does not
have an up-to-date state, UE is asked to Re-Attach.

(4) If a second control procedure starts for a UE for which ACK
is not received from one or multiple replicas, CTA informs
the corresponding replica(s) that the UE’s state is outdated
and provides a list of CPFs having an up-to-date state.

4.2.5 Consistency and Failure Recovery. We describe the recov-
ery process under each of the failure scenarios enumerated below
(also depicted in Figure 5).
Failure Scenario 1 (Primary fails - backup up-to-date): In this
scenario, primary CPF fails, however, there exists a backup replica
which has successfully synchronized with the primary CPF on the
completion of the last procedure for the UE. In addition, there are no
ongoing procedures from the UE. In this case, the back-up replica
is up-to-date and satisfies Read your Write consistency.
Failure Scenario 2 (Primary fails -message replay onbackup):
Primary CPF fails while there is an ongoing procedure from the
UE. However, the backup replica has successfully synchronized
with primary on completion of the previous procedure. In this case,
the CTA replays all the stored messages on the back-up replica
to make it up-to-date before serving the UE. After the messages
are replayed, the backup replica is up-to-date, and Read your Write
consistency is maintained.
Failure Scenario 3 (Primary fails - all replicas out-of-sync):
Primary CPF fails while no backup replica exists for the UE which

Out-of-date Up-to-date Failed

(a) Failure scenarios 1 and 2

Primary BackupUE CTA

(b) Failure scenario 3

(c) Failure scenario 4

BS

Figure 5: Failure scenarios.

was synchronized with the primary on previous procedure comple-
tion. In this case, we avoid the UE from operating in an outdated
state. Instead, we recreate a consistent UE state at the CPF, by
asking the UE to execute the Re-Attach procedure. The Re-Attach
procedure constructs consistent UE state, and any subsequent reads
operate on this state, hence satisfying Read your Writes consistency.
Failure Scenario 4 (CTA fails): In this case, the failure recovery
procedure is similar to one used in failure scenario 3. When a CTA
fails, the UE executes the Re-Attach procedure, through a new CTA,
creating (i) fresh state for the UE at new CPF(s) and (ii) a mapping
of the UE to a specific CPF on the new CTA.

In failure scenarios 1 and 2, Neutrino completely masks failure
from the UE. In failure scenario 3, we do not have an up-to-date
state for the UE in the core network. However, we prevent the UE
from operating on an outdated state, thus maintaining Read your
Writes consistency. However, as UE is asked to Re-Attach, this can
impact application performance because of the time required to
execute Re-Attach, as shown in Figure 9. As we do not backup CTA
state, recovery in failure scenario 4 is exactly similar to that of
scenario 3. In summary, Neutrino provides consistency in all the
above failure scenarios and significantly improves delay to recover
from failures in scenarios 1 and 2.

4.3 Proactive Geo-replication
As discussed in the previous section, a single CPF serves as a pri-
mary for each UE, and the state is replicated on N number of backup
replica(s). In this section, we discuss how this state can be used to
expedite handovers.

We first discuss our deployment model. Figure 6 shows our de-
ployment model. We divide the deployment area into regions. The
unit region, which we call the level-1 region, consists of multiple
BSs, one CTA, and a pool of CPFs.13 There are multiple options for
deploying CTA and CPFs. One option is co-locating the CTA with
the pool of CPFs (e.g., in a central office) which would serve all the
BSs in a level-1 region. Another option is deploying CTA and CPFs
on different edge nodes (e.g., combination of central towers and
13As a CTA also performs load balancing of the control traffic from the BSs, deploying
a CTA at each BS is not a viable option.

A Low Latency and Consistent Cellular Control Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

(a) (b)

CTA-5
BS_05

BS_01

BS_02
BS_03

BS_06

BS_10BS_09BS_08

BS_07

CTA-4

BS_16

BS_11
BS_12

BS_13

BS_14

BS_15

BS_19

BS_18

BS_30

R5 R4

CPF Pool

CPF Pool

Level-2 Region

Level-1 Region

R5 R4

R8 R9

Figure 6: Deployment model. Left (a) shows regions defined
through geo-hashing, and Right (b) zooms into two sub-
regions containing CTAs and CPFs.
central office). For our evaluation, we assume CTA is co-located
with the CPFs serving a region. This option simplifies deployment,
and provides potentially lower propagation delays.

We assign each level 1 a geo-hash [4]. Each character in the
geo-hash represents two bits (one bit for GPS longitude and one
for latitude). If we take one character off from the geo-hash, we get
a geo-hash which points to a four times bigger region which we
call level-2 region. Geo-hash is not an essential requirement in our
design and the operator can manually define these regions however
our existing implementation is based on geo-hashes. Figure 6 (a)
shows four level-1 regions (R5, R4, R8, and R9). All these four
regions are collectively called the level-2 region. Figure 6 (b) shows
our deployment model.
Multiple consistent hash rings: BSs route control traffic to the
nearest CTA module. Each CTA implements two consistent hash
rings; (i) level-1 hash ring consists of all the CPFs in the level-
1 region and (ii) level-2 hash ring includes all the CPFs in the
level-2 region.14 When CTA receives a control message from the
UE, it extracts a unique user ID,15 and hashes it to the level-1
ring to determine the primary CPF for the UE. When a control
procedure completes, the primary CPF replicates the user state on
N consecutive replicas on a level-2 ring (not included in the level-1
ring) based on the hash of the user’s ID. For example, if in Figure
6(a), a user is served by a CPF in the R5 region, its state will be
replicated on any N replicas from region R5, R8, or R9 based on the
hash of the user ID. Replicating state in other regions has certain
advantages, which include, (i) when handing over to a BS in the
nearby region, the user may find up-to-date state already present,
and (ii) different regions may have different failure modes. Based
on the description of the regions, we implement the following types
of handovers.
Intra-region hand-over: If a UE moves from one BS to another
BS within the same level-1 region in Neutrino, no CPF handover
is required. Consider the example of the deployment described in
Figure 6(b). If a UE move across the BSs within level-1 region where
CTA of the source and target cell remains the same, e.g. from BS_02
to BS_06 in region R5, the CPF serving the UE does not change
14One can potentially implement more than 2 consistent hash rings, however, there
are tradeoffs. We leave this exploration for future work.
15We specifically use MME-temporary mobile subscriber identity (M-TMSI) when the
UE is in idle state and the unique S1AP identifier for the UE in MME, when the UE
is active. Similar to [31], CTA assigns these two identifiers the same value for a UE
during the initial attach procedure.

