
SIMPLE-fying Middlebox Policy Enforcement Using SDN

Zafar Ayyub Qazi
Stony Brook University

Cheng-Chun Tu
Stony Brook University

Luis Chiang
Stony Brook University

Rui Miao
University of Southern

California

Vyas Sekar
Stony Brook University

Minlan Yu
University of Southern

California

ABSTRACT
Networks today rely on middleboxes to provide critical performance,
security, and policy compliance capabilities. Achieving these ben-
efits and ensuring that the traffic is directed through the desired se-
quence of middleboxes requires significant manual effort and oper-
ator expertise. In this respect, Software-Defined Networking (SDN)
offers a promising alternative. Middleboxes, however, introduce
new aspects (e.g., policy composition, resource management, packet
modifications) that fall outside the purvey of traditional L2/L3 func-
tions that SDN supports (e.g., access control or routing). This paper
presents SIMPLE, a SDN-based policy enforcement layer for effi-
cient middlebox-specific “traffic steering”. In designing SIMPLE,
we take an explicit stance to work within the constraints of legacy
middleboxes and existing SDN interfaces. To this end, we address
algorithmic and system design challenges to demonstrate the fea-
sibility of using SDN to simplify middlebox traffic steering. In
doing so, we also take a significant step toward addressing industry
concerns surrounding the ability of SDN to integrate with existing
infrastructure and support L4–L7 capabilities.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]; C.2.1 [Network
Architecture and Design]: Centralized Networks; C.2.3 [Network
Operations]: Network Management

General Terms
Design, Management, Experimentation

Keywords
Middlebox, Network Management, Software-Defined Networking

1. INTRODUCTION
Surveys show that middleboxes (e.g., firewalls, VPN gateways,

proxies, intrusion detection and prevention systems, WAN optimiz-
ers) play a critical role in many network settings [20, 26, 37, 39,
43]. Achieving the performance and security benefits that middle-
boxes offer, however, is highly complex. This complexity stems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

from the need to carefully plan the network topology, manually
set up rules to route traffic through the desired sequence of mid-
dleboxes, and implement safeguards for correct operation in the
presence of failures and overload [20].

Software-Defined Networking (SDN) offers a promising alter-
native for middlebox policy enforcement by using logically central-
ized management, decoupling the data and control planes, and pro-
viding the ability to programmatically configure forwarding rules [12].
Middleboxes, however, introduce new dimensions for SDN that fall
outside the purvey of traditional Layer 2/3 (L2/L3) functions that
SDN tackles today. This creates new opportunities as well as chal-
lenges for SDN that we highlight in §2:

• Composition: Network policies typically require packets to go
through a sequence of middleboxes (e.g., firewall+IDS+proxy).
SDN can eliminate the need to manually plan middlebox place-
ments or configure routes to enforce such policies. At the same
time, using flow-based forwarding rules that suffice for L2/L3
applications atop SDN can lead to inefficient use of the avail-
able switch TCAM (e.g., we might need several thousands of
rules) and also lead to incorrect forwarding decisions (e.g., when
multiple middleboxes need to process the same packet).
• Load balancing: Due to the complex packet processing that

middleboxes run (e.g., deep packet inspection), a key factor
in middlebox deployments is to balance the processing load to
avoid overload [39]. SDN provides the flexibility to implement
load balancing algorithms in the network and avoids the need
for operators to manually install traffic splitting rules or use
custom load balancing solutions [42]. Unfortunately, the lim-
ited TCAM space in SDN switches makes the problem of gen-
erating such rules to balance middlebox load both theoretically
and practically intractable.
• Packet modifications: Middleboxes modify packet headers

(e.g, NATs) and even change session-level behaviors (e.g., WAN
optimizers and proxies use persistent connections). Today, op-
erators have to account for these effects via careful placement
or manually reason about the impact of these modifications on
routing configurations. By taking a network-wide view, SDN
can eliminate errors from this tedious process. Due to the pro-
prietary nature of middleboxes, however, a SDN controller may
have limited visibility to set up forwarding rules that account
for such transformations.

This paper presents the design and implementation of SIMPLE,1

a SDN-based policy enforcement layer for middlebox-specific traf-
fic steering [26]. SIMPLE allows network operators to specify a
logical middlebox routing policy and automatically translates this
into forwarding rules that take into account the physical topology,

1SIMPLE =Software-defIned Middlebox PoLicy Enforcement

switch capacities, and middlebox resource constraints. In designing
SIMPLE, we take an explicit stance to work within the confines of
existing SDN capabilities (e.g., OpenFlow) and without modifying
middlebox implementations.

Corresponding to the above challenges, there are three key com-
ponents in SIMPLE’s design:
• Efficient data plane support for composition (§4): We use

two key ideas: tunnels between switches and leverage SDN
capabilities to add tags to packet headers that annotate each
packet with its processing state.
• Practical unified resource management (§5): We decompose

the intractable optimization into a hard offline component that
accounts for the integer constraints introduced by switch capac-
ities and an efficient online component that balances middlebox
load in response to traffic changes.
• Learning middlebox modifications (§6): We exploit the re-

porting capabilities of SDN switches to design lightweight flow
correlation mechanisms that account for most common middlebox-
induced packet transformations.

We implement a proof-of-concept SIMPLE controller that ex-
tends POX [5] (§7). Using a combination of live experiments on
Emulab [44], large-scale emulations using Mininet [1], and trace-
driven simulations, we show that SIMPLE (§8):
• improves middlebox load balancing 6× compared to today’s

deployments and achieves near-optimal performance w.r.t. new
middlebox architectures [38];
• takes ≈100 ms to bootstrap a network and to respond to net-

work dynamics in a 11-node topology;
• takes ≈1.3 s to rebalance the middlebox load and is 4 orders of

magnitude faster than strawman optimization schemes.

2. OPPORTUNITIES AND CHALLENGES
We begin by identifying key opportunities and challenges in us-

ing SDN for middlebox-specific policy enforcement. To make this
discussion concrete, we use the example network in Figure 1 with
6 switches S1–S6, 2 firewalls FW1 and FW2, 1 IDS, and 1 Proxy.

2.1 Middlebox composition
Typical middlebox policies require a packet (or session) to tra-

verse a sequence of middleboxes. (This is an instance of the broader
concept of “service chaining”.) In our example, the administrator
wants to route all HTTP traffic through the policy chain Firewall-
IDS-Proxy and the remaining traffic through the chain Firewall-
IDS. Note that many middleboxes are stateful and need to process
both directions of a session for correctness.
Opportunity: Today, middleboxes are placed at manually induced
chokepoints and the routing is carefully crafted to ensure stateful
traversal. In contrast to this semi-manual and error-prone process,
SDN can programmatically ensure correctness of middlebox traver-
sal. Furthermore, SDN allows administrators to focus on what pol-
icy they need to realize without worrying about where this is en-
forced. Consequently, SDN allows more flexibility to route around
failures and middlebox overload and incorporate off-path middle-
box capabilities [19].
Challenge = Data plane mapping: Consider the physical se-
quence of middleboxes FW1-IDS1-Proxy1 for HTTP traffic in the
example. Let us zoom in on the three switches S2, S4, and S5 in
Figure 2. Here, S5 sees the same packet thrice and needs to decide
between three actions: forward it to IDS1 (post-firewall), forward
it back to S2 for Proxy1 (post-IDS), or send it to the destination
(post-proxy). It cannot, however, make this decision based only on
the packet header fields. The challenge here is that even though

S1

S6

S2

S5
Src =
10.1.0/16

FW1
(0.5)

FW2
(0.5)

10.1/16, HTTP *

Firewall IDS

Physical Sequence

FW1-IDS1-Proxy1 S1 S2 FW1 S2 S4 S5 IDS1 S5 S4 S2 Proxy1 S2 S4 S5 S6

FW2-IDS1-Proxy1 S1 S3 FW2 S3 S5 IDS1 S5 S4 S2 Proxy1 S2 S4 S5 S6

FW1-IDS1 S1 S2 FW1 S2 S4 S5 IDS1 S5 S6

FW2-IDS1 S1 S3 FW2 S3 S5 IDS1 S5 S6

S3 Dst = *

10.1/16, Rest *

Firewall IDS

Proxy
Policy Chains Proxy1

IDS1

S4

Figure 1: Example to illustrate the requirements that middlebox
deployments place on SDN. The table shows the different physical
sequences of switches and middleboxes used to implement the two
logical policy chains: Firewall-IDS and Firewall-IDS-Proxy.

2 1

3

4

5
S2

S5

HTTP

S4

Proxy1 IDS1 FW1

Figure 2: Example of potential data plane ambiguity to implement
the policy chain Firewall-IDS-Proxy in our example topology. We
annotate different instances of the same packet arriving at the dif-
ferent switches on the arrows.

we have a valid composition of middlebox actions, this may not
be realizable because S5 will have an ambiguous forwarding de-
cision. This suggests that the use of simple flow-based rules (i.e.,
the IP 5-tuple) traditionally used for L2/L3 functions will no longer
suffice.

