
A High Performance Packet Core for
Next Generation Cellular Networks

Zafar Ayyub Qazi
UC Berkeley

Melvin Walls
Nefeli Networks, Inc.

Aurojit Panda
UC Berkeley

Vyas Sekar
Carnegie Mellon University

Sylvia Ratnasamy
UC Berkeley

Scott Shenker
UC Berkeley

ABSTRACT
Cellular traffic continues to grow rapidly making the scalability of
the cellular infrastructure a critical issue. However, there is mount-
ing evidence that the current Evolved Packet Core (EPC) is ill-suited
to meet these scaling demands: EPC solutions based on specialized
appliances are expensive to scale and recent software EPCs perform
poorly, particularly with increasing numbers of devices or signaling
traffic.

In this paper, we design and evaluate a new system architecture
for a software EPC that achieves high and scalable performance.
We postulate that the poor scaling of existing EPC systems stems
from the manner in which the system is decomposed which leads
to device state being duplicated across multiple components which
in turn results in frequent interactions between the different com-
ponents. We propose an alternate approach in which state for a
single device is consolidated in one location and EPC functions are
(re)organized for efficient access to this consolidated state. In effect,
our design “slices” the EPC by user.

We prototype and evaluate PEPC, a software EPC that imple-
ments the key components of our design. We show that PEPC
achieves 3-7× higher throughput than comparable software EPCs
that have been implemented in industry and over 10× higher through-
put than a popular open-source implementation (OpenAirInterface).
Compared to the industrial EPC implementations, PEPC sustains
high data throughput for 10-100× more users devices per core, and
a 10× higher ratio of signaling-to-data traffic. In addition to high
performance, PEPC’s by-user organization enables efficient state
migration and customization of processing pipelines. We imple-
ment user migration in PEPC and show that state can be migrated
with little disruption, e.g., migration adds only up to 4µs of latency
to median per packet latencies.

CCS CONCEPTS
• Networks → Network components; Middle boxes / network appli-
ances;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00
https://doi.org/10.1145/3098822.3098848

KEYWORDS
Cellular Networks, EPC, Network Function

ACM Reference format:
Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia Rat-
nasamy, and Scott Shenker. 2017. A High Performance Packet Core for Next
Generation Cellular Networks. In Proceedings of SIGCOMM ’17, Los Angeles,
CA, USA, August 21-25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098848

1 INTRODUCTION
Cellular networks are experiencing explosive growth along multi-
ple dimensions: (i) traffic volumes (e.g., mobile traffic grew by 74%
in 2015), (ii) the number and diversity of connected devices (e.g.,
projections show that by 2020 there will be 11.6 billion mobile con-
nected devices including approximately 3 billion IoT devices [11]),
and (iii) signaling traffic (e.g., signaling traffic in the cellular net-
work is reported to be growing 50% faster than data traffic [31]).

These trends impose significant scaling challenges on the cellular
infrastructure. In particular, there is growing concern regarding
the scalability of the cellular evolved packet core (EPC) [21] infras-
tructure. The EPC is the portion of the network that connects the
base stations to the IP backbone and implements cellular-specific
processing on user’s data and signaling traffic. Recent industrial and
academic studies have provided mounting anecdotal and empirical
evidence showing that existing EPC implementations cannot keep
up with the projected growth in cellular traffic [10, 18, 19, 23, 37].

We postulate that the poor scaling of existing solutions stems
from the manner in which existing EPC systems have been decom-
posed. More specifically, EPC systems today are factored based on
traffic type, with different components to handle signaling and data
traffic: the Mobility Management Entity (MME) handles signaling
traffic from mobile devices and base stations, while the Serving and
Packet Gateways (S-GW and P-GW) handle data traffic. The prob-
lem with this factoring is it complicates how state is decomposed
and managed. As we elaborate on in §2, current designs lead to
three problems related to state management:

(1) Duplicated state leads to frequent synchronization across com-
ponents. In current EPCs, per-user state is often duplicated between
components. For example, a user request to establish a cellular con-
nection is processed by the MME which instantiates user state and
then communicates this addition to the S-GW which in turn lo-
cally instantiates similar per-user state. A similar interaction takes
place when user state is updated after mobility events. This du-
plication introduces complexity (e.g., implementing the protocols

348

https://doi.org/10.1145/3098822.3098848
https://doi.org/10.1145/3098822.3098848

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Zafar Qazi et al.

between components) and the performance overhead associated
with cross-component syncronization.

(2) Migration is hard. Aswe explain in §2, migrating a user’s state
to a new MME/S-GW/P-GW instance is often desirable to allow
elastic scaling of these components and/or to enable performance
optimizations [35]. However with the existing decomposition, mi-
grating a user’s state is hard since it requires coordination across
multiple components (e.g., updating multiple logical tunnels) [1].

(3) Customizing/optimizing the processing pipeline is hard. Cur-
rent EPCs implement a fixed processing pipeline for all data packets.
However, as we show, there is a significant opportunity to increase
efficiency by customizing the EPC processing pipeline based on the
nature of the user/device. For example, a stationary IoT thermo-
stat can omit much of the complex processing required by devices
like smart phones. However, with the current EPC decomposition,
enabling these customizations can be hard when the processing
pipeline is spread across different components (§2).

The above state of affairs is in stark contrast to many Internet
services that enjoy (relatively) simple and efficient elastic scaling.
We observe that many of these services achieve elasticity by pursu-
ing a “share nothing” decomposition in which components that are
to be scaled-out are independent, with little/no shared state across
them. A natural question then is whether there exists an analogous
decomposition for EPC processing that enables simpler horizontal
scaling.

To answer the above question, we examine the various forms
of EPC state and corresponding processing logic and propose an
alternate state-driven decomposition of an EPC system. Specifically,
we propose that the state associated with a user be consolidated
into a single location which we call a slice. Hence, in contrast to
current EPC designs, the signaling and data traffic for a user are
now processed by the same slice. To maintain performance isolation
between data and signaling traffic, we assign each to separate cores.

To mitigate the overheads of contention over shared state, we
decompose EPC state and functions such that any given piece of
state has only a single writer associated with it. Based on this
refactoring, we propose PEPC,1 a new system design for an EPC.
As will be clear in §3, the refactoring in PEPC goes beyond simply
consolidating existing components in a single process with a 1:1
mapping between MME (S/P-GW) operations and PEPC’s control
(data) thread.

We implement PEPC using the NetBricks [33] framework, which
provides cheaper isolation as compared to VMs/containers. Net-
Bricks allows us to runmultiple PEPC sliceswithin the same process,
while providing memory isolation between the slices. Hence we
avoid the higher overheads associated with implementing a slice
as a VM or container. This in turn facilitates vertical slicing and
scaling by users.

In summary, this paper makes the following contributions:
• We propose PEPC, a new system design for an EPC that is
based on consolidating per-device state in a single location
and (re)organizing EPC functions for efficient access to this
consolidated state (§3).

1PEPC stands for Performant EPC, pronounced as pepsi.

• We implement key EPC functions in PEPC, including the
data-plane functions such as the GPRS Tunnelling Protocol
and Policy Charging Enforcement Function (PCEF), as well
as the S1AP protocol used to exchange control traffic with
the base station (§4).

• We conduct extensive evaluation of PEPC. We show that
PEPC achieves 3-7× higher throughput than existing indus-
trial DPDK-based EPCs and over 10x higher throughput than
OpenAirInterface [32] (§5). In addition, PEPC’s performance
scales linearly with the number of cores and can sustain per-
formance with a large number of devices and high signaling
to data ratio (§6).

• We implement state migration in PEPC and show that PEPC
can handle 10,000 state migrations/second with only a 5%
drop in the data plane throughput and in the worst case
increases per-packet latency by 4µs (§6.6).

• We implement customized pipelines for IoT devices and mea-
sure the resultant performance improvement for different
traffic mixes (§7.4).

The remainder of this paper is organized as follows: we first
review the EPC architecture and its scaling problems (§2) and then
present the design and implementation of PEPC (§3 and §4 respec-
tively). We evaluate PEPC’s performance (§5-§7), discuss related
work (§9) and finally conclude.

2 BACKGROUND AND MOTIVATION
We begin by briefly reviewing the existing EPC architecture. We
then highlight key scalability issues using experimental results
from two industrial software EPC implementations. Finally we
deconstruct the current EPC architecture to better understand the
root cause of its limited scalability.

2.1 EPC background
The LTE cellular network architecture consists of two main com-
ponents: the Radio Access Network (RAN), and the Evolved Packet
Core (EPC). The RAN consists of the eNodeBs (i.e., base stations),
which communicate with the User Equipment (UE)2 through a ra-
dio interface. The traffic from the eNodeBs is forwarded to the EPC.
The EPC then forwards traffic to the final destination, e.g., a server
on the Internet, or a cellular provider’s IP Multimedia System (IMS)
in the case of voice traffic.