therefore no state migration is required. Such handovers are fast
because only BS change is required without any UE state migration
between CPFs.
Inter-CPF hand-over: Inter-CPF handover in the 4G/LTE system
is costly in terms of latency as the UE state needs to be migrated
to the target CPF. In edge deployment, where CPFs will be placed
closer to the UEs, the frequency of inter-CPF handovers will in-
crease.Neutrino provides a mechanism for faster handover between
the CPFs by proactively replicating UE’s state in the target region.

Consider the following example from the deployment scenario
in Figure 6(b). A UE moves across the level-1 regions where CTA of
the source cell is different from the target cell; e.g., a UE moves from
BS_10 (R5, CTA-5) to BS_30 (R4, CTA-4). When BS_10 determines
that handover (HO) to the target BS_30 is required and both BSs are
sharing the same level-2 rings, UE state migration before the HO
can be avoided. This is because Neutrino already keeps the state
of each UE on a CPF replica in the level-2 ring. We call such a HO,
Fast Handover.

4.4 Serialization Engine
We observe that FlatBuffers [28] provides the best trade-off in terms
of performance and expressiveness. It significantly speeds-up mes-
sage processing times and can represent different types of control
messages, e.g., we observed cellular control message widely use
unions and unsigned data types which are not supported by LCM.
FlatBuffers (FBs) is fast because it provides (i) direct access to inner
fields via pointers during decoding and (ii) needs no additional
memory allocation during encoding.

However, the performance benefits of FBs come at a cost: large
encoded message size. To provide fast access to inner fields, the
FBs compiler couples a vtable containing pointers with each table
containing data elements. The pointers in the vtable contain byte
offsets which are used to directly access a field in the encoded
message. While this speeds up the decoding time, these vtables
contribute significantly to the encoded message size. ASN.1 PER
on the hand follows a Length-Value encoding scheme and simply
couples the length of a table with its contents (also encoded as
Length-Value pairs). Hence resulting in a smaller encoded buffer
size as compared to FBs.
Optimizing FlatBuffers: Cellular control messages16 makes wide
use of unions containing single data elements. However, FBs only
supports tables in unions. When a single field needs to be added
to a union, it first has to be wrapped in a table. This is inefficient
because this wrapping generates a vtable for the single field. Since
the union contains a single field, traversal using the vtable pointers
is unnecessary. Ideally, we should be able to directly access the
single field. To address this issue, we introduced a new data type,
named svtable, that generates less metadata for single-value fields
in unions. Our optimization reduces 10 bytes for single scalar fields
in unions and 14 bytes for single variable length fields in tables
while also reducing the encoding and decoding times (see Figure 19
and 20). Other possible optimizations, include, introducing a bit
string data type (since FBs currently only supports byte strings) and
variable-length data types, e.g., an integer in FBs is always encoded
in 4 bytes, even if it could be represented using fewer bytes.

16Specifically, message part of the S1AP protocol and NGAP protocol.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Mukhtiar et al.

5 IMPLEMENTATION
We have implemented Neutrino and all supporting components
and functions in C/C++ programming language. A summary of our
implementation is given below:
TrafficGenerator: Our traffic generator emulates both UE and BS;
it is based on DPDK (v 2.2 [2]) for fast I/O operations and is similar
to the traffic generator used in [50]. It replays real cellular control
traffic traces [45] and is also capable of serializing those control
messages using ASN.1 and our modified serialization scheme. In our
implementation, the base station communicates with the CTA using
S1AP—the protocol currently used in 4G/LTE networks between
the base stations and control plane functions.17
Message De/Serialization: We implemented the message serial-
ization (both ASN.1 and our FlatBuffers-basedmodified serialization
scheme) for all the control messages included in all the control pro-
cedures supported by our CPF implementation (see below). The
ASN.1 compiler we used is the same as used for OpenAirInter-
face [49], while the implementation of our serialization code is built
upon an open-source implementation of FlatBuffers [28].
Geo-Replication: For geo-replication, we implemented 2 bits per
character version of the Geo Hashing similar to the one used in [4],
thus causing a four-fold increase/decrease in the region size with
each character.
Control Traffic Aggregator: Our CTA module receives control
traffic from the BS through a custom DPDK application. A producer
thread reads packets from the NIC to ring buffers shared with
multiple consumer threads. Consumer threads read packets from
the shared ring buffers and transmit those to a CPF instance that is
selected based on the UE ID in the packet. We have implemented a
message logging module at the CTA using the standard C++ STL
map container. We have also implemented a consistent hashing
based load balancing scheme within the CTA, obviating the need
for separate load balancers.
Control Plane Function: Our CPF implementation supports the
following four control procedures: (i) initial attach, (ii) handover
with CPF change (iii) FastHandover and (iv) service request. To co-
ordinate various control procedures, we have implemented state
machines at both the CPF and the traffic generator. Our CPF im-
plementation also includes the module responsible for state repli-
cation. All experiments and evaluations are performed with five
CPF instances, each running on two CPU cores (one for processing
requests and the second one for state synchronization).