2.2 Middlebox resource management
Middleboxes involve complex processing to capture application-

level semantics and/or use deep packet inspection. Studies show
that middlebox overload is a common cause of failures [20, 39],
and thus an important consideration is to balance the load across
middleboxes. For example, in Figure 1, we may want to divide the
processing load equally between the two firewalls.

Opportunity: Today, operators need to statically set up traffic
splitting rules or employ custom load balancing solutions.2 In con-
trast, a SDN controller can use data plane forwarding rules to flexi-
bly implement load balancing policies and route traffic through spe-
cific physical sequences of switches and middleboxes in response
to network dynamics [42].

Challenge = Data plane constraints: SDN switches are limited
by the number of forwarding rules they can support; these rules
are in TCAM and a switch can support a few thousand rules (e.g.,
1500 TCAM entries in 5406zl switch [14]). In a large enterprise
network with O(100) firewalls and O(100) IDSes [38], there are
O(100×100) possible combinations of the Firewall-IDS sequence.
Imagine a load balancing algorithm that splits the traffic uniformly
across all such combinations. Now, each such split needs to have
forwarding rules to route the traffic to the correct physical middle-
boxes. Thus, in the worst case, a switch in the middle of the net-
2Our conversations with network operators reveals that they often
purchase a customized load balancer for each type of middlebox!

work that lies on paths between these firewalls and IDSes may need
O(100× 100) forwarding rules. This an order of magnitude larger
than today’s switch capabilities [14]. In practice, the problem can
be even worse—we will have several policy chains each with mul-
tiple middleboxes, e.g., each ingress-egress pair may have a policy
chain per application port (e.g., HTTP, NFS). This implies that we
cannot directly use existing middlebox load balancing algorithms
as these do not take into account switch constraints [38].

2.3 Dynamic traffic transformation
Many middleboxes actively modify traffic headers and contents.

For example, NATs rewrite the IP addresses of individual packets
to map internal and public IPs. Other middleboxes such as WAN
optimizers may spawn new connections and tunnel traffic over per-
sistent connections.

In Figure 1, suppose there are two user groups accessing web-
sites through Proxy1 in an enterprise: The employee user group
from source subnet 10.1.1.0/24 should follow middlebox policy
Proxy-Firewall; while the guest user group from subnet 10.1.2.0/24
should follow middlebox policy Proxy-IDS. The proxy delivers the
traffic from different websites to users in the two user groups. Un-
fortunately, the traffic exiting the proxy may have different packet
headers, sessions, and payloads compared to the traffic entering it.
Thus, it is challenging for the controller to install rules at S2 to
steer the appropriate traffic to the Firewall or IDS (depending on
the original user group).

Opportunity: In order to account for such dynamic packet trans-
formations, operators today have to resort to ad hoc measures: (1)
placing middleboxes carefully (e.g., placing Firewall and IDS af-
ter the proxy to ensure all traffic traverses all middleboxes); or (2)
manually reason about the correctness based on coarse models of
middlebox behaviors. While these stop-gap measures may work,
they make the network brittle as it needlessly constrains legitimate
traffic (e.g., if the chokepoint fails) and may also allow unwanted
traffic to pass through (e.g., if we use wildcard rules). Using a
network-wide view, SDN can address these concerns by taking into
account such dynamic packet transformations.

Challenge = Controller visibility: Ideally, the SDN controller
needs to be aware of the internal processing logic of middleboxes
in order to account for traffic modifications before installing for-
warding rules. This logic, however, may be proprietary to the mid-
dlebox vendors. Furthermore, these transformations may occur on
fine-grained timescales and depend on the specific packets flowing
through the middlebox. This entails the need to automatically adapt
to such middlebox-induced packet transformations.

In summary, we see that middleboxes introduce new opportuni-
ties for SDN to reduce the complexity involved in carefully plan-
ning middlebox placements and semi-manually setting up forward-
ing rules to implement the middlebox policies in an efficient load-
balanced manner. At the same time, however, there are new chal-
lenges for SDN—data plane support for composition, managing
both switch and middlebox resources efficiently, and incorporating
middlebox-induced dynamic transformations.

3. SIMPLE SYSTEM OVERVIEW
Our goal in this paper is to address the challenges from the pre-

vious section without modifying middleboxes and working within
the constraints of the existing SDN switches and today’s SDN stan-
dards (i.e., OpenFlow). Our solution, called SIMPLE, is an SDN-
based policy enforcement layer that translates a high-level middle-
box policy into an efficient and load balanced data plane configura-
tion that steers traffic through the desired sequence of middleboxes.

Existing

SDN switches

Admin

FW IDS Proxy
Extranet, Web

Intranet, NFS
WanOpt

Rule Generator

Resource Manager Dynamics Handler

Legacy

Middleboxes

Topology, Traffic Policy

Spec

Mbox, Switch

constraints

Flow Action Counter
… … …

Today’s SDN interfaces

(e.g., OpenFlow)

Flow Action Counter
… … …

Connection

Mappings

Middlebox

load balancing

e.g., first few

packets of new

flows

Figure 3: Overview of the SIMPLE approach for using SDN to man-
age middlebox deployments.

Figure 3 gives an overview of the SIMPLE architecture showing
the inputs needed for various components, the interactions between
the modules, and the interfaces to the data plane. Note that SIM-
PLE only needs to configure SDN-enabled switches; middleboxes
do not need to be extended to support new SDN-like capabilities.
We begin by describing the high-level inputs to SIMPLE:
1. Processing policy: Building on the SDN philosophy of direct

control, we want network administrators to specify what pro-
cessing logic needs to be implemented and not worry about
where this processing occurs or how the traffic needs to be
routed. Building on previous middlebox research [25, 26, 38],
this policy is best expressed via a dataflow abstraction as shown.
Here, the operator specifies different policy classes (e.g., ex-
ternal web traffic or internal NFS traffic) and the sequence of
middlebox processing needed per class.

Each class c (e.g., 〈 External,Web 〉) is annotated with its
ingress and egress locations and IP prefixes. For example, this
external web traffic may be specified by a traffic filter such as:
〈 src = internal prefix, dst = external prefixes, srcport = *, dst-
port = 80, proto = TCP 〉. PolicyChainc denotes the required
middlebox policy chain for this class (e.g., Firewall-IDS).

2. Topology and traffic: SIMPLE must ultimately translate the
logical policy specification to the physical topology. Thus, it
needs a network map indicating where middleboxes are located,
the links between switches, and the link capacities. We also
need an expected volume of traffic Tc traversing each policy
class. Such inputs are typically already collected in network
management systems [17].

For simplifying our presentation, we assume that each mid-
dlebox is connected to the network via an SDN-enabled switch
as shown in Figure 1; our techniques also apply to deployments
where middleboxes act as a “bump-in-the-wire”. We use Mj

and Sk to denote a specific middlebox and switch respectively.
3. Resource constraints: There are two types of constrained re-

sources: (1) packet processing resources (e.g., CPU, memory,
accelerators) for different middleboxes and (2) amount of TCAM
available for installing forwarding rules in the SDN switches.
We associate each switch Sk with flow table capacity TCAM k

(number of rules) and each middlebox Mj with a packet pro-
cessing capacity ProcCapj .3

3We can extend this to model each type of resource (CPU, memory)
separately, but avoid doing so for brevity.

In addition, we need the per-packet processing cost across
middleboxes and classes. For generality, we assume that these
costs vary across middlebox instances (e.g., they may have spe-
cialized accelerators) and policy classes (e.g., HTTP vs NFS).
Let Footprintc,j denote the per-packet processing cost for a
packet belonging to class c at the middlebox Mj .

Corresponding to the three high-level challenges outlined in the
previous section, we envision three key modules in the SIMPLE
controller as shown in Figure 3.
1. The ResMgr module (§5) takes as input the network’s traffic

matrix, topology, and policy requirements and outputs a set of
middlebox processing assignments that implement the policy
requirements. This module takes into account both middlebox
and switch constraints in order to optimally balance the load
across middleboxes.

2. The DynHandler module (§6) automatically infers mappings
between the incoming and outgoing connections of middle-
boxes that can modify packet/session headers. To this end,
it receives packets (from previously unseen connections) from
switches that are directly attached to the middleboxes. It uses
a lightweight payload similarity algorithm to correlate the in-
coming and outgoing connections and provides these mappings
to the RuleGen module described next.