The EPC consists of a set of cellular-specific functions as well as
traditionalmiddleboxes, like NATs and firewalls. There are three key
cellular specific functions. The Mobility Management Entity (MME)
handles all the signaling traffic from the User Equipments (UEs) and
the eNodeBs, and is responsible for user authentication, mobility
management and session management. The Serving Gateway (S-
GW) and Packet Gateway process all the data traffic. The S-GW
handles all the data traffic from the eNodeBs and forwards it to the
Packet Gateway (P-GW) which may then send it out to another
middlebox or egress node. Besides packet forwarding the S/P-GWs
also perform other functions including maintaining statistics for
charging and accounting, QoS enforcement, IP address allocation,
and policy enforcement.

2We use UE, user and device interchangeably in the rest of the paper.

349

Packet Core for Next Generation Cellular Networks SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

MME

S-GW P-GW

eNodeB Data-plane Functions

PCRF

HSS

eNodeB

PCRF HSS

PEPC
cluster

slice

slice

slice

slice

slice

slice

slice

server

server

server
load

balancer

Figure 1: (a) Current EPC architecture (left) (b) PEPC overall architecture (right)

State type MME S-GW P-GW PEPC control thread PEPC data thread Update frequency
User location w+r w+r NA w+r r per-event

User id w+r w+r w+r w+r r per-event
Per-user QoS/policy state w+r w+r w+r w+r r per-event

Per-user control tunnel state w+r w+r w+r NA NA per-event
Per-user data tunnel state w+r w+r w+r w+r r per-event

Per-user bandwidth counters NA w+r w+r r w+r per-packet

Table 1: State taxonomy for current EPC functions (§2.3) and PEPC (§3).

Besides these core functions, the EPC also contains a Home
Subscriber Database (HSS) containing subscriber information such
as their billing plan and a Policy Charging Rules Function (PCRF)
which installs new charging and policy control rules in P-GW.

Figure 1(a) shows the above EPC components and how they
interact, as described in the 3rd Generation Partnership Project
(3GPP) [4]. The dotted lines represents signaling traffic while the
solid lines represent data traffic.

All signaling traffic between the UE/eNodeB and the EPC is sent
over the S1-MME interface to the MME using the S1AP protocol [4].
When a user-device first connects to the eNodeB, the eNodeB sends
a signaling event (’attach request’) to the MME. This triggers a se-
ries of signaling messages between different EPC functions: e.g., the
MME queries the HSS for the device’s credentials, it then authen-
ticates the device, once authenticated it sends device-state to the
S-GW, which in turn sends the device state to the P-GW. The S-GW
receives control traffic from the MME over the S11 interface using
the GPRS tunneling (GTP) protocol, specifically GTP-C. The S-GW
communicates control messages to the P-GW on the S5 interface
using GTP-C.

Once the UE is authenticated, it can start sending data over the
S1-U interface to the S-GW via the eNodeB. The eNodeB tunnels
the UE data-packets using GTP-U, where the eNodeB performs an
IP-in-IP encapsulation, adds a GTP-U header to the data-packets,
and sends it to the S-GW. The S-GW similarly performs GTP-U
decapsulation, and again encapsulation before sending the packet
out to the P-GW over another GTP-U tunnel. In the current LTE
architecture, tunneling is used to support mobility, QoS, and traffic
aggregation.

2.2 Scaling issues in existing EPC systems
In this section, we highlight some key scalability issues with the
current EPC design using experimental results from two industrial
software EPC implementations. We treat these systems as black-
boxes in this section and describe them in more detail in §5.
1. Poor scalability with increasing signaling: The data-plane

performance can be severely impacted by the number of sig-
naling events. In one industrial EPC implementation that we
tested, the performance drops to almost 0 pps as we increase the
number of attach requests per second to more than 10K (§5).
A different EPC implementation that was evaluated in prior
work [37] reports a 15% drop in data-plane performance as the
number of S1-based handover events3 per second are increased
to 3000. As we explain shortly, both attach requests and S1-based
handover events lead to complex synchronization between the
MME, S-GW and P-GW. For example, measurements in the
OpenEPC system [6] revealed that the time between the MME
sending an update to the data-plane following an attach event,
to when the corresponding user-state has been updated at the
S/P-GW is as high as 2-3 milliseconds. As real-world signaling
traffic is growing 50% faster than data traffic [31], this presents
a significant scalability issue, with several high-profile outages
being associated with signaling [10].

2. Poor scalabilitywith increasing devices: Throughput on the
data plane also scales poorly with increasing numbers of de-
vices. With one industrial EPC implementation, the performance

3S1-based handover is triggered when a device moves between two eNodeBs which
are not directly connected.

350

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Zafar Qazi et al.

drops by 50% from 128K to 300K users [37]. Similarly, with an-
other EPC industrial implementation the performance drops
from 1 Mpps with 250 K users to 0.1 Mpps with 1M users (§5).
With increasing numbers of devices, the number of signaling
events grows. In addition, performance also drops because of the
increased overhead of state lookups: EPC components maintain
per-user state and the data plane components access this state
on a per-packet basis. As the number of devices is increasing
rapidly, with projections of 11.6 billion mobile devices including
around 3 billion IoT device by 2020, this presents another major
scalability problem.
Next, we discuss why these issues exist.

2.3 Deconstructing EPC state
One of the key reasons why multiple EPC components need fre-
quent synchronization is because theymaintain per user statewhich
needs to be synchronized for most of the signaling events. In order
to understand how this can lead to the above scalability issues, we
deconstruct the state maintained by the network functions in EPC
and the type and frequency of their state operations. To perform
this exercise, we draw from the 3GPP design specifications [3],
recent work on EPC state analysis [20], and an open source EPC
implementation [32].

2.3.1 Types of state. Below, we describe the user state variables
in EPC and group them into the following categories:
• User identifier: These include subscriber identifiers such as
IMSI, GUTI (a temporary identifier used instead of IMSI over the
radio link), and user IP addresses.

• User location: This group contains variables that store the cell-
level location information of the UE (ECGI) as well as bounds
on where a UE can go without reporting its location back to the
network (TAI, Tracking Area List, etc.).

• Per-user control tunnel state: This contains variables that
maintain the identifiers and state for user-specific control tunnels
related to the S11 and S5/S8 interfaces. These include tunnel end
point identifiers (TEIDs) and UE IP addresses.

• Per-user data tunnel state: This contains variables that main-
tain the identifiers and state for user-specific data tunnels, related
to S1U and S5/S8 interfaces. These include tunnel end point iden-
tifiers (TEIDs) and UE IP addresses.

• Per-user QoS/policy state: This group includes QoS and policy
parameters, such as Guaranteed Bit Rate (GBR), Maximum Bit
Rate (MBR), and Traffic Flow Templates (TFT). These parameters
are per bearer, where a bearer is a logical connection between
two EPC components, e.g, between eNodeB and S-GW. Each UE
has one or more bearers associated with it.

• Per-user bandwidth counters: This group includes various
counters that track a user’s bandwidth usage.

2.3.2 Types of state accesses and implications. Table 1 describes
how state variables are accessed by different EPC functions and the
frequency at which these state variables are updated. We note that
the MME, S-GW, and P-GW, all maintain state with the per-user
QoS/policy state, per-user data/control tunnel state as well as user

ids. This duplicated state leads to frequent synchronization: signal-
ing events result in updates to this state and these changes must
be propagated to the S-GW and P-GW. For instance, for an attach
signaling event, the MME, S-GW and P-GW must all update their
per-user QoS/policy state. Similarly for a S1-handover event which
happens when a UE moves from one base to another base station
(and the base stations are not directly connected), all components
update per-user data tunnel state. Similarly for a modify-bearer
event, all the components may update some parameters related to
QoS/policy state. The key insight here is that some state variables
are replicated at the MME, S-GW, and P-GW and may need to be
updated for every signaling event of a certain type.

The duplication of state found in current EPC designs leads to
synchronization between components as a result of signaling events.
As the number of signaling events increases, this frequent synchro-
nization can impact the performance of the data-handling compo-
nents. In addition, with the existing decomposition, migrating a
user’s state to a new MME/S-GW/P-GW is hard since it requires
coordination across multiple components.
Fixed processing: Current EPCs implement a fixed processing
pipeline for all data packets, even though many devices (e.g., IoT
devices) have very different packet processing requirements [41]
from traditional smart phones. The data-plane functions, S-GW
and P-GW, maintain the same state and processing logic for all
types of devices. We show (§3 and §5) that for many IoT devices,
packet processing can be optimized through customization (e.g.,
reduce state, avoid state lookups) to allow EPC to scale well with
the number of devices.

3 PEPC DESIGN
In PEPC, we rearchitect the implementation of the MME, S-GW, and
P-GW components of the current EPC architecture while leaving
unchanged the design of base stations (eNodeB) and the PCRF/HSS
components. The PEPC implementation consists of software that
runs on a cluster of commodity servers as shown in Figure 1; we use
the term PEPC node to refer to a server running our PEPC software.
As is commonwith cluster-based services, we assume that the PEPC
cluster is abstracted by a single virtual IP address [17]; external
components such as the eNodeB direct their traffic to this virtual IP
address and the cluster’s load balancer takes care of appropriately
demultiplexing user traffic across the PEPC nodes (§3.4).