6 EVALUATION
In this section, we show the following:
(1) Impact on control procedure completion times: Neutrino

performs 2.3×, 3.4×, and 1.3× better in median PCT than exist-
ing EPC, SkyCore, and DPCM respectively.

(2) Impact under failures: In the case of CPF failure, it reduces
median PCT by 5.6× as compared to the existing EPC.

(3) Impact on control handovers: Neutrino improves handover
with CPF change by up to 3.1× in the median PCT. Neutrino
also implements a FastHandover which expedites handover op-
eration with proactive replication by up to 7×.

17A similar protocol is also used in 5G networks.

(4) Impact on data applications: Our evaluation shows the im-
pact of frequent mobility on a self-driving car and AR appli-
cation. We also evaluate impact on web browsing and video
streaming applications.

(5) FactorAnalysis:To better understandNeutrino’s design choices
and separate the benefits of Neutrino’s different design ideas,
we perform a series of micro-benchmarks. These include (i)
comparison with different state synchronization schemes, (ii)
overhead of message logging and (iii) comparison of different
serialization techniques, to motivate the choice of FlatBuffers.

6.1 Setup and Methodology
Our test setup consists of two servers running Ubuntu 18.04.3
with kernel 4.15.0-74-generic. Each server is a dual-socket with
18 cores per socket, IntelXeon(R) Gold 5220 CPU @ 2.20GHz, and
dual NUMA nodes having total memory 128GB. Both servers are
also equipped with Intel X710 40 Gb (4 x 10) NIC. For testing control
traffic, we use an implementation of the S1AP andNAS protocol [50]
and implement the handling of request and response messages be-
tween the UE/BS and CPF for different control procedures. These
experiments are run with real signaling traces from a commercial
traffic generator and RAN emulator from ng4T [45]. We generate
two different types of traffic patterns: (i) 10Gbps bursty traffic to
emulate a large number of IoT devices sending requests in a syn-
chronized pattern, and (ii) uniform traffic to emulate a pre-specified
number of control procedure requests per second. We run all ex-
periments for 60 s.

6.2 Baselines
We compare the performance of Neutrino against the following
designs:
Existing EPC: It is a modified version of the OpenAirInterface
[49] codebase, uses ASN.1 based serialization, and requires UEs to
Re-Attach on a CPF failure. Instead of kernel sockets, existing EPC
uses DPDK [2] for fast I/O operations.
Neutrino: It is a modified version of the existing EPC which (i)
uses optimized FlatBuffers-based serialization instead of ASN.1, (ii)
uses fast failure recovery as in §4.2 and (iii) performs structured
state replication.
DPCM: It is the same as existing EPC except control procedures
are modified (BS receives state from the UE) as described in [61].
SkyCore: It is also a modified version of the existing EPC which
synchronizes user state on each control message [40].
Next, we discuss the key evaluation results.

6.3 Latency Improvements in Procedure
Completion Time (PCT) with Neutrino

This section presents PCT for attach, handover, and service
request procedures in the non-failure scenario.
PCT - uniform traffic: Figure 7 shows service request PCT com-
parison of the existing EPC, DPCM, and SkyCore with Neutrino.
The figure shows that for uniform traffic rate of up to 120K Pro-
cedures Per Second (PPS), Neutrino performs 2.3×, 1.3×, and 3.4×
better than the existing EPC, DPCM, and SkyCore, respectively.
Onward 140 KPPS, existing EPC, and SkyCore are unable to handle
the arrival rate, resulting in a drastic increase in PCT. At 200 KPPS

A Low Latency and Consistent Cellular Control Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Figure 7: Impact in control procedure completion times.

Figure 8: attach PCT by a varying number of procedures per
second with uniform traffic.

and higher rates, PCT drastically increases for all the schemes but
Neutrino still performs better as compared to the other schemes.

We perform initial attach and handover PCT experiments
with uniform control traffic. Figure 8 shows PCT distribution for
the initial attach procedure. The figure shows that till 60 KPPS,
Neutrino performs up to 2.3× better than the existing EPC in me-
dian PCT. Onward 60KPPS, existing EPC fails to meet the arrival
rate of the requests and queue starts building up. We called this re-
gion, existing EPC’s saturation region. In existing EPC’s saturation
region, the median PCT for existing EPC drastically increases while
it remains low for Neutrino. Onward 120 KPPS, Neutrino is unable
to meet the message arrival rate and the queue builds up. We call
this Neutrino’s saturation region. In this region, Neutrino performs
up to 3.4× better than the existing EPC in terms of median PCT.
Neutrino can better meet high arrival rates as compared to all other
schemes. In all these cases, the primary source of improvement is
Neutrino’s fast message serialization.
PCT - Bursty Traffic: Figure 9 shows PCT distribution for an
initial attach procedure with varying number of active UEs,
when using Neutrino and existing EPC. Due to the high arrival rate
for bursty traffic model, queues immediately build-up for both Neu-
trino and existing EPC. The figure shows that Neutrino performs
up to 2× better than the existing EPC for a bursty traffic model.