3. The RuleGen module (§4, §7) takes the output of the ResMgr
(i.e., the processing responsibilities of different middleboxes)
and the connection mappings from the DynHandler and gen-
erates data plane configurations to route the traffic through the
appropriate sequence of middleboxes to their eventual destina-
tion. In addition, the RuleGen also ensures that middleboxes
with stateful session semantics receive both the forward and re-
verse directions of the session. As we discussed, these config-
urations must make efficient use of the available TCAM space
and avoid the ambiguity that arises due to composition that we
saw in §2.1. Thus, we need an efficient data plane design (§4)
that supports these two key properties.

Conceptually, we envision the ResMgr and DynHandler running
as controller applications while the RuleGen can be viewed as an
extension to the network operating system [22]. We envision SIM-
PLE as a proactive controller for the common case of middleboxes
that do not modify packet headers to avoid the extra latency of per-
flow setup. By construction, the DynHandler is a reactive compo-
nent as it needs to infer the connection mappings on the fly.

4. SIMPLE DATA PLANE DESIGN
There are two high-level requirements for the SIMPLE data plane.

First, as we saw in Figure 2, a switch cannot rely on the flow 5-
tuple for forwarding. Second, we need to ensure that the rules can
fit within the limited TCAM which will be especially critical for
larger networks with middleboxes distributed throughout the net-
work. To address these problems, we present a data plane solution
that uses a combination of tags and tunnels. While the use of tag-
ging or tunneling in a general networking or SDN context is not
new, our specific contribution here is in using these ideas in the
context of middlebox policy enforcement.

To simplify our discussion in this section, we start by assuming
that middleboxes do not change the IP 5-tuple. They may, how-
ever, arbitrarily change payloads and other fields (e.g., VLAN ids,
MPLS, ToS fields etc.). We relax this assumption in §6.

4.1 Unambiguous forwarding
Referring back to Figure 2, S5 needs to know if a packet has

traversed the Firewall (send to IDS), or traversed both Firewall and

IDS (send to S2), or all three middleboxes (send to dst) to know
the next hop. That is, we need switches to identify the segment
in the middlebox processing chain that the packet is currently in;
a segment is a sequence of switches starting at a middlebox (or
an ingress gateway) and terminating at the next middlebox in the
logical chain. Intuitively, we can track the segment by keeping per-
packet state in the controller or in the switch. As neither option is
practical, we use a combination of topological context and packet
tagging to encode this processing state.
• Based on input port when there are no loops: The easy case

is when the sequence of switches is loop free; i.e., each direc-
tional link appears at most once in the sequence. In this case,
a switch can use the incoming interface to identify the logi-
cal segment. Consider the sequence FW1-IDS1 in Figure 4a,
where the packet needs to traverse In–S2-FW1-S2-S4-S5-IDS1-
S5–Out. In this case, S2 forwards packets arriving on “In” to
FW1 and packets arriving on the FW1 port to S4.
• Based on ProcState tags when there are loops: If there is a

loop in the physical sequence, then the combination of input in-
terface and packet header fields cannot identify the middlebox
segment. To address this, we introduce a ProcState tag that en-
codes the packet’s processing state; ProcState tags are embed-
ded inside the packet header using either VLAN tags, MPLS
labels, or unused fields in the IP header depending on the fields
supported in the SDN switches. The controller installs tag ad-
dition rules at the first switch of each segment based on packet
header fields and input ports. Downstream switches use these
tags in their forwarding action.

Figure 2 shows tag addition rules at S2: {HTTP, from FW1}
→ ProcState =FW; {HTTP, from Proxy1}→ ProcState =Proxy.
The forwarding rules at S5 are: {HTTP, ProcState =FW} →
forward to IDS1; and {HTTP, ProcState =Proxy}→ forward to
destination. The key idea here is that S5 can use the ProcState
tags to differentiate between the first instance of the packet ar-
riving in the second segment (send to IDS) and the fourth seg-
ment (send to destination).

4.2 Compact forwarding tables
In the simplest case, we use hop-by-hop forwarding rules at ev-

ery switch along a physical sequence as shown in Figure 4a. While
this works for small topologies, it does not scale to large topolo-
gies with many switches, multiple middlebox policy chains, and
many possible physical instantiations of a specific policy chain. To
reduce the number of forwarding entries, we leverage the obser-
vation that switches in the middle of each segment of a physical
sequence do not need fine-grained forwarding rules. The only role
they serve is to route the packet toward the switch connected to the
next middlebox in the sequence.

Building on this insight, we use inter-switch tunnels or Switch-
Tunnels between all pairs of switches. Here, each switch maintains
two forwarding tables: (1) a FwdTable specifying fine-grained per-
flow rules for middlebox traversal and (2) a TunnelTable indicat-
ing how to reach every other switch in the network, similar to Di-
Fane [45]. The TunnelTable is computed using traditional routing
metrics by the SDN controller. The TunnelTable can be imple-
mented in TCAM using OpenFlow rules or in SRAM [45].4

With this in place, the ingress switch tunnels packets to the switch
connected to the first middlebox in the sequence. A switch in
the middle of a segment uses its TunnelTable to forward packets
through the SwitchTunnel toward the next middlebox. Switches

4DiFane maintains tunnel entries to each egress. SIMPLE needs
entries to each egress and switches connected to middleboxes.

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP In - - FW -

HTTP FW - - S4 -

S2

S4

S5

FW IDS Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP S2 - - S5 -

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP S4 - - IDS -

HTTP IDS - - Out -

Policy = Rest: FWIDS

In Out

(a) Hop-by-hop, No loop

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP In Nil - FW -

HTTP FW - - TunS5 FW

HTTP S4 IDS TunS2 Proxy -

HTTP Proxy - - TunS5 Proxy

S2

S4

S5

FW IDS

In

Switch
Tunnel

Fwd

TunS5 S5

TunS2 S2

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP S4 FW TunS5 IDS -

HTTP IDS - - TunS2 IDS

HTTP S4 Proxy TunS5 Out -

Proxy

Policy = HTTP: FW IDS Proxy

Out

(b) Tunnel, Loop
Figure 4: Example of SIMPLE data plane configurations. The other
cases: hop-by-hop with loop and SwitchTunnels with no loop are
similar and are not shown for brevity.

directly connected to middleboxes are responsible for forwarding
packets to the middlebox and marking packets with the next Switch-
Tunnel entry. Note that switches terminating a middlebox segment
need fully descriptive rules (similar to the hop-by-hop case) to for-
ward traffic to/from the middlebox. We demonstrate the practical
benefits of using SwitchTunnels in §8.2.
Example: To see how this works, we revisit the example from §2
in Figure 4b. This scenario uses SwitchTunnels in conjunction with
ProcState because the sequence has a loop. We focus first on the
SwitchTunnels aspect. The key idea is that instead of rules specify-
ing the next hop, switches connected to middleboxes tunnel traffic
to the switch attached to the next middlebox. This is indicated by
the TunS5 entries in the Fwd actions at S2 for traffic incoming from
FW and Proxy and the TunS2 entry at S5 for traffic incoming from
IDS. Note that S4, a switch with no middleboxes attached, does not
need any fine-grained forwarding rules; it uses the SwitchTunnel to
look up its TunnelTable (shown in italics). S2 (and similarly S5)
checks whether there are terminals for the SwitchTunnel to see if
they need to forward the packet to a locally attached middlebox.

The figure also shows the corresponding ProcState to distinguish
different instances of the same packet arriving at the same switch.
Note that SwitchTunnels alone do not solve the ambiguity problem
caused by loops; we may have packets traversing the same tunnel
twice and thus we will still need ProcState tags. Again, the switches
connected to the middleboxes (S2, S5) are responsible for adding
the ProcState and for checking these while making forwarding de-
cisions to the next middlebox in sequence.

1

Policy
Spec

Network
Topology

Enumerate
Physical
Sequences

Pruning
(Sec 5.2)

Traffic
Matrix

LP with
PrunedSet
(Sec 5.3)

Mbox
Capacity

Rule
Model

Offline Pruning Online Load
Balancing

PrunedSet
with
coverage
K

Figure 5: High-level overview of the offline-online decomposition
in the ResMgr.

5. RESOURCE MANAGEMENT
The key challenge in the ResMgr is the need to account for

both the middlebox constraints and the flow table capacity of SDN
switches. This makes the problem significantly more challenging
compared to prior optimization models for middlebox load balanc-
ing (e.g., [23, 38]). Unfortunately, this optimization problem is
NP-hard and is practically inefficient to solve for realistic scenarios
(§8.3). Due to space constraints, we do not show the formal hard-
ness reduction; at a high-level the intractability is due to the integer
constraints necessary to model the switch table sizes.

5.1 Offline-Online Decomposition
We address this challenge by decomposing the optimization into

two parts: (1) an offline stage where we tackle the switch con-
straints and (2) an online linear program formulation that only deals
with load balancing (see Figure 5). The offline pruning stage only
needs to run when the network topology, switches, middlebox place-
ments, or the network policy changes. The online load balancing
stage runs more frequently when traffic patterns change on shorter
timescales.