In this section, we first discuss our goals in designing PEPC
and the overall approach they lead to (§3.1). We then present our
two key system components: the PEPC slice (§3.2) and node (§3.3).
Finally, we discuss how PEPC operates in the end-to-end cellular
architecture (§3.4).

3.1 Design goals and approach
The primary goal driving the design of PEPC is high performance.
A PEPC node must sustain high throughput with low per-packet
latencies. In addition, performance must scale well with the num-
ber of devices and the volume of signaling traffic. We meet these
performance goals in two steps. First, we develop a new system ar-
chitecture for EPC processing that is based on consolidating device
state and refactoring EPC functions for efficient access to this state.
This change gives us a baseline design that achieves high per-node

351

Packet Core for Next Generation Cellular Networks SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

throughput with good scaling behavior; e.g., our results in §5 show
the even with 10M users, PEPC can achieve a data plane through-
put of 5 Mpps. Next, leveraging our new system architecture, we
introduce a few key optimizations that exploit common character-
istics of EPC workloads to improve PEPC’s baseline performance
by between 2-50% (§7). In what follows, we elaborate on the key
ideas behind each step.

A new system architecture for EPC processing. PEPC’s sys-
tem architecture is based on two key guidelines: (1) consolidate
per-device state in one location, and (2) decompose existing EPC
functions for efficient access to this consolidated state.

Consolidation. As mentioned earlier in §2, in current EPC sys-
tems, device state is often duplicated at the MME, S-GW and P-GW.
PEPC instead consolidates state in one location which we call a
PEPC slice. A slice lives entirely within a single server; a server can
host multiple slices and multiple user devices can be processed by
a single slice. State consolidation removes the inefficiencies that
result from duplicating state across multiple EPC components and
hence improves performance. As we shall see, consolidation also
simplifies user migration to enable further performance optimiza-
tions.

Decomposition. We decompose EPC functions based on the na-
ture of their accesses to per-device state. Consolidating state means
that all traffic that accesses device state must be processed by the
same slice; this in turn implies that signaling and data traffic for
a device is processed by the same slice. However, if done naively,
this could violate the performance isolation that EPC implementa-
tions typically maintain between signaling and data traffic. Cellular
providers typically support various QoS options on data traffic
such as guaranteed bit rates on voice traffic, maximum bit rates for
total user traffic, or priority forwarding based on the application
type [46]. Supporting these QoS options is challenging if signaling
and data traffic are processed on the same core because the time to
process signaling events can be large and highly variable [30].4

Hence, to ensure performance isolation, we implement two types
of threads within each slice: (1) control threads that process sig-
naling traffic and (2) data threads that process data traffic. Data
and control threads are assigned to separate cores for performance
isolation.5 With this arrangement, per-device state is shared be-
tween the two types of threads. Again, naively done this could lead
to sub-optimal performance due to cross-core contention as the
threads access shared state. We avoid this by partitioning device
state and EPC functions such that each piece of state has only a
single writer; i.e., either the control or the data thread (but not both)
can write a piece of state but both control and data threads can
read all per-device state. Thus, our slice architecture provides both
performance isolation between data and signaling traffic as well as
high performance (since it avoids contention over writing to shared
state).

4One might consider preemptive scheduling but this typically hurts throughput and
hence we aim for a run-to-completion model as is common in packet-processing
applications [12, 25, 33].
5As the cores on the same socket will share the LLC cache, there still can be some
possible contention.

user1 
counter

state

RW

Shared State  
 (Primary Table)

sig
nali

ng tra
ffic

data traffic

Control Thread

user1
control
state

R

Data Thread

RWR

userN 
counter

state

RW

userN
control
state

R
RWR

Figure 2: Internal view of a PEPC slice. (The secondary state
table is not shown for simplicity.)

Performance optimizations. With PEPC’s system architecture,
all state and processing for a device is now localized within a sin-
gle slice. This greatly simplifies our ability to support two impor-
tant features: migrating a user’s processing across PEPC nodes
and customization of a device’s processing pipeline. Migration and
customization enable a range of performance optimizations. For
example, migration enables elastic scaling for efficient use of re-
sources, or offloading a user’s processing to reduce end-to-end
application latency as proposed by [35]. Similarly, the ability to
easily customize the processing pipeline on a per-device basis cre-
ates many opportunities to streamline processing. For example,
unlike smart phones which generate traffic from diverse applica-
tions, many IoT devices only use a single application [41]. However,
all the data traffic in EPC functions is run through a classifier that
aims to identify different applications so that they can be subject
to different QoS processing. The per user state on the data plane
functions serves this purpose of mapping incoming traffic to a QoS
class. For IoT devices that run a single application, and require a
default best effort service, we bypass this state lookup, allowing
the data performance to scale better.
Resultant architecture. Figure 1 shows the overall PEPC architec-
ture. The eNodeB still speaks the same S1AP [4] protocol, directing
both signaling and data traffic to the PEPC cluster where a load
balancer transparently directs traffic to the appropriate PEPC node.
Each node in turn can run several PEPC slices and the node inter-
nally steers traffic to the appropriate slice (§3.3). As we describe
in §3.3, each PEPC server also runs a proxy that communicates
with backend components like the PCRF and HSS using existing
protocols.

3.2 PEPC Slices
Figure 2 shows the internal view of a PEPC slice. Below we describe
the key pieces of a slice.
Shared state with fine-grained locks: In PEPC, shared state is
partitioned at two levels. First, state is partitioned by user. Second,
per-user state is partitioned based on whether it is written by the
control or data thread. State that is written by the control thread

352

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Zafar Qazi et al.

is listed in Table 1 and includes state related to the QoS policies
associated with the user (e.g., various rate limits, priority levels,
and filters), the data tunnels associated with the user, and so forth.
Such state is only updated by signaling and other control events
handled by the control thread; processing data packets may require
reading this state (e.g., to enforce rate limits) but does not write to
such state.6 We refer to this state as a user’s control state.

State that is written by the data thread consists of various coun-
ters that track a user’s bandwidth consumption and are used for
charging and QoS-related functions. Such state is updated when
processing data packets and may be read by the control thread to
implement functions related to accounting and charging (e.g., to be
communicated back to the PCRF). We refer to such state as a user’s
counter state.

We use fine-grained locks for efficient access to shared state
as shown in Figure 2. A control thread holds a read/write lock
for each user’s control state and a read-only lock for each user’s
counter state. Similarly, a data thread holds a read/write lock to
per-user counter state but a read-only lock to per-user control state.
In §7, we show that the use of fine-grained locks offers performance
improvement of upto 5 times over designs that use coarse-grained
locks over all user state and about 5% when we allow the control
and data threads to contend in writing to per-user state.
Primary vs. Secondary tables for storing user state:Many cur-
rent EPC implementations store all user state in a single table [37].
As the number of user devices grows, this table is poorly contained
by the CPU cache and hence performance drops. In PEPC, we aim
to alleviate this effect by maintaining two tables – a primary and
secondary table. State for active devices is stored in the primary
table and accessed by both the control and data threads. Once a
device is no longer active (as determined by a timeout or an explicit
signaling event), its state is moved from the primary to the sec-
ondary table. Similarly, when an incoming packet’s user state is not
found in the primary table, the state is located in the secondary ta-
ble and moved back to the primary one. Moving user state between
the primary and secondary tables is handled by the slice control
thread as detailed in §4.

This two-level architecture exploits the fact that the active time
for many users is often relatively short. This is particularly true
for many classes of IoT devices [41] and can yield significantly
improved scalability. For example, as we show in §7.3, two-level
storage can improve performance by upto 29% depending on the
number of devices that are always on and level of churn in the
remaining devices.
PEPC control threads: A PEPC control thread processes the sig-
naling traffic for users associated with its slice. Thus functions
typically implemented in the MME are implemented in the control
thread. In addition, the control thread implements certain functions
currently implemented in the P-GW related to interactions with
the PCRF. These include accepting updates to the user’s charg-
ing/accounting rules from the PCRF (this involves writing to the
user’s control state) as well as communicating usage statistics back
6In the current EPC architecture, the S-GW and P-GW do write to this control state
but this is only because these components maintain a duplicate copy of per-user state
and hence they must update the state to reflect writes made at the MME. In PEPC,
since state is shared, updates by the control thread are immediately available to the
data thread.

slice1

slice2

slice3

slice4

slice5

LookUpSlice
(IMSI,/GUTI)

LookUpSlice
(TEID/IP)

Demux

Scheduler Proxy
Manage slices — InstantiateSlice, DeleteSlice, etc

Manage migration — SendStateReq,
RecStateResponse, UpdateSliceToUserMapping, etc

signaling
traffic

data traffic

Interface with HSS

Interface with PCRF

Interface with slices

Figure 3: A PEPC server.

to the PCRF (this involves reading the user’s counter state). Finally,
the control plane also handles moving user state between the pri-
mary and secondary tables as well as handling any state migration
requests as described in §4. The control thread is also responsible
for reserving resources for a user7 (e.g., bandwidth and CPU). When
migrating user processing from one slice to another the resources
associated with the user are released from the old slice to ensure
efficient utilization.
PEPC data threads: A PEPC data thread executes the process-
ing pipeline for its users’ data traffic. This includes many of the
functions currently found in the S-GW and P-GW with certain ex-
ceptions as described above. We describe the functions in a typical
pipeline as well as the customizations that we implement for IoT
devices in §4.