Figure 9: attach PCT with a varying number of active users
with bursty control traffic.

Figure 10: handover PCT under failure with varying number
of active users with uniform traffic.

6.4 PCT under failure with Neutrino
We conduct experiments with CPF failures for both Neutrino and
existing EPC. PCT under failure for existing EPC includes the time
taken by the UE in executing the procedure before the failure, as
well as the time taken to re-attach to another CPF after the failure.
In the case of Neutrino, PCT under failure includes the time taken
by the UE to execute the procedure before the failure and the time
secondary CPF takes to replay the stored messages to recover the
lost user state. In both cases, PCT does not include failure detection
time.

Figure 10 shows PCT distribution under CPF failure for handover
procedure with uniform traffic. We observe an improvement of up
to 5.6× in median PCT when the procedure arrival rate is less than
60 KPPS. In addition, to faster serialization, this improvement is at-
tributed to faster state recovery in Neutrino. Instead of re-attaching
the UE on a CPF failure, CTA module sends logged messages to
the replica CPF, which then replays them to reconstruct the state
updates, saving multiple RTTs.

6.5 Fast Handover in Neutrino
Figure 11 shows the comparison of the PCT for handover in ex-
isting EPC, Neutrino - Default (in this case, user state migration
is required before handover completion) and Neutrino - Proactive
(user state is proactively replicated in the target region to imple-
ment Fast handover, as discussed in section 4.3). The Figure shows

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Mukhtiar et al.

Figure 11: Fast handover procedure completion times with
uniform traffic.

Figure 12: An example scenario of frequent control han-
dovers with high mobility applications in an edge-based cel-
lular core.

that Neutrino - Proactive improves median PCT by up to 7× over
existing EPC, when the procedure arrival rate is less than 60 KPPS.
Above 60 KPPS, existing EPC is unable to meet the arrival rate, and
PCT increases drastically.

6.6 Impact on application performance
To measure the impact of Neutrino on application performance,
we interface Intel’s 5G UPF [29] with Neutrino. A UE connected to
Neutrino can create a new session, delete an existing session, and
modify existing bearer on the UPF through S11 interface [9].

To measure the impact of mobility on the application perfor-
mance, we set up the client application (on UE) with CARLA self-
driving car emulator [17, 18] and an edge application that processes
sensors’ data. Experiments are performed in two scenarios; (i) while
executing a single handover and (ii) executing multiple handovers
during a 5 minutes drive at 60mph with the BS spacing similar to
Figure 12. In both scenarios, we set a deadline for the application
data. We generate sensor data at a frequency of 1KHz in the up-
link direction. At the edge application, we note the the number of
packets which missed their application-specific deadline.
Impact on autonomous vehicles and AR/VR: The time budget
for a self-driving car to make a decision based on sensors’ data
is in the order of 100ms [55]. Figure 13 shows in both single and
multiple handover scenarios, Neutrino performs up to 2.8× better
than the existing EPC.

Virtual reality (VR) applications, that use head-tracked systems,
require a latency of less than 16ms [53] to achieve perceptual

Figure 13: Effect of mobility (LHS: single HO, RHS: multiple
HOs) on a self-driving car.

Figure 14: Effect of mobility (LHS: single HO, RHS: multiple
HOs) on VR application.

stability. We measure the number of application packets that miss
the VR deadline requirement in both single and multiple mobility
scenarios. Figure 14 shows that Neutrino performs up 2.5× better
than the existing EPC.
Impact on video startup latency and page load: The second
set of experiments are for a stationary UE, in idle state, starting a
web browsing or video streaming application. To get data access,
UE needs to execute service request procedure to set up a data
channel for the application. Application startup latency in this
scenario is a function of service request PCT. This experiment
measures the average (i) video startup delay and (ii) page load
time (PLT). To avoid network variation in the video startup delay,
Apache webserver replays locally stored videos. Video startup delay
is measured using DASH player. Figure 3 shows a video startup
delay comparison between the Neutrino and existing EPC while
CPF is handling a varying number of active users. The Figure shows
that Neutrino performs up to 37× better than existing EPC in terms
of median video startup delay. Page load time is equal to (i) service
request PCT plus (ii) average page load time of the top 10 Alexa
pages. To filter out network variations, MITM proxy [6] is used to
replay locally stored web pages. A Firefox web browser extension
Load Time is used to measure page load time. Figure 3 shows that
Neutrino performs up to 3.2× better than the existing EPC in terms
of median PLT.

6.7 Factor Analysis
Below, we discuss the results of our micro-benchmark experiments.

6.7.1 Impact of state synchronization on PCT. We compare the
overhead of different replica synchronization schemes on control
plane latency. Figure 15 shows the attach PCT distribution for
three different schemes; (i) No Rep: no message logging and state
replication, (ii) Per Msg Rep: with message logging and per-message
state replication and (iii) Per Proc Rep: with message logging and
per procedure state replication. Figure 15 shows that per-message
state replication has the highest median PCT, due to frequent state
locking for check-pointing. Per-procedure state replication has a

A Low Latency and Consistent Cellular Control Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Figure 15: Effect of state synchronization on attach PCT.

Figure 16: Impact of message logging on attach PCT.

Figure 17: Log size variationwith the number of active users.

slightly higher median PCT as compared to No Rep, but it provides
the best trade-off between consistency and overhead in PCT.