The intuition here is that the physical topology and middlebox
placement are unlikely to change on short timescales. Based on
this, we run an offline pruning stage where given a set of logical
chains, we select a subset of the available physical sequences that
will not violate the switch capacity constraints. In other words,
there is sufficient switch capacity to install forwarding rules to route
traffic through all of these sequences simultaneously. In this step,
we ensure that we have sufficient degrees of freedom; e.g., each
PolicyChainc will have a guaranteed minimum number of distinct
physical sequences and that no middlebox becomes a hotspot.

Given this pruned set, we formulate the load balancing prob-
lem as a simpler linear program. While we do not prove the op-
timality of our decomposition, we can intuitively reason about the
effectiveness—with high Cov we can achieve a close-to-optimal
solution as it yields sufficient flexibility for load balancing. Our
results (§8.3) show that we find near-optimal solutions (≥ 99% of
optimal) for realistic network topologies and configurations.

5.2 Offline ILP-based pruning
Modeling switch resource usage: For each chain PolicyChainc,
we do a brute-force enumeration of all possible physical middle-
box sequences implementing it. In Figure 1, the set of all mid-
dlebox sequences for the chain Firewall-IDS is {FW1-IDS1, FW2-
IDS1}. Let PhysSeqc denote the set of all physical sequences for
PolicyChainc; PhysSeqc,q denotes one instance from this set. We
use Mj ∈ PhysSeqc,q to denote that the middlebox is part of this
physical sequence.

The main idea here is that in order to route traffic through this
sequence, we need to install forwarding rules on switches on that
route. Let Routec,q denote the switch-level route for PhysSeqc,q

Minimize MaxMboxOccurs, subject to (1)

∀c :
∑
q

dc,q ≥ Cov (2)

∀k :
∑

c,q s.t.
Sk∈PhysSeqc,q

Rulesk,c,q × dc,q ≤ TCAM k (3)

∀j : MboxUsed j =
∑

c,q s.t.Mj∈PhysSeqc,q

dc,q (4)

∀j : MaxMboxOccurs ≥ MboxUsed j (5)
∀c, q : dc,q ∈ {0, 1} (6)

Figure 6: Integer Linear Program (ILP) formulation for pruning
the set of physical sequences to guarantee coverage for each logical
chain while respecting switch TCAM constraints.

and let Rulesk,c,q denote the number of rules that will be required
on switch Sk to route traffic through Routec,q . Now, the value of
the Rulesk,c,q depends on the type of forwarding scheme we use.
To see why, let us revisit the data plane solutions from §4.
1. Hop-by-hop: Here, Rulesk,c,q is simply the number of times a

switch appears in the physical sequence, i.e., each switch needs
a forwarding rule corresponding to every incoming interface on
this path.

2. Tunnel-based: In this case, switches in the middle of a tunnel
segment do not need rules specific to PhysSeqc,q ; they use the
TunnelTable independent of PhysSeqc,q . On the other hand,
switches attached to a middlebox need two non-tunnel rules
to forward traffic to and from that middlebox.5 Consider the
physical sequence S1-S2-FW1-S2-S4-S5-IDS1-S5-S6. Here,
S2 and S5 need two rules to steer traffic in/out of the middle-
boxes but the remaining switches do not need new rules.

Integer linear program (ILP) Formulation: There are two nat-
ural requirements: (1) The switch constraints should not be vio-
lated given the pruned set of sequences, and (2) Each logical chain
should have enough physical sequences assigned to it, so that we re-
tain sufficient freedom to achieve near-optimal load balancing sub-
sequently.

We model this problem as an ILP shown in Figure 6. We use bi-
nary indicator variables dc,q (Eq (6)) to denote if a particular phys-
ical sequence has been chosen. To ensure we have enough freedom
to distribute the load for each chain, we define a target coverage
level Cov such that each PolicyChainc will have at least Cov dis-
tinct PhysSeqc,q assigned to it in Eq (2). We constrain the total
switch capacity used in Eq (3) to be less than the available TCAM
space. Here, the number of rules depends on whether a given se-
quence is “active” or not. (Note that this conservatively assumes
that there will be some traffic routed through this sequence and
thus we will need a forwarding rule.)

At the same time, we want to make sure that no middlebox be-
comes a hotspot; i.e., many sequences rely on a specific middle-
box. Thus, we model the number of chosen sequences in which
a middlebox occurs and also the maximum occurrences across all
middleboxes in Eq (4) and Eq (5) respectively. Our objective is to
minimize the value of MaxMboxOccurs to avoid hotspots. Since
we do not know the optimal value of Cov , we use binary search to
identify the largest feasible value for Cov .

5As a special case, the ingress and egress switches will also need a
non-tunnel rule to map the 5-tuple to a tunnel.

Minimize MaxMboxLoad (7)

∀c :
∑

q:PhysSeqc,q∈Pruned

fc,q = 1 (8)

∀j : Load j =

∑
c,q s.t.Mj∈PhysSeqc,q
PhysSeqc,q∈Pruned

fc,q × Tc × Footprintc,j

ProcCapj

(9)

∀j : MaxMboxLoad ≥ Load j (10)
∀c, q : fc,q ∈ [0, 1] (11)

Figure 7: Linear Program (LP) formulation for balancing load
across middleboxes given a pruned set.

By construction, formulating and solving this problem as an ex-
act ILP guarantees that if there is a feasible solution, then we will
find it. While solving an ILP might take a long time for a large net-
work, we note that this is an infrequent operation that only needs
to be run when the topology changes. Furthermore, we find that
the time for pruning is only≈ 1800 s even for a 250-node topology
(§8.3).

5.3 Online load balancing with LP
Having selected a set of feasible sequences in the pruning stage,

we formulate the middlebox load balancing problem as a linear
program shown in Figure 7. The main control variable here is fc,q ,
the fraction of traffic for PolicyChainc that is assigned to each
(pruned) physical sequence PhysSeqc,q .

First, we need to ensure that all traffic on all chains is assigned
to some physical sequence; i.e., these fractions add up to 1 for each
c (Eq (8)). Next, we model the load on each middlebox in terms
of the total volume of traffic and the per-class footprint across all
physical sequences it is a part of (Eq (9)). Note that we only con-
sider the physical sequences that are part of the pruned set gener-
ated from the previous section. Also note that the f variables are
continuous variables in [0, 1] unlike the d variables which were bi-
nary variables. We pick a specific load balancing objective to min-
imize the maximum middlebox load across the network (Eq (10)).
That said, this framework is general enough to accommodate other
load balancing goals as well. The ResMgr solves the LP to obtain
the optimal fc,q values and outputs these to RuleGen.

5.4 Extensions
Handling node and link failures: While we expect the topology
to be largely stable, we may have transient node and link failures.
In such cases, the pruned set may no longer satisfy the coverage
requirement for each PolicyChainc. Fortunately, we can address
this by precomputing pruned sequences for different switch, mid-
dlebox, and link failure scenarios.
Handling policy changes: We also expect middlebox policy changes
to occur at relatively coarse timescales. The flexibility that SIM-
PLE enables, however, may introduce dynamic policy invocation
scenarios; e.g., route through a packet scrubber if we observe high
load on a web server. Given that there are only a finite number of
middlebox types and a few practical combinations, we can precom-
pute pruned sets for dynamic policy scenarios as well.
Other traffic engineering goals: The load balancing LP can be
extended to incorporate other traffic engineering goals as well. For
example, given the traffic assignments, we can model the load on
each link and constrain it such that no link is more than 30% con-
gested. We do not show these extensions due to space constraints.

6. SIMPLE DYNAMICS HANDLER
The key remaining issue in installing forwarding rules is that

middleboxes may dynamically modify the incoming traffic—when
middleboxes modify flows’ packet headers, the forwarding rules on
downstream switches must account for the new header fields. For
example, when a NAT translates the external address to the internal
one, the controller must be aware of such translations and install
correct forwarding rules to direct traffic to the next middlebox or
egress switch.

6.1 Design constraints
Table 1 summarizes the different types of middleboxes com-

monly used in enterprises today and annotates them with key at-
tributes: the type of traffic input they operate on, their actions, and
the timescales at which the dynamic traffic modifications occur.
For example, an IP firewall checks both the packet header infor-
mation, and makes a decision on whether to drop the packet or
forward it, while a NAT checks the source and destination IP and
port fields in the packet headers and rewrites these fields. Note that
vendors may differ in their logic for the same class of middlebox.
For example, different NAT implementations may either randomly
or sequentially increase the port number when a new host connects
to it. In summary, we see that middleboxes operate at different
timescales, modify different packet headers, and operate at diverse
granularities (e.g., packet vs. flow vs. session).