3.3 PEPC Nodes
Figure 3 illustrates the internals of a PEPC node. Each node may run
several independent PEPC slices. There are three key components
that sit outside the PEPC slices, and inside a PEPC node.We describe
these below:
Demux: PEPC’s Demux function is responsible for steering incom-
ing signaling and data traffic to its associated slice. For this, the
Demux component maintains a mapping from a user to a slice. For
signaling traffic, the Demux function uses the IMSI or GUTI (each
signaling request contains either one of these user identifiers) to
look up the slice corresponding to incoming signaling traffic. And it
uses the TEID (for uplink) or user device IP address (for downlink)
to map incoming traffic to a specific slice.
Scheduler: The PEPC node scheduler is responsible for (i) manag-
ing slices (e.g., instantiating slices, assigning hardware resources to
slices with dedicated cores for a slice’s data and control threads, and
so forth), and (ii) managing migration (e.g., receiving state migra-
tion requests from an external controller, initiating state transfers
from slices, etc.). The PEPC node scheduler can also reconfigure
user to slice mappings.
Proxy: The PEPC node proxy interfaces with the backend servers
like HSS and PCRF. Specifically, the interface between the HSS
and Proxy is the same as the current interface between the MME
and HSS. This interface is currently referred to as S6A and usually
runs the Diameter protocol [4]. Similarly the interface between the

7More specifically a bearer associated with a user device.

353

Packet Core for Next Generation Cellular Networks SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

proxy and PCRF is the same as the current interface between the
P-GW and PCRF. This interface is referred to as Gx [4].

3.4 End-to-end Architecture
We elaborate on how PEPC interacts with other components in the
overall architecture by elaborating on its interface with the base
station (eNodeB) and walk through how two of the key signaling
events – “attach request" and “mobility" – are handled with PEPC.
Interface to the eNodeB: PEPC assumes that eNodeBs remain
unmodified; i.e., a eNodeB uses the S1AP protocol over the S1-
MME interface to connect to the PEPC. Currently, when a user
entity (UE) attaches to an eNodeB, the eNodeB perform a DNS
lookup to identify an MME to which it should forward the attach
request. In PEPC the DNS lookup instead resolves to the virtual
IP address associated with a PEPC cluster; traffic thus reaches the
cluster’s load balancer which transparently steers the incoming
user traffic to a specific PEPC node (Figure 1). Such load-balancers
may be implemented as specialized hardware appliances [14], as
part of the top-of-rack switch [8], or as a software service [5, 13,
17, 33]; all of these options are commonly available today. Finally,
the Demux function maps the traffic to a specific PEPC slice. For
communication between two cellular users, a packet will traverse
the PEPC slice for both source and destination in exactly the same
manner as today it would traverse through the S-GW/P-GW/MME
for both endpoints.
Attach request: The user initiates the attach procedure by sending
an attach request message containing its IMSI identifier. The eN-
odeB then performs a DNS lookup to find the PEPC cluster that the
user traffic is to be routed to. As describe above, the traffic is even-
tually routed to an individual PEPC slice where the PEPC slice’s
control thread uses the proxy to query the HSS about the user. If
the user is a valid subscriber, the control thread thus authenticates
the user device. Once authenticated, the control thread inserts the
relevant user QoS/policy and tunnel state in the per-user control
state and shares a read-only reference to the same with the data
thread. The PEPC control thread also updates the user location
information with the cells to which the user device can contact.
Mobility handling:We consider here only the case where a user
device is moving within a network managed by the same operator
(there are other cases of mobility; e.g., roaming). In this case, there
can be two further scenarios: a) the eNodeBs that serve the user
device during the handover are connected to each other, or b) the
eNodeBs are not connected to each other. In both cases, the PEPC
slice’s control thread may need to update the location information
of the user device (e.g., the cell that the user is connected to), and
data plane tunnel state (i.e., the new eNodeB’s TEID and IP address).
The control thread then updates this information in the shared user
state which the data thread can then read when sending/receiving
packets to/from the eNodeB.

3.5 PEPC vs. existing EPC design tradeoffs
We discuss a number of potential trade-offs between PEPC and the
legacy EPC design.

The existing EPC architecture allows the MME and S/P-GWs
to be separately deployed (possibly in different data centers) [35].
However, because of the dependencies between these functions in

the current EPC design, scaling one function invariably requires
scaling the other due to the need for frequent synchronization.
PEPC addresses this challenge by consolidating user state and min-
imizing the impact that the control plane and data plane have on
each other.

In existing EPC designs, the S-GW can be selected based on its
geographical proximity to the user, without necessarily changing
the MME. However, changing the S-GW requires a handover proce-
dure [1], which requires coordination with MME and P-GW. On the
other hand, in PEPC, moving processing closer to the user entails
a simplified migration procedure (§5) which leads to traffic being
processed by a PEPC slice closer to the UE.

Current EPC designs offer carriers the flexibility to mix and
match EPC functions from different vendors. PEPC as implemented
right now does not allow mix and match.

4 IMPLEMENTATION
In this section we describe the implementation of the individual
components of PEPC.We begin by briefly describing NetBricks [33],
the underlying framework we use to program and run the EPC
functions, and discuss why and how we use it.

4.1 Background on NetBricks
The NetBricks framework provides a set of customizable network
processing elements for writing network functions and an execution
environment which provides the same memory isolation as VMs or
containers, without incurring the same performance penalties. We
use NetBricks for PEPC because it allows us to run multiple PEPC
slices within the same process, instead of running these inside VMs
or containers. Compared to VMs and containers, our PEPC binaries
in NetBricks are lightweight, with a size of approximately 5MB.
Any single PEPC binary can have many slices, and each reuses
common code modules8.

NetBricks uses the Rust programming language [38], and PEPC
is also written in rust, and runs inside NetBricks execution envi-
ronment.

4.2 PEPC slice
Listing 1 describes the implementation of a slice in PEPC. It consists
of a set of configurations, containing policy rules, charging filters,
etc. Each PEPC slice consist of its own control and data plane. The
PEPC control and data plane threads are pinned to separate cores. A
slice also maintains state tables corresponding to the data and con-
trol thread. The shared state is implemented through Read/Write
locks per user state. The PEPC slice scheduler transmits the out-
bound packets, in accordance with the QoS requirements of the
traffic. A slice also maintains a migration channel with the PEPC
node/server scheduler, allowing to receive state transfer requests
and send state transfer responses.

Below we describe the data plane functions, control plane func-
tions and customizations we implement. We also describe how we
implement the two level cache.

8We note that this is the size of the binary with our existing implementation and
protocol support. This does not include support for interacting with backend servers
such as HSS (S6 interface) and PCRF (Gx interface).

354

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Zafar Qazi et al.

Listing 1 A slice in PEPC.
1 struct Slice {
2 pub config: EpcConfig,
3 ctrl_core: i32,
4 data_core: i32,
5 dp_state: HashMap<id,RwLock<UeContext>>,
6 cp_state: HashMap<id,RwLock<UeContext>>,
7 pub sched: Scheduler,
8 // State migration
9 from_node_sched: Receiver<StateTransferMessage>,
10 to_node_sched: SyncSender<StateTransferMessage>,
11 ...
12 }

Slice data plane: Our data path consists of a chain of network
functions programmed using NetBricks. We currently implement
GTP-U encapsulation and decapsulation, user state look-up which
involves mapping downlink traffic to the appropriate GTP-U tunnel.
We also implement the Policy Charging and Enforcement Function
(PCEF), as a match-action table, consisting of BPF programs over the
5-tuple and operator specified actions. Our PEPC implementation
can handle data-traffic from existing base-stations, and our evalua-
tion uses traces from a open source base-station emulator [32].
Slice control plane: Our current slice control plane implemen-
tation emulates state operations corresponding to two types of
control events; attach request and S1-based handovers. In an attach
event, state is allocated for a new user device, the control plane
inserts this into its local state table, and then notifies the data plane.
S1-based handovers require modification of specific elements of the
user state, specifically eNodeB tunnel identifier, used to identify
a GTP-U tunnel with the base-station, and the IP address of the
new base-station. In addition, we have built support for S1AP pro-
tocol for parsing request messages and sending response messages
from/to the UE/eNodeB on the S1-MME interface. We also have
support for handling NAS messages [2], which is used to convey
non-radio signalling between the UE and the MME, and sits on top
of the S1AP in the protocol stack. We presently only have support
for handling the attach procedure over S1AP/NAS.
Customization:We implement customized processing for a class
of IoT devices running a single application, with default best effort
service. We refer to these as Stateless IoT devices. For these devices,
the data plane avoids the state lookups, only applies policy and
charging rules. For these devices PEPC assigns the tunnel endpoint
identifiers (TEIDs) and IP addresses from a pre-assigned pool, and
this information is then used to infer the service required by these
devices. In PEPC, an operator can assign these devices to their own
independent slice with customized processing.
Two-level state storage: PEPC slice control-plane has a two-level
state storage architecture: a small primary storage containing state
for active devices and a secondary state table for all devices. A
device in primary storage may be evicted after being idle for some
specified duration by the control plane. In the case the state for
a device does not exist in the data plane, it can query the control
plane to retrieve the reference of the state from the secondary state
table.