6.7.2 Impact of message logging on PCT. We performed attach
procedure with and without message logging enabled. Figure 16
shows PCT distribution for the attach procedure. The figure shows
message logging has a negligible impact on the PCT in Neutrino
and the reason is in-memory logging is fast.

6.7.3 Message log size at the CTA. Figure 17 shows the maxi-
mum log size at CTA with varying total number of active users
and the type of procedures being performed with per-procedure
synchronization. The figure shows log size grows by increasing the
number of active users, however even with 200K active users, it
remains less than 400MBs.

Figure 18: Improvement in encoding + decoding times in
comparison to ASN.1.

Figure 19: Encoding + decoding with Optimized FlatBuffers.

6.7.4 Serialization benefits. We motivate the choice of Flat-
Buffers (FBs) for serializing cellular control messages over several
serialization schemes; FlexBuffer [26], Protocol Buffers [27], Fast-
CDR [3] and LCM [5] with ASN.1 [1]. We compare the time to
decode and encode the control messages. For these experiments,
we construct a custom message with varying number of data ele-
ments/fields.
Encoding + Decoding times: Figure 18 shows the speedup in
the total encoding plus decoding time as compared to the ASN.1
serialization scheme, for a custom control message with varying
number of data fields. For messages with data elements less than 7,
Fast-CDR and LCM perform better. When data elements increase
beyond 7, FBs is the clear winner. For 25 data elements, the total
speedup in encoding + decoding time for FBs is twice that of the next
best scheme. The speedup in comparison with ASN.1 is between
1.6× to 19.2×. We note here that all cellular control messages we
tested, contained a minimum of 8 data elements.
Tests with real control messages:We next compare Optimized
FBs with FBs and ASN.1 over a subset of real control messages. We
specifically quantify both the encoding + decoding times as well
as the increase in encoded message size with FBs. In Figure 19 we
observe a decrease of up to 5.9× in encoding + decoding times with
FlatBuffers over ASN.1. There is a further decrease with Optimized
FBs in some cases. However, this decrease does come at a cost;
the encoded message size in FBs can add up to 300 bytes of more
metadata than ASN.1 (Figure 20). With Optimized FBs, we can save
up to 32 bytes of data per message.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Mukhtiar et al.

Figure 20: Size comparison of encodedmessages betweenOp-
timized FBs, FBs and ASN.1.

7 DISCUSSION
In this section, we discussNeutrino’s deployability and serialization
tradeoffs.
Deployability: Neutrino is designed for next-generation cellular
networks like 5G and 6G. It only requires minimal changes to BS;
instead of ASN.1, BS use Neutrino’s FBs-based serialization engine.
In rolling out 5G deployments, cellular providers are expected to
make major upgrades on BS [13], hence, we expect upgrading the
serialization engine would not be a hindrance in adopting Neutrino.
However, Neutrino’s serialization engine is not compatible with
previous generations of cellular networks (4G/LTE and earlier),
although Neutrino’s consistency protocol (§4.2) and proactive state
replication scheme (§4.3) can seamlessly work with 4G/LTE.
Serialization tradeoff: Neutrino’s serialization scheme reduces
encoding/decoding time by a factor of up to 19.2× at the cost of an
increase in message size. With increasing available bandwidth in
cellular networks, we believe this is an acceptable tradeoff for the
cellular providers. We are currently investigating further optimiza-
tions in Neutrino’s FB-based compiler to reduce the overhead in
message sizes while retaining its latency benefits.

8 RELATEDWORK
Scaling distributedMMEs: There are recent proposals for scaling
MMEs [12, 14, 31, 43]. SCALE [14] proposes mechanisms for scaling
a software 4G/LTE MME to handle increasing signaling load. It uses
state replication to handle MME failures and consistent-hashing
based load balancing. MMLite [43] proposes a load balancing solu-
tion for MMEs, leveraging skewed consistent hashing to distribute
incoming connections more efficiently. However, as we discussed
earlier (§2), both SCALE and MMLite do not provide any consis-
tency guarantees. MobileStream [31] proposes a programmable
mobile core control platform which decomposes control plane in
multiple stateless and one stateful node and externalizes user state.
MobileStream provides better programmability of the control plane
than other schemes, however, in an edge-deployment scenario,
lookups on a remote state store can become a source of increased
latency. In comparison to these schemes, Neutrino provides (i) con-
sistency guarantees, (ii) faster serialization, and (iii) faster failure
recovery. There are other general proposals for externalizing NF

state [32, 33]. However, they are targeted towards centralized cloud
deployments.
Reducing control traffic latency: Recent work DPCM [61] also
aims to reduce control plane latency. DPCM proposes a client-side
solution, which reduces control plane latency by initiating and
executing some control operations in parallel by using the device
side user state. With DPCM’s client-side modifications, Neutrino
can further speed-up the processing of control traffic.
Centralized cellular control plane architectures: There are
several proposals for architecting an SDN-based cellular core [30,
36, 42]. A common theme in all these works is to have a logically
centralized cellular control plane (including all the MME function-
ality) with a programmable data plane. However, unlike Neutrino,
these proposals do not aim to address control plane latency and cen-
tralized control plane architectures may not suitable for achieving
low latency control traffic in edge deployments.
Consolidated cellular core architectures: There are several pro-
posals for consolidating EPC designs [40, 41, 50]. PEPC [50] slices
EPC by the user, consolidating UE state, and refactoring EPC func-
tions. PEPC improves the overall EPC performance, however, it does
not consider control plane fault tolerance. Similarly, SoftBox[41]
proposes a consolidated EPC architecture but does not provide
fault tolerance. In contrast, Neutrino’s goal is to design a faster and
consistent cellular control plane, but Neutrino can be incorporated
in consolidated EPC architectures like PEPC. Skycore [40] consoli-
dates RAN and EPC. Skycore is designed for a specific deployment
scenario where the base stations are deployed on unmanned aerial
vehicles (UAV). Skycore broadcasts user state updates to the neigh-
bor nodes, which as we show in our evaluation (§6) does not lead
to a scalable design.
Network function failure recovery: There are proposals on mid-
dlebox failure recovery such as [51, 54]. Neutrino’s failure recovery
is in part inspired by these prior proposals in the general middlebox
context. However, the specific failure recovery scheme in Neutrino;
per-procedure checkpointing and message logging mechanisms,
are designed to satisfy the consistency and latency requirements in
the cellular context.