Ideally, we would like fine-grained visibility into the process-
ing logic and internal state of each middlebox to account for such
transformations. The longer-term option is standardized APIs for
middleboxes to export such information [16, 18]. Given the vast
array of middleboxes [37], large number of middlebox vendors [7],
and the proprietary nature of these functions, achieving standard-
ized APIs and requiring vendors to expose internal states does not
appear to be a viable near-term solution.

Given the diverse and proprietary nature of this ecosystem and
our explicit stance to avoid modifying middleboxes, we follow the
following driving principle. Rather than model middleboxes or
ask network operators to specify the dynamic behaviors of mid-
dleboxes, we treat middleboxes as blackboxes and try to automat-
ically learn their relevant input-output behaviors. In this work, we
take a protocol-agnostic approach to see how much accuracy we
can achieve with a general framework. As we show later (§8.4),
we get close to 95% matching accuracy with only a few packets
overhead. By adding protocol-specific state (e.g., HTTP state ma-
chines) or incorporating middlebox-specific information, we can
further improve this accuracy.

6.2 Idea: Flow correlation
The natural question is why do we think this is feasible? Note

that we do not need visibility into the internal proprietary logic
of the middlebox. We only need to reason about the middlebox
behaviors pertinent to forwarding and policy enforcement. That is,
we only need to identify how the incoming and outgoing flows (or
sessions) at the middlebox are correlated.6

Consider the following physical path traversed by a packet: Sk →
Mj → Sk . With respect to the middlebox, we have an incoming set
of flows, Incoming(Sk → Mj) and an outgoing set, Outgoing(Mj →
Sk). Our goal is to identify which flow(s), F ∈ Incoming is (are)
causally related to some flow(s) in Outgoing .

6We were inspired in part by the success of flow correlation tech-
niques used in the security literature to detect stepping stones and
information leakage [46]. Our problem is arguably simpler than the
security setting: the middlebox is a blackbox, not adversarial.

Middlebox Input Actions Timescale Info
needed

Approach

FlowMon Header No
change

– None –

IDS Header,
Pay-
load

No
change

– None –

IP Firewall Header Drop? – None –
IPS Header,

Pay-
load

Drop? – None –

Redundancy
eliminator

Payload Rewrite
payload

Per-
packet

None –

NAT Flow Rewrite
header

Per-flow Header
mapping

Payload
Match

Load
balancer

Flow Rewrite
head-
ers &
reroute

Per-flow Session
mappings

Payload
Match

Proxy Session Map
sessions

Per-
session

Session
mappings

Similarity
Detector

WAN-Opt Session Map
sessions

Per-
session

Session
mappings

Similarity
Detector

Table 1: A taxonomy of the dynamic actions performed by differ-
ent middleboxes that are commonly used today [38] and the corre-
sponding information that we need to infer at the SDN controller.

In the simplest case, middleboxes (e.g., Firewall) do not change
the packet headers and do not multiplex/spawn flows. In this case,
we can directly map the incoming and outgoing flows. (This is
marked as None in the information needed column in Table 1).

Oher middleboxes (e.g., NAT) may change packet header fields,
but do not change the packet payloads and are also flow preserv-
ing. Consider a NAT that simply rewrites headers. In this case,
there is a one-to-one correspondence between the incoming and
outgoing packets. Moreover, the payloads of the packets are un-
modified. Thus, we can simply do an exact payload match between
the incoming and outgoing packets to detect the flow correlations
(labeled as payload match in the table).

The more challenging case is when the middleboxes may cre-
ate new sessions or merge existing sessions (e.g., proxy, WAN
optimizer). For these middleboxes, we cannot directly match the
payloads of individual packets because one flow into a middlebox
can be mapped to multiple flows going out of the middlebox, and
vice versa. In other words, we do not have a bijection between
Incoming and Outgoing any more. For example, the proxy may
merge multiple users’ requests to the same website into a single
request, change the HTTP fields in a request header (e.g., using
HTTP protocol 1.1 instead of 1.0), prefetch contents, and serve re-
quests from cached responses for popular websites. We discuss our
solution for this case next.

6.3 Similarity-based correlation
To make this discussion concrete, we focus on the proxy sce-

nario as it is the most challenging case—it changes headers, mod-
ifies payloads, and does not maintain a one-to-one correspondence
between incoming and outgoing flows.

In this case, we observe that even though the traffic is not iden-
tical after it traverses the middlebox, the payloads will still have a
significant amount of partial overlap. For example, in the case of
web content delivered through the proxy to the user, even though
the initial HTTP preambles may differ between the incoming and
outgoing flows, the web page content will still match. Thus, we
leverage Rabin fingerprints [13, 34] to calculate the (partial) sim-

ilarities across flows. Because middleboxes are typically session-
oriented and only keep a limited amount of state on each incoming
flow, we only need to correlate this flow to the outgoing flows that
appear within a small time window. To this end, we leverage the
switches to forward packets that do not match the flow table rules
to the SDN controller for further inspection.

Proxy

Correlate
flows

Install
rules

Collect
pkts

Time window T

cnn.com
User 1

User 2 F1: F1’:

F2’:

p1*

p2*

q2 q1 p2 p1

p3 p2 p1 p1* p3*

q2 q1

p2*

Figure 8: Similarity based correlation of incoming and outgoing
flows through a middlebox.

Given these insights, the SIMPLE DynHandler runs a similarity-
based correlation algorithm in three steps (Figure 8):

(1) Collect packets: When a new flow (e.g., F1) arrives from the
Internet to the middlebox, the switch sends the first P packets of the
new flow to the controller (e.g., p1 and p2 in Figure 8). Similarly,
we collect the first P packets for all the flows going out of the
middlebox within a time window W (e.g., the packets p1 ∗ and p2 ∗

for flow F1 ′ and packets q1 and q2 for flow F2). The controller
reconstructs the payload stream from the P packets collected for
each flow [33]. W here controls the search scope of flows that
may be correlated and P controls the bandwidth and processing
overhead of the controller.

(2) Calculate payload similarity: As discussed earlier, the middle-
box may modify or reorder part of the stream, and thus we cannot
directly compare payloads. We compute a similarity score which
calculates the amount of overlap between every pair of flows. Be-
cause dividing the data stream into fixed size chunks is not robust
(e.g., a middlebox may shift the content by adding or removing
some data), we leverage Rabin fingerprints [13] to divide the stream
into shift-tolerant chunks. Let the number of chunks from the two
payload streams with the same hash value be N common . Then, the
similarity score for the pair of streams is N common/min(N1,N2),
where N1, N2 are the number of chunks for the two streams.

(3) Identify the most similar flows: We identify the flow going out
of the middlebox that has the highest similarity score with the new
incoming flow. If there are multiple outgoing flows with the same
highest similarity, we identify all these flows as correlated with the
incoming flow. For example in Figure 8, we may find that F1 has
higher similarity with F1 ′ than F2 ′.
Policy-specific optimizations: The two parameters W and P to-
gether determine the bandwidth and computation overhead of the
controller to run the correlation step. We can tune the bandwidth
and processing overhead of the DynHandler based on the middle-
box policies the operators want to enforce. For instance, we may
want to achieve higher accuracy even at the expense of higher over-
head for security-sensitive policies. This is because different poli-
cies may require different granularities of correlation accuracy. Let
us consider two specific policies in our proxy example: (1) State-
ful access control: The operators may only allow incoming traffic
from websites for which users have initiated the visits and (2) User-

specific policies: The operators may want traffic to/from a subset
of hosts to go through a IDS after the proxy. In case (2), we need
to correlate the incoming flow with the actual user, while in case
(1), we only need to correlate the incoming flow with the flows to
any of the users. As a result, we need lower correlation accuracy
for case (1), and thus can reduce both the time window W and the
number of packets P sent to the controller.

7. IMPLEMENTATION
In this section, we describe our SIMPLE prototype (using POX [5])

following the structure in Figure 3.

RuleGen: For each class c, RuleGen identifies the ingress-egress
prefixes and partitions the traffic into smaller sub-prefix pairs in the
ratio of the fc,q values [42]. It initially assumes that the traffic is
split uniformly across sub-prefixes; it uses the rule match counts
from the switches to rebalance the load if the traffic is skewed.
To generate the rules, it makes two decisions. First, it chooses a
SwitchTunnel or hop-by-hop scheme based on network size. Sec-
ond, for each sequence PhysSeqc,q , it checks for loops to add Proc-
State tags. We currently use VLAN or ToS fields. While we de-
scribe our design in the context of uni-directional flows for clarity,
RuleGen ensures correctness for stateful middleboxes by setting up
forwarding rules for the reverse path as well.