4.3 PEPC Node
We describe how we implement the Demux function and PEPC
node scheduler.

Demux: PEPC implements a LookUpSlice (Figure 3) function that
reads the TEID/IP from the data packets and searches a mapping
table to assign a slice. The Demux functions currently does not
implement the dynamic mapping of signaling traffic to a slice.
Scheduler: The PEPC node scheduler currently implements the
following functions, (i) it instantiates PEPC slices based on a given
operator configuration, and (ii) it handles state migrations. The
PEPC scheduler currently implements migration within a PEPC
node, i.e., migrating user state between two slices within the same
server. For state migrations, the PEPC scheduler is responsible for
sending state transfer messages to a specific slice, and receiving
state transfer responses. To ensure state migrations do not lead to
packet losses or any inconsistent updates to user state, the PEPC
scheduler buffers the packets which are undergoing migration.
Specifically, it implements per-user migration queues, which are
drained once a user state is migrated. It then sends these packets
to the new slice. We discuss the feasibility of state migrations in
PEPC in §6.6

5 EVALUATION SETUP
In this section, we describe our evaluation setup, baselines and
parameters.

5.1 Testbed
Our test environment has two servers running Ubuntu 14.04 with
Linux kernel 4.4.0, each with two sockets populated with 22 core
Intel Xeon E5-2699 v4 CPUs clocked at 2.2GHz (hyperthreading
disabled) and 64GB of RAM, split evenly between each socket. Both
servers are also equipped with an Intel X710 40Gb (4 x 10) NIC. Both
the servers are patched directly to each other using all available
ports. The server running PEPC uses NetBricks, which uses DPDK
16.04 and the nightly build of Rust.

We setup one server to generate traffic, while the other server
runs PEPC. In the uplink direction, to emulate sending data-traffic
from the eNodeB, we use traces collected using OpenAirInterface [32],
which provides a user device and base-station emulator. The data-
traffic in these traces is encapsulated using GTP-U, and is replayed
by the traffic generator. In the downlink direction, EPC functions
receive normal IP traffic.

For emulating a large number of user device tunnels, we syn-
thetically modify TEID before the traffic is processed by PEPC.

For testing signaling traffic we divide our experiments into two
categories. In the first set of experiments, we test with an implemen-
tation of the S1AP and NAS protocol, and implement the handling
of request and response messages between the UE/eNodeB and
EPC for an attach request procedure. These experiments are run
with real signaling traces from a commercial traffic generator and
RAN emulator from ng4T [28].9 In these traces SCTP is used as the
underlying transport protocol,10 and S1AP and NAS protocols are
implemented. However, because of lack support for handling SCTP
in NetBricks, we use kernel-based SCTP implementation which
impacts how much we can scale the handling of signaling events.

9Some of the NG4T signaling traces are available online [29].
10SCTP is the 3GPP recommended underlying transport protocol for S1AP protocol
and also used in the signaling traces from ng4T.

355

Packet Core for Next Generation Cellular Networks SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

The second set of experiments are aimed at testing with signal-
ing traffic at scale. In these experiments, we synthetically generate
only control updates corresponding to attach requests and S1-based
handovers. When a attach event is received, the user device creates
the appropriate user device state, and adds it to state table. In the
event of a S1-based handover, the device state gets modified, includ-
ing the IP address of the eNodeB it is connected to, and TEID. In
our evaluation experiments, the control updates are uniformly dis-
tributed across the number of user devices. However, no signaling
messages are generated over the wire.

In the evaluation results that follow up in §6 and §7, the Figure
4, 5, 8, 10 correspond to the first set of experiments. And the rest of
the results correspond to the second set of experiments.

5.2 Baselines
We compare the scalability benefits of PEPC, against the following
EPC implementations.
1. An industrial software EPC implementation developed in collab-

oration between carriers and our industrial partners for deploy-
ment. We refer to this system as Industrial#1.11 It uses DPDK
to bypass the kernel for fast I/O, and its data plane includes
support for GTP and Application Detection and Control (ADC).
In PEPC, we implement the same functions along with the Pol-
icy and Charging Enforcement Function (PCEF). In comparing
the test results of Industrial#1 with PEPC, we use the same
workloads for testing, including traffic mix (uplink to downlink
traffic ratio) and signaling event rate (e.g., number of attach
requests per second).12

2. We also use as reference data points from another industrial
EPC implementation used in a recent study [37]. We refer to
it as Industrial#2. It also uses DPDK. We used the same test
parameters and workloads (number of tunnels, control events
per second, uplink to downlink traffic ratios) cited in the paper
for comparing these results with PEPC. We were also able to
verify with the authors of the study the data plane functions
they implemented. Its data plane supports GTP, but does not
implement ADC and PCEF functions. The results that we cite
here for Industrial#2 are directly taken from the paper [37].

3. OpenAirInterface: We also test OpenAirInterface release
0.2, an open source EPC implementation, used to experiment
with features for next generation EPC designs [32]. It currently
supports GTP, but not ADC and PCEF.

4. OpenEPC:We also test OpenEPC using the PhantomNet testbed [6].
Under PhantomNet, restricted binary-only OpenEPC images are
available for testing.
Both Industrial#1 and Industrial#2 run as processes and

not inside VMs or containers.

5.3 Parameters
We evaluate PEPC across a number of evaluation parameters that
can potentially impact performance of EPC functions. Table 2 lists

11Anonymized as the current license does not allow us to reveal name.
12Both Industrial#1 and PEPC were run on the same hardware with the same
configuration.

Parameter Default value
Ratio of uplink to downlink traffic 1:3

Downlink packet size 64 bytes
Uplink packet size 128 bytes
Signaling event type attach request

Signaling events per second 100K
Number of users 1M

Table 2: Evaluation parameters and default values.

 0

 1

 2

 3

 4

 5

 6

 7

OAI OpenEPC Industrial#1 Industrial#2 PEPC
D

a
ta

-p
la

n
e
 t

h
ro

u
g
h
p
u
t

 (
M

p
p
s)

Figure 4: Data plane performance comparison.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 100 10000

D
a
ta

-p
la

n
e
 t

h
ro

u
g
h
p
u
t

 (
M

p
p
s)

Number of users (in thousand)

Industrial#1

PEPC

Industrial#2

Figure 5: Data plane performance with number of users.

the evaluation parameters and their default values. Unless otherwise
stated, the parameter values used during our experiments are the
default ones and the reported data plane throughputs are per core.

6 PEPC SCALABILITY
We first compare PEPC’s performance against all the baselines. We
then test PEPC’s scalability, with increasing number of (i) user
devices, (ii) signaling events, (iii) cores, and (iv) state migrations.

6.1 Comparison with all the baselines
Figure 4 shows PEPC performance in comparison with
OpenAirInterface, OpenEPC on Phantomnet [6], Industrial#1
and Industrial#2. PEPC data plane throughput is more than an or-
der of magnitude higher as compared to OpenAirInterface (OAI)
and OpenEPC, 6 times higher than Industrial#1, and more than 3

356

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Zafar Qazi et al.

 1

 2

 3

 4

 5

 6

 7

 8

1/6000 1/600 1/60 1/6 1/1

D
a
ta

-p
la

n
e
 t

h
ro

u
g
h
p
u
t

p
e
r

co
re

 (
M

p
p
s)

Signaling/Data Ratio

1 user

10 users

1000 users

Figure 6: PEPC data plane performance as a function of sig-
naling/data traffic ratio.

time higher than Industrial#2. OpenAirInterface and OpenEPC
achieves a very low data plane throughput in comparison with
other implementations13. The bottleneck in OpenAirInterface and
OpenEPC is that it does not use kernel bypassing mechanisms (e.g.
DPDK). As a result, for our next set of scalability evaluations, we
drop OpenAirInterface and OpenEPC.