9 CONCLUSION
Next-generation cellular networks aim to support new and emerg-
ing applications with ultra-low latency and high reliability require-
ments. In this work, we identify the key issues in meeting these
requirements in existing cellular control plane. We design Neu-
trino, a new edge-based cellular control plane that provides users
an abstraction of reliable access to cellular services while ensuring
lower latency.18 We show Neutrino can lead to substantial improve-
ments in the performance of latency-sensitive applications, while
tolerating control plane failures. With discussions about 5G core ar-
chitectures actively under-way, we hope this paper will contribute
to an important discourse in control plane designs.

ACKNOWLEDGMENTS
We thank our shepherd Sanjay Rao and the anonymous SIGCOMM
reviewers for their valuable feedback.

18This work does not raise any ethical issues.

A Low Latency and Consistent Cellular Control Plane SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] [n. d.]. ASN.1. https://asn1.io/. ([n. d.]). [Online; accessed 19-Sep-2019].
[2] [n. d.]. Data Plane Development Kit. https://www.dpdk.org/. ([n. d.]). [Online;

accessed 19-Sep-2019].
[3] [n. d.]. Fast-CDR. https://github.com/eProsima/Fast-CDR. ([n. d.]). [Online;

accessed 19-Sep-2019].
[4] [n. d.]. Geo Hash. http://geohash.gofreerange.com/. ([n. d.]). Online; accessed

19-Sep-2019.
[5] [n. d.]. Lightweight Communications andMarshalling. https://lcm-proj.github.io/.

([n. d.]). [Online; accessed 19-Sep-2019].
[6] [n. d.]. MITM Proxy. https://mitmproxy.org/. ([n. d.]). [Online; accessed 28-Jan-

2020].
[7] 3GPP Ref #: 23.401. 2016. General Packet Radio Service (GPRS) enhancements for

Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access. Retrieved
09/05/2016 from http://www.3gpp.org/DynaReport/23401.htm

[8] 3GPP Ref #: 23.501. 2019. System architecture for the 5G System (5GS). Re-
trieved 20/01/2020 from https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3144

[9] 3GPP Ref #: 24.301. 2016. Non-Access-Stratum (NAS) protocol. Retrieved 09/05/2016
from www.3gpp.org/dynareport/24301.htm

[10] 3GPP Ref #: 29.272. 2016. Mobility Management Entity (MME) and Serving GPRS
Support Node (SGSN) related interfaces based on Diameter protocol. Retrieved
09/05/2016 from www.3gpp.org/DynaReport/29272.htm

[11] 3GPP Ref #: 36.413. 2016. S1 Application Protocol (S1AP). www.3gpp.org/
dynareport/36413.htm. (2016).

[12] Xueli An, Fabio Pianese, Indra Widjaja, and Utku Gunay Acer. 2012. DMME: A
Distributed LTE Mobility Management Entity. Bell Labs Technical Journal 17, 2
(Sept. 2012), 97–120. https://doi.org/10.1002/bltj.21547

[13] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C.
Zhang. 2014. What Will 5G Be? IEEE Journal on Selected Areas in Communications
32, 6 (June 2014), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098

[14] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera, Kobus
Van der Merwe, and Sampath Rangarajan. 2015. Scaling the LTE Control-Plane
for Future Mobile Access. In CoNEXT’15.

[15] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. (2014). Re-
trieved 17/06/2020 from http://research.microsoft.com/apps/pubs/default.aspx?
id=230852

[16] Sebastian Burckhardt. 2015. Consistency in Distributed Systems, Microsoft
Research. In Springer International Publishing Switzerland’15.

[17] carla.org. [n. d.]. CARLA. ([n. d.]). Retrieved Jan 27, 2020 from https://github.
com/carla-simulator/carla.git

[18] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1–16.

[19] Ramakrishna Rao Kotla Mahesh Balakrishnan Marcos K Aguilera Douglas
B. Terry, Vijayan Prabhakaran and Hussam Abu-Libdeh. 2013. Consistency-
based service level agreements for cloud storage. In SOSP ’13.

[20] Ericsson. 2016. A vision of the 5G core: flexibility for new business opportunities.
Retrieved 09/05/2016 from https://goo.gl/yRfxkG

[21] ETSI. 2018. GS MEC 002: Multi-access Edge Computing (MEC); Framework and
Reference Architecture. https://www.etsi.org/committee/1425-mec. (2018).

[22] ETSI. 2018. GS MEC 002: Multi-access Edge Computing (MEC); Phase 2: Use
Cases and Requirements. https://www.etsi.org/committee/1425-mec. (2018).