Rule checking: We implement verification scripts that take the
rules generated by the RuleGen module to check for two properties:
(1) Every packet that requires PolicyChaini goes through some
sequence that implements this chain; and (2) A packet should not
traverse a middlebox if the policy does not mandate it. For middle-
boxes that do not change packet header fields, our data plane map-
ping guarantees the above two properties by construction. When
middleboxes change packet header fields, the controller can verify
these properties by combining the header space analysis [27] and
the similarity-based correlation in the DynHandler. First, we un-
derstand how an incoming flow F1 to a middlebox M1 maps to
outgoing flow(s) F ∗1 . Next, we leverage the header space analysis
of rules at switches to understand the reachability of flows F ∗1 be-
tween two middleboxes along the physical chain (say, between M1

and M2). By iterating across all the middleboxes, we can under-
stand the end-to-end reachability for different flows and verify if it
matches operator’s policies.

ResMgr: The ResMgr uses CPLEX for LP-based load balancing
and the ILP-based pruning step. We currently support all single
link, switch, and middlebox failure scenarios. We also implement
an optimization to reuse the previously computed solution to boot-
strap the solver instead of starting from scratch.

DynHandler: We use existing SDN capabilities for the DynHan-
dler. The SIMPLE controller installs rules at switches connecting
to the middleboxes to retrieve the first few packets for each new
flow. We use a custom implementation of the Rabin fingerprint-
ing algorithm configured with an expected chunk size of 16 bits.
(We found that this offers the best tradeoff between overhead and
accuracy.) The DynHandler runs the correlation algorithm as de-
scribed in §6 and provides the mappings to the RuleGen. The new
inferred rules that account for the packet transformations are more
specific than proactively installed rules (which use prefix aggrega-
tion). Note that these rules are on-demand and transient (i.e., they
expire) in that they only need to last for the duration of a flow. We
currently assume there is sufficient space to hold these dynamic
rules.7

7For example, we can run the optimization step with an input
parameter TCAM ′k that is a small constant less than the actual
TCAM k to accommodate these dynamic rules.

8. EVALUATION
We use a combination of emulation-based evaluation in Emulab

and Mininet, and trace-driven simulations. We do so to progres-
sively increase the scale of our experiments to larger topologies
given the resource constraints (e.g., node availability, VM scala-
bility) that arises in each setup. Due to the lack of publicly avail-
able information on network topologies and middlebox-related pol-
icy, we use network topologies from past work [40, 38] as start-
ing points to create augmented topologies with different middle-
box placements. We assume a gravity-model traffic matrix for the
topologies except Figure 1. We use OpenvSwitch (v 1.7.1) [3] as
the SDN switch and use custom Click modules to act as middle-
boxes [28].

8.1 System Benchmarks
Setup: In each topology, every switch has a “host” connected to
it and every switch has at most one middlebox. Every pair of hosts
has a policy chain of three (distinct) middleboxes. We use iperf
running on the hosts to emulate different traffic matrices and use
different port number/host addresses to distinguish traffic across
chains. Each link has an emulated bandwidth of 100 Mbps.

Platform,
Config

Time to
Install
Rules(s)

Overhead
(B)

Max MB
Load
(KB/s)

Max
Link Uti-
lization
(KB/s)

Emulab,
SIMPLE

0.041 5112 25.2 25.2

Mininet,
SIMPLE

0.039 5112 25.2 25.2

Table 2: End-to-end metrics for the topology in Figure 1 on Emulab
and Mininet. Having confirmed that the results are similar, we use
Mininet for larger-scale experiments.

Topology #Switches,
#Hosts,
#Mboxes

#Rules Time (s) Overhead (KB)

Figure1 6, 2, 4 36 0.04 5
Internet2 11, 11, 10 1699 0.09 180
Geant 22, 20, 20 6964 0.19 820
Enterprise 23, 23, 20 6689 0.31 710

Table 3: Time and control traffic overhead to install forwarding
rules in switches.

We focus on three key metrics here: the time to install rules, the
total communication overhead at the controller, and the maximum
load on any middlebox or link in the network relative to the op-
timal solution. We begin by running the topology from Figure 1
on different physical machines on the Emulab testbed. We run the
same setup on Mininet and check that the results are quantitatively
consistent between the two setups in Table 2. We also check on
a per-node and per-link basis that the loads observed are consis-
tent between the two setups (not shown). Having confirmed this,
we run larger topologies such as Internet2, Geant, and Enterprise
using Mininet.
Time to install rules: Table 3 shows the time taken by SIMPLE
to proactively install the forwarding rules for the four topologies in
Mininet. The time to install is around 300 ms for the 23-node topol-
ogy. The main bottleneck here is that the controller sends the rule
tables to each switch in sequence. We can reduce this to 20 ms over-
all with multiple parallel connections. These are consistent with
reported numbers in the literature [11, 36].
Controller’s communication overhead: The table also shows the
controller’s communication overhead in terms of Kilobytes of con-
trol traffic to/from the controller to install rules. Note that there is

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
id

dl
eb

ox
 L

oa
d

(K
B

/s
)

Middlebox Id

SIMPLE
Ingress

Figure 9: Load on all middleboxes for Internet2 topology.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Internet2 Geant EnterpriseM
ax

im
um

 M
id

dl
eb

ox
 L

oa
d

(/o
pt

im
al

)

Topology

SIMPLE
Ingress

CoMb

Figure 10: Maximum middlebox load comparison across topolo-
gies with SIMPLE, CoMb, today’s Ingress-based deployments rel-
ative to the optimal ILP-based configuration.

no other control traffic (except for the DynHandler inference) dur-
ing normal operation. These numbers are consistent with the total
number of rules that we need to install.

8.2 Benefits of SIMPLE
Next, we use Mininet-based emulations with larger topologies to

highlight the benefits that SIMPLE enables for middlebox deploy-
ments. As a point of comparison, we use a hypothetical Optimal
system that uses the same logic as SIMPLE. The main difference
is that instead of the optimization from §5, it uses an exact ILP
to solve a joint optimization with both switch and middlebox con-
straints without the pruning step (not shown).
Flexiblity in middlebox placement: We compare SIMPLE with
today’s Ingress-based middlebox deployments, where for each ingress-
egress pair, the middleboxes closest to the ingress are selected.
Here, we assume that there are two types of middleboxes Firewall
and IDS and that each switch is attached to one instance of a Fire-
wall and an IDS. As a point of reference, we consider a emulated
CoMb setup with “consolidated” middleboxes [38]. Specifically,
we emulate a unified Firewall+IDS middlebox with 2× capacity.

First, we look at the Internet2 topology and look at the per-
middlebox loads in Figure 9. We see that SIMPLE distributes the
load more evenly and can reduce the maximum load by almost 5×.
Figure 10 shows the (normalized) maximum load across middle-
boxes with different configurations. First, SIMPLE is 3–6× better
than today’s ad hoc Ingress setup. Second, the performance gap
between CoMb and SIMPLE is negligible—SIMPLE can achieve
the same load balancing benefits as CoMb with unmodified middle-
box deployments. It is worth noting that CoMb offers other benefits
via module reuse and hardware multiplexing that SIMPLE does not
seek to provide. The result here shows that the spatial distribution
capabilities of SIMPLE and CoMb are similar.
Reacting to middlebox failure and traffic overload: We con-
sider two dynamic scenarios in the Internet2 topology: (1) one of
the middleboxes fails and (2) there is traffic overload on some of
the chains. In both cases, we need to rebalance the load and we are
interested in the time to reconfigure the network. Figure 11 shows

 0

 0.05

 0.1

 0.15

 0.2

Failure Overload

R
es

po
ns

e
Ti

m
e

(s
)

Rule Update
Optimization

Rule Generation

Figure 11: Response time in the case of a middlebox failure and
traffic overload.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Internet2 Geant Enterprise

Fr
ac

tio
n

of
 S

eq
. w

 L
oo

ps

Topology

Optimal
SIMPLE

Figure 12: Fraction of sequences with loops.

a breakdown of the time it takes to rerun the SIMPLE LP,8 generate
new rules, and install them. We see that the overall time to react is
low (<150 ms) and the overhead of the SIMPLE-specific logic is
negligible compared to the time to install rules.

Need for SIMPLE dataplane: One natural question is whether
the ProcState tags are actually being used. Figure 12 shows that a
non-trivial fraction of sequences selected by Optimal and SIMPLE
do require ProcState tags. While one could argue that more careful
placement could potentially eliminate the need for ProcState tags,
we believe that we should not place the onus of such manual plan-
ning on operators. Moreover, under failure or overload scenarios, it
might be necessary to use sequences with loops for correct policy
traversal even with planned placements.

8.3 Scalability and optimality
Next, we focus on the scalability and optimality of the ResMgr

using simulations on larger topologies. For brevity, we only show
results assuming that each policy chain is of length 3. We vary two
key parameters: (1) the available TCAM size in the switches and
(2) the number of policy chains per ingress-egress pair.