6.2 Increasing user devices
Figure 5 shows the data plane performance (Mpps/core) with in-
creasing number of user devices.14 During these experiments we
consider 10K attach events per second. PEPC can achieve a per-
formance of more than 5Mpps for 1M user devices, and can sus-
tain a throughput of 4Mpps for upto 3M users. In comparison,
Industrial#1 data plane throughput drops to less than 0.1Mpps/core
for a 1M users, a drop of more than 90% from the rate sustained
with 100K users. Similarly, Industrial#2 EPC exhibits a drop in
data plane throughput of about 50% (from 3.28Mpps to 1.62Mpps),
when increasing the number of user devices from 128 to 292K users,
(however with these data points there are no signaling events). 15

6.3 Increasing signaling
Figure 6 shows the data-plane performance (Mpps/core) plotted
against increasing signaling/data traffic ratio. We vary the signal-
ing to data traffic ratio, by varying the number of signaling events
per second. We consider three different mix of signaling and data
traffic patterns by varying the number of user devices. We observe
in Figure 6 that PEPC can sustain a performance of 7Mpps/core
for signaling to data traffic ratio of 1:10. The signaling to data traf-
fic ratio is estimated to rise to 1:17 [23]. In the worst case, with
1:1 signaling to data traffic ratio and only a single user, PEPC still
achieves a throughput of 2.6Mpps. In contrast, Industrial#1 per-
formance drops to close to 0 for more than 10K signaling events per
second (signaling to data ratio of 1:100) , whereas Industrial#2
13The results assume 250K user devices and 10K attach/s for for PEPC and
Industrial#1, 292K users for Industrial#2 with 3000 signaling events, whereas for
OpenAirInterface/OpenEPC uses a single user.
14We use the number of users as a proxy for number of tunnels. It is possible that a
user device may have multiple tunnels.
15Note for comparison with Industrial#2, we changed the traffic ratio of downlink to
uplink to 1:3 to match their configurations. PEPC had the same data plane throughput
with the new traffic ratio.

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5

D
a
ta

-p
la

n
e
 t

h
ro

u
g
h
p
u
t

 (
M

p
p
s)

Number of data cores

10M,100K

10M, 10K

Figure 7: Data-plane performance with number of cores.

performance drops by 15% with 3000 signaling events per second
(signaling to data ratio of 1:100).

6.4 Scaling with number of data cores
Figure 7 shows how our data plane performance scales with increas-
ing number of data cores. The label (X,Y) refers to X users and Y
signaling events. For this experiment we generate 10Gbps of traffic
on all four ports available in our test setup. To ensure the same
traffic ratios as the other tests, we then split received traffic before
uplink and downlink processing. With 4 data cores for data traffic,
the aggregate data plane performance scales linearly to 14Mpps,
with a total 10M users and 100K signaling events.

6.5 Scaling the control plane
Figure 10 shows the total number of cores needed to handle a
given signaling to data ratio. The signaling to data ratio specifically
refers to the ratio between the number of attach requests and the
number of data packets. Note that each attach request leads to
several request/response messages between the UE/eNodeB and
the EPC. For these experiments, there is full support for parsing
and sending S1AP messages, including NAS messages, over SCTP.
We vary the signaling to data ratio, by increasing the rate at which
attach requests are generated16, while keeping the data plane load
constant. The data plane load is the maximum data rate that can be
handled by a single data core.

To put the results in perspective, with a signaling to data ratio
of 1:304, which according to estimates is the peak signaling to data
ratio for current workloads [23]17, PEPC would need a data core
and a separate control core. For our test experiments, this translates
into 5.2 Mpps of data traffic and <19K attach requests per second.

Figure 11 shows the maximum rate of attach requests that can be
handled as we increase the number of control cores. With 1 core we
can handle about 20K attach request per second and with 8 cores
about 120K requests per second. In our current implementation,
we use the SCTP implementation in the Linux kernel because of
lack of existing SCTP support in the NetBricks framework. We

16For simplicity, in these experiments each core has a separate SCTP connection, over
which the S1AP messages are exchanged. The total number of users were evenly
divided over these connections.
17This is the estimate for the peak rate of signaling events that lead to some user state
synchronization.

357

Packet Core for Next Generation Cellular Networks SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

D
ro

p
 i
n
 d

a
ta

 p
la

n
e
 t

h
ro

u
g
h
p
u
t

(%
)

Number of migrations per second

Figure 8: The impact of state migrations on data plane
throughput.

 0

 5

 10

 15

 20

1000 10000 25000 75000 150000

P
e
r-

p
a
ck

e
t

la
te

n
cy

 (
u
s)

Number of migrations per second

Figure 9: The impact of state migrations on per-packet la-
tency.

 0

 2

 4

 6

 8

 10

1/304 1/283 1/141 1/97 1/75 1/63 1/52 1/48 1/44

N
u
m

b
e
r

o
f

co
re

s

Signaling/Data Ratio

Control

Data

Figure 10: The number of cores needed to handle a given
signaling to data ratio, with increasing number of attach re-
quests and support for handling S1AP and NAS messages.

observe that such a kernel implementation can become a potential
bottleneck when handling signaling messages.

6.6 Scalability with state migrations
Impact on data plane throughput: Figure 8 shows that PEPC
only experiences a drop of 5% in data plane throughput with 10K

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 3 4 5 6 7 8N
u
m

b
e
r

o
f

a
tt

a
ch

 r
e
q
u
e
st

s
p
e
r

se
co

n
d

Number of control cores

Figure 11: The number of attach requests that can be han-
dled with increasing number of control cores. In these ex-
periments, S1AP and NAS protocols are used.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

D
a
ta

-p
la

n
e
 t

h
ro

u
g
h
p
u
t

 (
M

p
p
s)

Number of state updates

Giant lock

Datapath writer

PEPC

Figure 12: Comparison of different shared state implemen-
tations.

user migrations per second. We start to see a more significant drop
in performance about 37% with 100K migrations per second.
Impact on per-packet latency: In Figure 9 shows the end-end
per-packet latency distribution during state migrations. We do not
observe any appreciable increase in median per-packet latency, but
as we increase the number of migrations, in the worst-case, there
can be an increase of 4µs in per packet latency with 25K migrations
per second.

7 FACTOR ANALYSIS
To better understand PEPC design choices and separate out the
benefits of PEPC’s different design ideas, we perform a series of
micro-benchmarks. These include (i) comparison between different
shared state implementations, (ii) impact of batching, (iv) impact of
two-level state tables, (v) impact of customization.

7.1 Shared state implementations
We consider three different implementations for the shared state
in PEPC slice. The “Giant lock" uses a single giant lock to protect
access to the entire state table, consisting of state of multiple users.
In the “Datapath writer" implementation, we have a fine-grained
Read/Write lock associated with each user state, but there is a single

358

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Zafar Qazi et al.

 1

 2

 3

 4

 5

 6

1/6000 1/600 1/60 1/6 1/1

D
a
ta

-p
la

n
e
 T

h
ro

u
g
h
p
u
t

 (
M

p
p
s)

Signaling/Data Ratio

w/o batched updates

w batched updates

Figure 13: The impact on data plane performance by batch-
ing updates.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

%
 I
m

p
ro

v
e
m

e
n
t

in
 d

a
ta

-p
la

n
e

 t
h
ro

u
g
h
p
u
t

% of always-on devices

Low Churn

High Churn

Figure 14: Performance improvement with two-level state
tables over a single state table.

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 25 50 75 100

Im
p
ro

v
e
m

e
n
t

in
 d

a
ta

 p
la

n
e

 t
h
ro

u
g
h
p
u
t

(%
)

% of stateless IoT devices

Figure 15: Benefits of customizing IoT devices in PEPC.

per-user shared state, and the data-plane also haswrite access to this
shared state. “PEPC" uses fine-grained per user locks, but separate
out per user charging record, for which the data plane is the only
writer and control plane only reads it. In Figure 12, we observe with
a ‘Giant lock", data plane performance drops severely, for large
state updates. For 3M state updates the performance drops close to
1 Mpps, whereas with fine grained locks both “Datapath writer" and
“PEPC" maintain a consistent data plane throughput irrespective
of the number of state updates. However, with write accesses to

both data and control plane, in the case of “Datapath writer" we
see only upto 0.3Mpps drop in data plane throughput as compared
to “PEPC".

7.2 Impact of batching updates
PEPC batches updates to the data plane, related to the insertion
or deletion of a specific user state Figure 13 shows the benefits of
batching updates at the data plane in the case of an attach event
which leads to a new user state being inserted. In the case of batched
updates, data plane syncs updates from the control plane only every
32 packets. Figure 13 shows that with a signaling to data traffic
ratio of 1:1, batched updates result in a performance improvement
of more than 1Mpps.

7.3 Impact of two-level state tables
In Figure 14, we show the data plane performance improvement
with two-level state tables as compared to a single state table. Our
goal is to (i) measure the data plane performance improvement
with two state tables as a function of number of always-on devices
and (ii) investigate how this is impacted by the churn between the
primary and secondary state tables.