[23] ETSI. 2018. MEC in 5G networks. https://www.etsi.org/images/files/
ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf. (2018).

[24] FierceTelecom. 2019. AT&T: Virtualized Flexware service already
leverages edge computing. https://www.fiercetelecom.com/telecom/
at-t-virtualized-flexware-service-already-leverages-edge-computing. (2019).
[Online; accessed 03-April-2019].

[25] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
In SOSP’07.

[26] Google. [n. d.]. FlexBuffers. https://google.github.io/flatbuffers/flexbuffers.html.
([n. d.]). [Online; accessed 19-Sep-2019].

[27] Google. [n. d.]. ProtocolBuffers. https://developers.google.com/protocol-buffers/.
([n. d.]). [Online; accessed 19-Sep-2019].

[28] Google/GitHub. [n. d.]. FlatBuffers. https://google.github.io/flatbuffers/. ([n. d.]).
[Online; accessed 19-Sep-2019].

[29] Intel. [n. d.]. UPF-EPC. https://github.com/omec-project/upf-epc.git. ([n. d.]).
[Online; accessed 27-Jan-2020].

[30] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. 2013. SoftCell:
Scalable and Flexible Core Network Architecture. In CoNEXT’13.

[31] Ryan Junguk Cho and Z. Jacobus Van. 2018. MobileStream: A Scalable, Pro-
grammable and Evolvable Mobile Core Control Plane Platform. In MobiCom’18.

[32] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless
Network Functions: Breaking the Tight Coupling of State and Processing. In 14th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
USENIX Association, Boston, MA, 97–112. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/kablan

[33] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance for Stateful
Chained Network Functions. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 501–516.
https://www.usenix.org/conference/nsdi19/presentation/khalid

[34] Raheel Khalid. 2018. Envrmnt by Verizon: Cloud XR Experience on 5G with Mo-
bile Edge Networks. https://www.slideshare.net/AugmentedWorldExpo/raheel-
khalid-envrmnt-by-verizon-cloud-xr-experience-on-5g-with-mobile-edge-
networks. (2018).

[35] Nour Kouzayha, Mona Jaber, and Zaher Dawy. 2017. Measurement-Based Signal-
ing Management Strategies for Cellular IoT. In IEEE Internet of Things Journal.

[36] Li Erran Li, Z. Morley Mao, and Jennifer Rexford. 2012. Toward Software-Defined
Cellular Networks. In IEEE, 2012 European Workshop on Software Defined Net-
working.

[37] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane Perspective
on Reducing Data Access Latency in LTE Networks. In MobiCom’17.

[38] LightReading. [n. d.]. An Inside Look at Verizon’s Edge Computing Capabili-
ties. https://www.lightreading.com/the-edge/an-inside-look-at-verizons-edge-
computing-capabilities/d/d-id/749548. ([n. d.]). [Online; accessed 19-Sep-2019].

[39] M-CORD. 2016. Mobile CORD: Enabling 5G on CORD. http://opencord.org/
wp-content/uploads/2016/03/M-CORD-March-2016.pdf. (2016). Online; accessed
19-Sep-2019.

[40] Eugene Sampath Mehrdad, Karthikeyan and Z. Morley Mao. 2018. SkyCore:
Moving Core to the Edge for Untethered and Reliable UAV-based LTE Network.
In MobiCom’18.

[41] Mehrdad Moradi, Yikai Lin, Z. Morley Mao, Subhabrata Sen, and Oliver
Spatscheck. 2018. SoftBox: A Customizable, Low-Latency, and Scalable 5G Core
Network Architecture. IEEE Journal on Selected Areas in Communications 36
(2018), 438–456.

[42] Mehrdad Moradi, Wenfei Wu, Li Erran Li, and Zhuoqing Morley Mao. 2014. Soft-
MoW: Recursive and Reconfigurable Cellular WAN Architecture. In CoNEXT’14.

[43] VasudevanNagendra, Arani Bhattacharya, Anshul Gandhi, and Samir R. Das. 2019.
MMLite: A Scalable and Resource Efficient Control Plane for Next Generation
Cellular Packet Core. In Proceedings of the 2019 ACM Symposium on SDN Research
(SOSR ’19).

[44] SEVEN Networks. 2016. Operators Urge Action Against Chatty Apps.
https://www.seven.com/press_releases/2012/wireless_network_worst_case_
scenario.php. (2016). [Online; accessed 09-May-2016].

[45] ng4T. 2016. Next generation Telecommunication Technology Testing Tools. Retrieved
09/05/2016 from http://www.ng4t.com/

[46] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas Karagian-
nis, Jakub Kocur, and Jacobus Van. 2018. ECHO: A reliable distributed cellular
core network for hyper-scale public clouds. In Mobicom ’18. ACM, New York, NY,
USA, 163–178. https://dl.acm.org/doi/10.1145/3241539.3241564

[47] Nokia. 2016. Signaling is growing 50% faster than data traffic. (2016). Retrieved
09/05/2016 from https://www.nokia.com/blog

[48] ONOS. [n. d.]. Introducing ONOS - a SDN network operating system for Service
Providers. https://www.opennetworking.org/onos/. ([n. d.]). [Online; accessed
01-Jan-2019].

[49] OpenAirInterface. 2016. OpenAirInterface: A 5G software alliance for democratis-
ing wireless innovation . http://www.openairinterface.org/. (2016). [Online;
accessed 19-Sep-2019].