Compute Time: Table 4 compares the time to generate the config-
urations along two dimensions: the type of optimization (i.e., Op-
timal vs. SIMPLE) and the forwarding scheme (i.e., with or with-
out SwitchTunnels). SIMPLE lowers rule generation time by four
orders of magnitude for larger topologies. As a point to evaluate
the scalability to very large topologies, we consider an augmented
AS3356 graph (labeled as AS3356-aug) where we add 4 more “ac-
cess” switches to every switch from the PoP-level topology. Even
for this case, SIMPLE only takes ≈1 second. This is well within
the typical timescales of traffic engineering decisions [17]. (The
Optimal columns are empty because we gave up after a day.)

Optimality gap: We evaluate the optimality gap for all topologies
and observe that across diverse configurations of switch capacity
and the number of policy chains, SIMPLE is very close (99%) to
the optimal in terms of the middlebox load (not shown).

Benefit of SwitchTunnels: Figure 13 shows that with SwitchTun-
nels, the coverage for each logical chain increases substantially.
A coverage of 0 implies that there was no feasible solution. For

8We precompute pruned sets for single node failure scenarios.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1000 2000 3000 4000 5000 6000

M
in

 n
o
.
o
f
S

e
q
u
e
n
c
e
s
 P

e
r

P
o
lic

y
 C

h
a
in

Switch Capacity (#Rules)

AS3257
AS3257 w/ tunnels

AS1221
AS1221 w/ tunnels

AS3356
AS3356 w/ tunnels

Figure 13: Coverage vs. available switch capacity for selected
topologies. We use 3 policy chains per ingress-egress pair.

Topology #Switches Time(s)
Opt Opt w/ SIMPLE SIMPLE

tunnel w/ tunnel
Internet2 11 0.3 0.3 0.01 0.01
Geant 22 2.29 1.99 0.09 0.14
Enterprise 23 1.76 2.46 0.01 0.01
AS1221 44 23394 91.7 0.04 0.29
AS1239 52 722.7 218.1 0.06 0.2
AS3356 63 122246 3239 0.22 0.48
AS3356-aug 252 - - 0.92 1.22

Table 4: Time to generate load balanced configurations subject to
switch constraints.

some configurations, we see that we find feasible solutions only
with SwitchTunnels (e.g., AS1221 and AS3356). In addition, we
observe a gain of up to 3× with SwitchTunnels. This confirms the
value of SwitchTunnels to better utilize the available switch capac-
ity and to provide more degrees of freedom for load balancing.

Scalability of pruning: While pruning does involve solving a
large ILP, using CPLEX it only takes ≈800 s and ≈1800 s to com-
pute the pruned set for the two largest topologies AS3356 and AS3356-
aug respectively. Since this is an offline (and infrequent) step, this
overhead is quite acceptable. As we discussed, we reduce this by
bootstrapping the solver to use solutions from previous iterations.
Using this optimization reduces the pruning time substantially from
1800 s to 110 s for AS3356-aug.

8.4 Accuracy of the DynHandler
As discussed in §6, proxies create the most number of challenges

in terms of dynamic behaviors—they create/multiplex sessions and
change packet contents. Thus, we focus on the accuracy of the
DynHandler in inferring correlations between responses from the
web servers to a Squid proxy and from the Squid instance to the
individual users. To make the evaluation concrete, we consider two
types of policies: user-specific policies (i.e., identify the specific
user responsible for an incoming connection); and stateful policies
(i.e., check if there is some user who initiated the traffic).

We introduce two error metrics: (1) Missed policy rate: The
fraction of Internet→Squid sessions that we should apply a policy
but we do not. In the stateful policy, it means that the session is
initiated by a user but we cannot find any user to match the session.
The user-specific policy is more complex because the proxy can
multiplex sessions and thus an Internet→Squid session can map to
multiple users. Therefore, we define it as missed policy when we
fail to find all the users that match a session. (2) False policy rate:
The fraction of Internet→Squid sessions that we should not apply
a policy but we incorrectly do. In the user-specific policy, it means
that we identify the wrong users that match a session (although we
may identify some right users at the same time).

We consider 20 simultaneous user web browsing sessions to ac-
cess popular top 100 US websites [6]. To accurately emulate web
page effects (e.g., Javascript, multiple connections etc), we use
Chrome configured with the Squid as an explicit proxy. In our ex-
periment, we observe and collect 394 sessions from Internet→Squid
and 1328 sessions Squid→Users.

Obtaining the ground truth of mappings is itself a challenging
problem given the complexity of Squid actions. This becomes es-
pecially hard as many websites use third-party content (e.g., analyt-
ics javascripts or Facebook widgets). As a heuristic approximation,
we instrument each browser instance with unique (but fake) User-
Agent strings to allow us to correlate the sessions. Unfortunately,
even this turns out to be insufficient because Squid may request the
website for multiple users and may prefetch a website and cache
the content to serve future users. As such, we view the error rates
we report as conservative upperbounds on the true error rates of the
DynHandler since our ground truth is itself incomplete.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

or
 R

at
e

Time Window (sec)

False policy rate, User
Missed policy rate, User

Missed policy rate, Stateful

Figure 14: Accuracy of the SIMPLE DynHandler for two types of
proxy-specific policies.

Figure 14 shows the error metrics for user-specific and stateful
policies as a function of the correlation window and using the first
5 packets. (The false policy rates for stateful policies are zero and
thus we do not show it.) We see that for the user-specific policy, at
500 ms the false policy rate is 11.4% and the missed policy rate is
7.6%. If we only need to realize the stateful policy, then we can use
a smaller time window (e.g., W=200 ms) to achieve similar error
rate. In both cases, the bandwidth overhead from the switch to the
controller is small; with a window of 500 ms the overhead is 65KB
on average (not shown). The processing overhead at the controller
is also relatively small, taking 150 ms for 1000 correlations.

9. DISCUSSION

Limitations of DynHandler: While the DynHandler algorithms
seem to work well in practice, we acknowledge two limitations.
The first is the performance overhead and increase in user-perceived
latency induced by the inference. The second disadvantage is rea-
soning about the correctness of the inferences, especially in the
presence of middleboxes that may encrypt or encode payloads [8].
We believe that these limitations are inevitable given the constraint
on “black-box” inference without modifying middleboxes. To fully
address these limitations, we believe that it may be necessary to ex-
tend middleboxes to provide more contextual information [9, 16].

Architectural Evolution: There are two high-level concerns here.
The first is whether the particular deployment model with SDN
switches and legacy middleboxes that SIMPLE envisions will con-
tinue to prevail. While this is consistent with market trends today, it
is conceivable that future deployments may be quite different; e.g.,
SDN switches may offer some middlebox capabilities or middle-
boxes may become programmable [9, 38]. These may enable new

opportunities for realizing middlebox functions that SIMPLE can
additionally exploit; e.g., instantiating middlebox modules on de-
mand or flexibly using switches in multiple roles. We believe that
the specific technical components of SIMPLE for data plane de-
sign, optimization, and dynamics inference will also be applicable
in these settings.

The second concern is whether SIMPLE can keep consistent
“models” of the switches and middleboxes as the network evolves.
The only model of switches required in SIMPLE is the available
forwarding rule space, which can be easily obtained from vendors.
With respect to middlebox functions, we observe that the only com-
ponent in SIMPLE that needs to change significantly is the Dyn-
Handler that may need to be customized for new types of middle-
boxes.

10. RELATED WORK
Middlebox policy enforcement: The work closest to SIMPLE
is pLayer [26] which provides a Layer-2 solution to route traffic
through middleboxes. pLayer, however, does not address the fol-
lowing issues that SIMPLE tackles: load balancing or routing with
switch constraints, the impact of middleboxes modifying headers,
and possible routing loops. Another early effort Flowstream [21]
envisions “virtual middleboxes” with an OpenFlow frontend for
routing. In some sense, FlowStream and pLayer were ahead of their
time; they preceded SDN/OpenFlow adoption and do not consider
the constraints or capabilities that they offer.

Concurrent effort by Jin et al., also highlights challenges related
to routing loops and switch constraints for middlebox steering in
cellular networks [24]. While they employ a similar tag-based so-
lution for the loop problem, their solution to address switch con-
straints involves a separation of edge vs. core functionality and the
use of aggregation operators. SIMPLE focuses on balancing the
middlebox load and uses the offline-online decomposition to ad-
dress the switch constraints.

Other works consider the problem of routing traffic to specific
monitoring nodes [35] and considers middlebox placement in con-
junction with cloud applications [10, 30]. These do not consider
middlebox composition, switch constraints, or dynamic packet trans-
formations.