We consider a total of 1M devices, and vary the fraction of always-
on devices; the state for these devices is always maintained in the
primary state table. The remaining devices are maintained in the
secondary state table, and depending on the level of churn, we move
the state of some of these devices into the primary state table, and
similarly evict the state of some of the devices from the primary
table to the secondary table. ‘Low Churn’ refers to 1% of all devices
moving into the primary state table per second and 1% of all devices
getting evicted from the primary state table. Similarly, ‘High Churn’
refers to 10% of all devices moving into and getting evicted from
the primary state table.

We observe close to 29-27% improvement in data plane perfor-
mance when 1% of the devices are always-on. The primary reason
for the performance improvement is the lookup performance on
the data path i.e., with a smaller primary table, the data plane’s per-
packet state lookup performance improves. As the % of always-on
devices increases, the performance gap decreases, with 50% always-
on devices there is a performance improvement of 1-3% and with
100% always-on devices, the performance is the same as with a
single state table. We also observe that increasing the churn rate
does not have a significant impact on the data plane performance
(≤ 2%).

7.4 Impact of customization
Figure 15 shows the benefits of customizing Stateless IoT devices
in PEPC. Specifically, we consider a total of 10M devices, and vary
the percentage of IoT devices. For 5% of these devices, we observe
about 3% improvement in data plane throughput as compared to
the case where there is no customization for these devices. As we
increase the percentage of these devices, the performance increases
sharply, with a performance improvement of about 38% in the case
when there are only Stateless IoT devices.

359

Packet Core for Next Generation Cellular Networks SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

8 DISCUSSION
Failure handling: In the current EPC architecture, network func-
tions (e.g., MME and S-GW) can fail independently. Thus, if a MME
fails, the S/P-GW can still process data traffic correctly until there
are any signaling events. However, if a S/P-GW fails, no data/voice
traffic can be processed correctly until the S/P-GW state is recon-
structed and a connection between the MME and the new S/P-GW
is established.

In PEPC, there is primarily a single failure mode (i.e., a PEPC
node fails). Thus, if a PEPC node fails, both the user’s data and
control traffic cannot be processed until the necessary user state is
recovered. To handle failures in PEPC, we can borrow from recent
work on providing fault tolerance for middleboxes [36, 42].
Relevance for 5G: Future 5G cellular networks are expected to see
significant change in traffic workloads [23]. There are a number of
trends that are expected to contribute to this, including, (i) a shift to
small cell sizes, which will likely cause more mobility handoffs, and
hence higher signaling load, (ii) the emergence of many IoT devices
with high signaling to data ratio [41], (iii) new latency sensitive ap-
plication like driverless cars. As discussed earlier (2.1), the existing
EPC design is poorly equipped to handle these workloads due to
poor scalability and lack of elasticity in the current design which
leads to a largely centralized deployment of EPC systems [35]. On
the contrary, PEPC is targeted to handle such future workloads, e.g.,
in PEPC there is little impact of increasing signaling traffic on the
data traffic, and it can enable distributed cellular core deployments
by facilitating horizontal scaling by users and providing support for
efficient migration of user processing. In this respect, PEPC’s goals
are aligned with recent initiatives such as MCORD [21] which are
also aimed at enabling such deployments.
Potential savings with PEPC: We perform back of the envelop
calculations to analyze the potential cost savings with PEPC for
a large carrier. We compare against Industrial#1. Taking into
account the total number of subscribers for the carrier [44] and
maximum possible data rate supported by the carrier when using
LTE [45], we infer the total number of servers needed to support
all the subscribers at their peak data load. We assumes that similar
amount of signaling traffic from the eNodeBs can be handled by both
implementations. For our analysis, we use the per-core performance
for PEPC and Industrial#1 from our experimental evaluation
results. The analysis reveals that a large carrier can potentially save
upto 100K servers with PEPC in EPC costs.

9 RELATEDWORK
SDNbased cellular core designs: SoftCell [15] and SoftMoW [24]
argue for a SDN-based architecture for the cellular core, with flex-
ible wide area routing. SoftCell addresses the challenges in sup-
porting fine-grained policies for mobile devices in such a cellular
network architecture, such as minimizing forwarding table entries
in the core switches. SoftMoW proposes a recursive and recon-
figurable SDN-based cellular WAN architecture with a logically
centralized control plane for achieving global optimizations, such
as reducing routing path lengths for latency sensitive applications.
These are complementary to PEPC, which addresses the scaling is-
sues with current decomposition of EPC functions and proposes an
alternate state driven EPC system design, which scales with future

cellular workloads, such as increasing user devices and signaling
traffic. For global routing optimizations, PEPC can potentially ben-
efit from these proposals for a programmable cellular WAN.
Virtualizing EPC functions: KLEIN [35] proposes a NFV-based
cellular core, which assumes a software-based EPC implementation.
It addresses the problem of managing EPC resources in a virtualized
EPC, with the objective of distributing load optimally across EPC
instances. KLEIN is complementary to PEPC, as PEPC targets the
specific system design issues of EPC functions, whereas KLEIN
provides a orchestration layer for managing EPC functions across
a cellular network. KLEIN uses OpenAirInterface as the underly-
ing virtual EPC, and we compare against it in §5. There are other
proposals [9, 16, 34, 39] that present backwards compatible mech-
anisms for virtualizing core EPC functions like S-GW and P-GW,
and using SDN to route traffic through software instances.
Managing signaling traffic: Recent proposals [7, 26] argue for
handling the increasing signaling traffic from the base stations.
SCALE [7] proposes mechanisms for scaling a software MME to
handle increasing signaling and whereas ProCel [26] argues for
reducing the signaling traffic from the base stations which is for-
warded to the cellular core. Both these designs are in a sense com-
plementary to PEPC, which addresses the problem of frequent
synchronization between EPC functions due to state duplication.
IoT customizations: Recent proposals also call for clean-slate
proposals for customizing EPC and base station processing for
IoT devices [22, 27] and designing a more evolvable software de-
fined cellular architecture to support new services (e.g., related to
machine-to-machine communication) [43]. In contrast, PEPC de-
sign enables customization of EPC functions for IoT devices without
modifying the base stations.
Consolidated middlebox architectures: There are general mid-
dlebox architectures that aim to consolidate multiple middlebox
applications on a single hardware platform, such as CoMb [40].
PEPC is a specific system design of EPC functions that goes be-
yond simple consolidation and addresses specific scaling issues in
EPC functions related to state duplication, inefficient migration and
fixed packet processing pipelines.

10 CONCLUSIONS
Existing EPC functions do not scale well with increasing number
of user devices and signaling events. We argue the key issue for
this poor scalability is how state is decomposed and managed in
EPC, which leads to frequent synchronization between multiple
components. To address these limitations, we propose a new sys-
tem level architecture, PEPC, which involves a novel re-factoring
of EPC functions, consolidating state in one location and refac-
toring how state is accessed. This refactoring in turn facilitates
other performance optimizations, such as vertical scaling, efficient
state migration and customized processing. Based on these design
ideas we build PEPC, and show that it achieves roughly 3-7 times
higher data plane throughput as compared to two industrial vEPC
implementations. We also show that it scales well with the number
of user devices and increasing signalling traffic.

360

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Zafar Qazi et al.

11 ACKNOWLEDGEMENTS
We thank our shepherd Suman Banerjee and the anonymous SIG-
COMMreviewers for their helpful feedback.We thankAlec Zadikian
for his help with the S1AP protocol implementation. We also thank
Ashok Sunder Rajan and Christian Maciocco for their technical
help and feedback. This research was supported in part by NSF,
award number 1553747, and in part by the financial support from
Intel Research.

REFERENCES
[1] 3GPP Ref #: 23.401. 2016. General Packet Radio Service (GPRS) enhancements for

Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access. Retrieved
09/05/2016 from http://www.3gpp.org/DynaReport/23401.htm

[2] 3GPP Ref #: 24.301. 2016. Non-Access-Stratum (NAS) protocol. Retrieved 09/05/2016
from www.3gpp.org/dynareport/24301.htm

[3] 3GPP Ref #: 29.272. 2016. Mobility Management Entity (MME) and Serving GPRS
Support Node (SGSN) related interfaces based on Diameter protocol. Retrieved
09/05/2016 from www.3gpp.org/DynaReport/29272.htm

[4] 3GPP. 2016. 3GPP Specifications. Retrieved 09/05/2016 from http://www.3gpp.org
[5] aws lb. 2016. AWS Load balancer. (2016). Retrieved 09/05/2016 from https:

//aws.amazon.com/elasticloadbalancing/
[6] Arijit Banerjee, Junguk Cho, Eric Eide, Jonathon Duerig, Binh Nguyen, Robert

Ricci, Jacobus Van der Merwe, Kirk Webb, and Gary Wong. 2015. PhantomNet:
Research Infrastructure for Mobile Networking, Cloud Computing and Software-
Defined Networking. GetMobile: Mobile Computing and Communicationss (2015).