[50] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia Ratnasamy,
and Scott Shenker. 2017. A High Performance Packet Core for Next Generation
Cellular Networks. In SIGCOMM’17.

[51] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. 2013. Pico Replication:
A High Availability Framework for Middleboxes. In SOCC’13.

[52] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govindan,
and Scott Shenker. 2002. GHT: AGeographic Hash Table for Data-Centric Storage.
In ACM WSNA’02.

[53] Mahadev Satyanarayananz. 2017. The Emergence of Edge Computing. IEEE
Computer Society (2017).

[54] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy,
Luigi Rizzo, and Scott Shenker. 2015. Rollback-Recovery for Middleboxes. In
SIGCOMM’15.

[55] Chang-Hong Hsu Matt Skach Md E. Haque1 Lingjia Tang Jason Mars Shih-
Chieh Lin, Yunqi Zhang. 2018. The Architectural Implications of Autonomous
Driving: Constraints and Acceleration. In ACM SIGPLAN’18.

[56] Tarik Taleb and Konstantinos Samdanis. 2011. Ensuring Service Resilience in
the EPS: MME Failure Restoration Case. 2011 IEEE Global Telecommunications
Conference - GLOBECOM 2011 36 (2011), 438–456. https://ieeexplore.ieee.org/
document/6133654

[57] Tencent. 2018. Intelligent network optimization. https://cloud.tencent.com/
product/ino. (2018). https://cloud.tencent.com/product/ino

https://asn1.io/
https://www.dpdk.org/
https://github.com/eProsima/Fast-CDR
http://geohash.gofreerange.com/
https://lcm-proj.github.io/
https://mitmproxy.org/
http://www.3gpp.org/DynaReport/23401.htm
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
www.3gpp.org/dynareport/24301.htm
www.3gpp.org/DynaReport/29272.htm
www.3gpp.org/dynareport/36413.htm
www.3gpp.org/dynareport/36413.htm
https://doi.org/10.1002/bltj.21547
https://doi.org/10.1109/JSAC.2014.2328098
http://research.microsoft.com/apps/pubs/default.aspx?id=230852
http://research.microsoft.com/apps/pubs/default.aspx?id=230852
https://github.com/carla-simulator/carla.git
https://github.com/carla-simulator/carla.git
https://goo.gl/yRfxkG
https://www.etsi.org/committee/1425-mec
https://www.etsi.org/committee/1425-mec
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.fiercetelecom.com/telecom/at-t-virtualized-flexware-service-already-leverages-edge-computing
https://www.fiercetelecom.com/telecom/at-t-virtualized-flexware-service-already-leverages-edge-computing
https://google.github.io/flatbuffers/flexbuffers.html
https://developers.google.com/protocol-buffers/
https://google.github.io/flatbuffers/
https://github.com/omec-project/upf-epc.git
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi19/presentation/khalid
http://opencord.org/wp-content/uploads/2016/03/M-CORD-March-2016.pdf
http://opencord.org/wp-content/uploads/2016/03/M-CORD-March-2016.pdf
https://www.seven.com/press_releases/2012/wireless_network_worst_case_scenario.php
https://www.seven.com/press_releases/2012/wireless_network_worst_case_scenario.php
http://www.ng4t.com/
https://dl.acm.org/doi/10.1145/3241539.3241564
https://www.nokia.com/blog
https://www.opennetworking.org/onos/
http://www.openairinterface.org/
https://ieeexplore.ieee.org/document/6133654
https://ieeexplore.ieee.org/document/6133654
https://cloud.tencent.com/ product/ino
https://cloud.tencent.com/ product/ino
https://cloud.tencent.com/product/ino

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Mukhtiar et al.

[58] Maarten van Steen and Andrew S. Tanenbaum. 2017. Distributed Systems: Princi-
ples and Paradigms (3rd edition). Maarten van Steen.

[59] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-Transactional Dis-
tributed Storage Systems. In ACM Computing Surveys’16.

[60] Qiang Xu, Junxian Huang, Zhaoguang Wang, Feng Qian, Alexandre Gerber, and
Zhuoqing Morley Mao. 2011. Cellular Data Network Infrastructure Characteriza-
tion and Implication on Mobile Content Placement. In SIGMETRICS’11.

[61] Zengwen Yuan Yuanjie Li and Zengwen Yuan. 2017. A Control-Plane Perspective
on Reducing Data Access Latency in LTE Networks. In MobiCom’17.

[62] Kyriakos Zarifis, Tobias Flach, Srikanth Nori, David Choffnes, Ramesh Govindan,
Ethan Katz-Bassett, Z. Morley Mao, and Matt Welsh. 2014. Diagnosing Path
Inflation of Mobile Client Traffic. In PAM’14.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cellular Network Architecture
	2.2 Impact of Cellular Control Processing
	2.3 Cellular Edge Applications

	3 Challenges
	3.1 User State Inconsistency
	3.2 Slow State Updates
	3.3 Frequent Control Plane Handovers

	4 Design
	4.1 Design Goals and Approach
	4.2 Consistency Protocol
	4.3 Proactive Geo-replication
	4.4 Serialization Engine

	5 Implementation
	6 Evaluation
	6.1 Setup and Methodology
	6.2 Baselines
	6.3 Latency Improvements in Procedure Completion Time (PCT) with Neutrino
	6.4 PCT under failure with Neutrino
	6.5 Fast Handover in Neutrino
	6.6 Impact on application performance
	6.7 Factor Analysis

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