SDN + middleboxes: Recent work has employed SDN principles
to propose new software-based programmable middleboxes [9, 38];
new interfaces for manipulating middlebox state [18]; and offload-
ing middlebox functions to service providers [19, 39]. Given the
size of the middlebox market [7], the diversity of functions [37,
39]), the proprietary nature of middlebox implementations (e.g.,
specialized DPI hardware [4]), the above efforts likely face signif-
icant barriers to adoption. Furthermore, there are large legacy de-
ployments that are unlikely to go away. Thus, while these forward-
looking research efforts are valuable, they are not immediately real-
izable. SIMPLE takes an explicit stance to work within the confines
of existing middlebox implementations and SDN capabilities. Fur-
thermore, the ideas in SIMPLE will apply to service providers who
provide the outsourced middlebox services [19, 39].

Policy management in SDN: SDN has traditionally focused on
L2/L3 policies such as access control, rate limiting, and routing [12,
29]. Recent work provides abstractions to compose different policy
modules [31]. Complementary to these works, SIMPLE supports
middlebox policies that defines the traversal of middlebox chains.
In the data plane, prior work suggests methods to reduce the switch
memory usage for flow-based rules [32, 45]. While SIMPLE uses
some of these ideas, it takes a unified view of both switch resource
and middlebox constraints.

Middlebox design: CoMb [38] and xOMB [9] argue for exten-
sible middleboxes that use commodity hardware similar to prior
work on software routers [15, 28]. SIMPLE does not attempt to
provide these benefits. Because SIMPLE is agnostic to how mid-
dleboxes are implemented, it can easily extend to such deploy-
ments. In fact, these may offer new dimensions of flexibility to dy-
namically initiate new middlebox capabilities at desired locations.

Middlebox management interfaces: There are some efforts to
standardize middlebox control interfaces such as MIDCOM [41]
and SIMCO [2]. Recent work proposes API extensions to expose
middlebox internal state to a SDN controller [18]. SIMPLE can
benefit from these, especially in the context of dynamic transfor-
mations. Given the nature of the middlebox market, however, it is
less likely that these efforts will be adopted in the near term and
SIMPLE offers a practical alternative in the interim.

11. CONCLUSIONS
Middleboxes represent, at the same time, an opportunity, a ne-

cessity, and a challenge for SDN. They are an opportunity for SDN
to demonstrate a practical use-case for L4–L7 functions that the
market views as important; they are a necessity given the industry
concerns surrounding the ability of SDN to integrate with existing
network infrastructure; and they are a challenge as they introduce
aspects that fall outside the scope of traditional L2/L3 functions
that motivated SDN.

This paper was driven by the goal of realizing the benefits of
SDN-style control for middlebox-specific traffic steering without
mandating any placement or implementation constraints on mid-
dleboxes and without changing current SDN standards. To this end,
we address key system design and algorithmic challenges that stem
from the new requirements that middleboxes imposed—efficient
data plane support for composition, unified switch and middle-
box resource management, and automatically dealing with dynamic
packet modifications. While our goal is admittedly more modest
compared to ongoing and parallel work developing new visions for
SDN or middleboxes, it is arguably more timely, practical, and im-
mediately deployable.

Acknowledgments
We thank our shepherd Laurent Mathy and the SIGCOMM re-
viewers for their helpful feedback. We also thank Seyed Kaveh
Fayazbakhsh, Ihsan Ayyub Qazi, and Masoud Moshref Javadi for
providing feedback on earlier drafts. This research is supported in
part by NSF grants CNS-0831791 and CNS-1117719, and by Intel
Lab’s University Research Office. Luis Chiang was supported by
the Fulbright-Senescyt foreign student program.

12. REFERENCES
[1] Mininet. http://yuba.stanford.edu/foswiki/bin/view/

OpenFlow/Mininet.
[2] NEC’s Simple Middlebox Configuration (SIMCO) Protocol. RFC 4540.
[3] Open vSwitch. http://openvswitch.org/.
[4] Palo Alto Networks. http://www.paloaltonetworks.com/.
[5] POX Controller. http://www.noxrepo.org/pox/about-pox/.
[6] Top million US websites.

http://ak.quantcast.com/quantcast-top-million.zip.
[7] World Enterprise Network Security Markets.

http://www.abiresearch.com/research/product/
1006059-world-enterprise-network-and-data-security/.

[8] A. Anand et al. Packet Caches on Routers: The Implications of Universal
Redundant Traffic Elimination. In Proc. SIGCOMM, 2008.

[9] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat. xOMB:
Extensible Open Middleboxes with Commodity Servers. In Proc. ANCS, 2012.

[10] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: A Cloud
Networking Platform for Enterprise Applications. In Proc. SOCC, 2011.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang. The Case for Fine-Grained
Traffic Engineering in Data Centers. In Proc. INM/WREN, 2010.

[12] M. Casado et al. Ethane: Taking Control of the Enterprise. In Proc. SIGCOMM,
2007.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. The Rabin–Karp algorithm.
Introduction to Algorithms, 2001.

[14] A. R. Curtis et al. DevoFlow: Scaling Flow Management for High-Performance
Networks. In Proc. SIGCOMM, 2011.

[15] M. Dobrescu et al. RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proc. SOSP, 2009.

[16] S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul. FlowTags: Enforcing
Network-Wide Policies in the Presence of Dynamic Middlebox Actions. In
Proc. HotSDN, 2013 (to appear).

[17] A. Feldmann et al. Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience. In Proc. SIGCOMM, 2000.

[18] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward Software-Defined
Middlebox Networking. In Proc. HotNets-XI, 2012.

[19] G. Gibb, H. Zeng, and N. McKeown. Outsourcing Network Functionality. In
Proc. HotSDN, 2012.

[20] P. Gill et al. Understanding Network Failures in Data Centers: Measurement,
Analysis, and Implications. In Proc. SIGCOMM, 2011.

[21] A. Greenlagh et al. Flow Processing and the Rise of Commodity Network
Hardware. In CCR, 2009.

[22] N. Gude et al. NOX: Towards an Operating System for Networks. In CCR,
2008.

[23] V. Heorhiadi, M. K. Reiter, and V. Sekar. New Opportunities for Load
Balancing in Network-Wide Intrusion Detection Systems. In Proc. CoNEXT,
2012.

[24] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. SoftCell: Taking Control of
Cellular Core Networks. In TR-950-13, Princeton University, 2013.

[25] D. Joseph and I. Stoica. Modeling middleboxes. IEEE Network, 2008.
[26] D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware Switching Layer for

Data Centers. In Proc. SIGCOMM, 2008.
[27] P. Kazemian, G. Varghese, and N. McKeown. Header Space Analysis: Static

Checking for Networks. In Proc. NSDI, 2012.
[28] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

Modular Router. ACM TOS, Aug 2000.
[29] T. Koponen et al. Onix: A Distributed Control Platform for Large-scale

Production Network. In Proc. OSDI, 2010.
[30] L. E. Li et al. PACE: Policy-Aware Application Cloud Embedding. In Proc.

INFOCOM, 2013.
[31] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing

Software Defined Networks. In Proc. NSDI, 2013.
[32] M. Moshref, M. Yu, A. Sharma, and R. Govindan. vCRIB: Virtualized Rule

Management in the Cloud. In Proc. NSDI, 2013.
[33] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In

Computer Networks, pages 2435–2463, 1999.
[34] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting Similarity for

Multi-Source Downloads using File Handprints. In Proc. NSDI, 2007.
[35] S. Raza et al. MeasuRouting: A Framework for Routing Assisted Traffic

Monitoring. In Proc. INFOCOM, 2010.
[36] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. Moore. OFLOPS: An Open

Framework for Openflow Switch Evaluation. In Proc. PAM, 2012.
[37] V. Sekar et al. The middlebox manifesto: enabling innovation in middlebox

deployment. In Proc. HotNets, 2011.
[38] V. Sekar et al. Design and Implementation of a Consolidated Middlebox

Architecture. In Proc. NSDI, 2012.
[39] J. Sherry et al. Making Middleboxes Someone Else’s Problem: Network

Processing as a Cloud Service. In Proc. SIGCOMM, 2012.
[40] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with

Rocketfuel. In Proc. SIGCOMM, 2002.
[41] M. Stiemerling, J. Quittek, and T. Taylor. Middlebox communication

(MIDCOM) protocol semantics. RFC 5189.
[42] R. Wang, D. Butnariu, and J. Rexford. Openflow-Based Server Load Balancing

Gone Wild. In Proc. Hot-ICE, 2011.
[43] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Untold Story of

Middleboxes in Cellular Networks. In Proc. SIGCOMM, 2011.
[44] B. White et al. An Integrated Experimental Environment for Distributed

Systems and Networks. In Proc. of OSDI, 2002.
[45] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable Flow-Based

Networking with DIFANE. In Proc. SIGCOMM, 2010.
[46] Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proc. USENIX Security

Symposium, 2000.