[7] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera, Kobus
Van der Merwe, and Sampath Rangarajan. 2015. Scaling the LTE Control-Plane
for Future Mobile Access. In CoNEXT’15.

[8] Barefoot. 2016. Barefoot. (2016). Retrieved 09/05/2016 from https://www.
barefootnetworks.com/

[9] A. Basta et al. 2013. A Virtual SDN-enabled LTE EPC Architecture: A case study
for S-/P-Gateways functions. In SDN4FNS’13.

[10] blog4g. 2017. On Signaling Storm. (2017). Retrieved 01/22/2017 from http:
//blog.3g4g.co.uk/2012/06/on-signalling-storm-ltews.html

[11] Cisco. 2016. Cisco Visual Networking Index. (2016). Retrieved 09/21/2016 from
https://goo.gl/i6rd9e

[12] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. 2009.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In SOSP’09.

[13] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In NSDI’16.

[14] f5. 2017. f5: Load balancing. (2017). Retrieved 01/26/2017 from https://f5.com/
glossary/load-balancing-101

[15] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. 2013. SoftCell:
Scalable and Flexible Core Network Architecture. In CoNEXT’13.

[16] J. Kempf, B. Johansson, S. Pettersson, H. Luning, and T. Nilsson. 2012. Moving the
Mobile Evolved Packet Core to the Cloud . In International Workshop on Selected
Topics in Mobile and Wireless Computing 2012.

[17] Kubernetes. 2016. Production-Grade Container Orchestration. (2016). Retrieved
09/05/2016 from https://kubernetes.io/

[18] Lightreading. 2016. Operators Fight Back on Smartphone Signaling. (2016).
Retrieved 09/05/2016 from http://goo.gl/MIbuJ9

[19] Lightreading. 2016. Operators Urge ActionAgainst Chatty Apps. (2016). Retrieved
09/05/2016 from http://goo.gl/mqaaE5

[20] Heikki Lindholm, Lirim Osmani, Hannu Flinck, Sasu Tarkoma, and Ashwin Rao.
2015. State Space Analysis to Refactor the Mobile Core. In AllThingsCellular’15.

[21] M-CORD. 2016. Mobile CORD: Enabling 5G on CORD.
[22] Ali Mohammadkhan, K.K. Ramakrishnan, Ashok Sunder Rajan, and Christian

Maciocco. 2016. CleanG: A Clean-Slate EPC Architecture and Control Plane
Protocol for Next Generation Cellular Networks. In CAN’16.

[23] A. Mohammadkhan, K. K. Ramakrishnan, A. S. Rajan, and C. Maciocco. 2016.
Considerations for re-designing the cellular infrastructure exploiting software-
based networks. In ICNP’16.

[24] Mehrdad Moradi, Wenfei Wu, Li Erran Li, and Zhuoqing Morley Mao. 2014. Soft-
MoW: Recursive and Reconfigurable Cellular WAN Architecture. In CoNEXT’14.

[25] Robert Morris, Eddie Kohler, John Jannotti, and M Frans Kaashoek. 2000. The
Click modular router. In ACM Transactions on Computer Systems 2000.

[26] Kanthi Nagaraj and Sachin Katti. 2014. ProCel: Smart Traffic Handling for a
Scalable Software EPC. In HotSDN ’14.

[27] Vasudevan Nagendra, Himanshu Sharma, Ayon Chakraborty, and Samir R. Das.
2016. LTE-Xtend: Scalable Support of M2M Devices in Cellular Packet Core. In
AllThingsCellular’16.

[28] ng4T. 2016. Next generation Telecommunication Technology Testing Tools. Retrieved
09/05/2016 from http://www.ng4t.com/

[29] ng4T. 2016. Wireshark Recordings. Retrieved 09/05/2016 from http://www.ng4t.
com/wireshark.html

[30] Binh Nguyen, Arijit Banerjee, Vijay Gopalakrishnan, Sneha Kasera, Seungjoon
Lee, Aman Shaikh, and Jacobus Van der Merwe. 2014. Towards Understanding
TCP Performance on LTE/EPC Mobile Networks. In AllThingsCellulars’14.

[31] Nokia. 2016. Signaling is growing 50% faster than data traffic. (2016). Retrieved
09/05/2016 from http://goo.gl/uwnRiO

[32] OpenAirInterface. [n. d.]. OpenAirInterface: A 5G software alliance for democratis-
ing wireless innovation .

[33] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In OSDI’16.

[34] K. Pentikousis, Y. Wang, and W. Hu. 2013. Mobileflow: Toward software-defined
mobile networks . In International Workshop on Selected Topics in Mobile and
Wireless Computing 2013.

[35] Zafar Ayyub Qazi, Phani Krishna Penumarthi, Vyas Sekar, Vijay Gopalakrishnan,
Kaustubh Joshi, and Samir R. Das. 2016. KLEIN: a Minimally Disruptive Design
for an Elastic Cellular Core. In SOSR’16.

[36] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. 2013. Pico Replication:
A High Availability Framework for Middleboxes. In SOCC’13.

[37] A. S. Rajan, S. Gobriel, C. Maciocco, K. B. Ramia, S. Kapury, A. Singhy, J. Er-
manz, V. Gopalakrishnanz, and R. Janaz. 2015. Understanding the bottlenecks in
virtualizing cellular core network functions. In LANMAN’15.

[38] Rust. 2016. The Rust Programming Language. (2016). Retrieved 09/05/2016 from
https://www.rust-lang.org/en-US/

[39] M. R. Sama, L. M. Contreras, J. Kaippallimalil, I. Akiyoshi, H. Qian, and H. Ni.
2015. Software-Defined Control of the Virtualized Mobile Packet Core. In IEEE
Communications Magazine 2015.

[40] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi.
2012. Design and Implementation of a Consolidated Middlebox Architecture. In
NSDI’12.

[41] Muhammad Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia Wang.
2012. A First Look at Cellular Machine-to-machine Traffic: Large Scale Measure-
ment and Characterization. In SIGMETRICS’12.

[42] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy,
Luigi Rizzo, and Scott Shenker. 2015. Rollback-Recovery for Middleboxes. In
SIGCOMM’15.

[43] Aisha Syed and Kobus Van der Merwe. 2016. Proteus: A Network Service Control
Platform for Service Evolution in a Mobile Software Defined Infrastructure. In
MobiCom’16.

[44] Fierce Wireless. 2016. How Verizon, AT&T, T-Mobile, Sprint and more stacked up
in Q2 2016: The top 7 carriers. Retrieved 09/05/2016 from goo.gl/xhsXyx

[45] Yoni. 2016. Mammoth Study Finds Sprint’s 4G Network is the Worst – And It’s
Not Even Close. (2016). Retrieved 09/05/2016 from goo.gl/3ItLYM

[46] Zeljko. 2016. LTEDesign andDeployment Strategies. (2016). Retrieved 09/05/2016
from goo.gl/AAuCbR

361

http://www.3gpp.org/DynaReport/23401.htm
www.3gpp.org/dynareport/24301.htm
www.3gpp.org/DynaReport/29272.htm
http://www.3gpp.org
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://www.barefootnetworks.com/
https://www.barefootnetworks.com/
http://blog.3g4g.co.uk/2012/06/on-signalling-storm-ltews.html
http://blog.3g4g.co.uk/2012/06/on-signalling-storm-ltews.html
https://goo.gl/i6rd9e
https://f5.com/glossary/load-balancing-101
https://f5.com/glossary/load-balancing-101
https://kubernetes.io/
http://goo.gl/MIbuJ9
http://goo.gl/mqaaE5
http://www.ng4t.com/
http://www.ng4t.com/wireshark.html
http://www.ng4t.com/wireshark.html
http://goo.gl/uwnRiO
https://www.rust-lang.org/en-US/
goo.gl/xhsXyx
goo.gl/3ItLYM
goo.gl/AAuCbR

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 EPC background
	2.2 Scaling issues in existing EPC systems
	2.3 Deconstructing EPC state

	3 PEPC Design
	3.1 Design goals and approach
	3.2 PEPC Slices
	3.3 PEPC Nodes
	3.4 End-to-end Architecture
	3.5 PEPC vs. existing EPC design tradeoffs

	4 Implementation
	4.1 Background on NetBricks
	4.2 PEPC slice
	4.3 PEPC Node

	5 Evaluation Setup
	5.1 Testbed
	5.2 Baselines
	5.3 Parameters

	6 PEPC Scalability
	6.1 Comparison with all the baselines
	6.2 Increasing user devices
	6.3 Increasing signaling
	6.4 Scaling with number of data cores
	6.5 Scaling the control plane
	6.6 Scalability with state migrations

	7 Factor analysis
	7.1 Shared state implementations
	7.2 Impact of batching updates
	7.3 Impact of two-level state tables
	7.4 Impact of customization

	8 Discussion
	9 Related Work
	10 Conclusions
	11 Acknowledgements
	References

