
KLEIN: A Minimally Disruptive Design
for an Elastic Cellular Core

Zafar Ayyub Qazi
Stony Brook University

Phani Krishna
Penumarthi

Stony Brook University

Vyas Sekar
Carnegie Mellon University

Vijay Gopalakrishnan
AT&T Labs Research

Kaustubh Joshi
AT&T Labs Research

Samir R. Das
Stony Brook University

ABSTRACT
Today’s cellular core, which connects the radio access network to
the Internet, relies on fixed hardware appliances placed at a few
dedicated locations and uses relatively static routing policies. As
such, today’s core design has key limitations—it induces inefficient
provisioning tradeoffs and is poorly equipped to handle overload,
failure scenarios, and diverse application requirements. To address
these limitations, ongoing efforts envision “clean slate” solutions
that depart from cellular standards and routing protocols; e.g., via
programmable switches at base stations and per-flow SDN-like or-
chestration. The driving question of this work is to ask if a clean-
slate redesign is necessary and if not, how can we design a flexible
cellular core that is minimally disruptive. We propose KLEIN, a de-
sign that stays within the confines of current cellular standards and
addresses the above limitations by combining network functions
virtualization with smart resource management. We address key
challenges w.r.t. scalability and responsiveness in realizing KLEIN
via backwards-compatible orchestration mechanisms. Our evalu-
ations through data-driven simulations and real prototype experi-
ments using OpenAirInterface show that KLEIN can scale to
billions of devices and is close to optimal for wide variety of traffic
and deployment parameters.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]; C.2.1 [Network
Architecture and Design]: Centralized Networks; C.2.3 [Network
Operations]: Network Management

Keywords
Middlebox, Network Function Virtualization, Network Manage-
ment, Software-Defined Networking

1 Introduction
Over the last few years, we have observed explosive growth in mo-
bile Internet-connected devices, spurred by the commoditization of
smartphones, tablets, and other devices [25]. Reports suggest that
mobile traffic volumes are poised to surpass traditional fixed-line
Internet usage for many applications [17, 23, 21]. Furthermore,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR ’16, March 14-15, 2016, Santa Clara, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4211-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2890955.2890971

with the onset of Internet-of-Things deployments, analysts predict
orders of magnitude more devices connected via cellular networks
with diverse application demands.

This dramatic growth in volume and application diversity creates
significant stresses on the cellular core—the operator’s network be-
tween the radio access and the egress to the global Internet. The
cellular core is a critical piece of the infrastructure which provides
key cellular-specific data plane functions such as the Serving Gate-
way (S-GW) and Packet Data Network Gateway (P-GW) and var-
ious IP- and application-layer middlebox services (e.g., firewalls,
proxies, and transcoders). Today, such functions are deployed us-
ing expensive and fixed function “big-iron” appliances [46]. These
appliances are typically concentrated in a small number of datacen-
ter sites in the operator’s backbone and user traffic is routed to the
nearest datacenter using standard cellular procedures; e.g., using
3GPP standards [48].

Unfortunately, this current architecture results in fundamental
sources of inelasticity, which in turn hurts costs, application perfor-
mance, and evolvability [44]. (We elaborate in §2). For instance,
the fixed capacity of the hardware forces operators to make pro-
visioning decisions that lead to both significant underutilization,
and an inability to handle unanticipated changes in the workload
such as flash crowds, failures, and signaling storms (e.g., [26, 15]).
This architecture also creates inefficient tradeoffs between provi-
sioning cost and latency considerations; i.e., consolidation lowers
cost via statistical multiplexing but inflates paths vs. disaggrega-
tion to reduce path lengths escalates costs as each site needs to be
provisioned for peak loads.

Now, it is possible to address these sources of inelasticity using a
clean-slate approach that fundamentally refactors how the cellular
core is designed, provisioned, and managed. Indeed, several re-
cent efforts (e.g., [34, 39]) have demonstrated the promise of such
clean-slate architectures that argue for ubiquitous deployment of
core functions and suggest that we need per-flow SDN-like mecha-
nisms, using new “smart” switches at every base station.

The driving question behind our work is to ask if a clean-slate re-
design is fundamentally necessary or if we can address these afore-
mentioned limitations of cellular core networks in a minimally dis-
ruptive manner.

To address this question, we use data from a large cellular car-
rier to quantitatively evaluate three candidate cellular core designs:
(1) TODAY’s fixed hardware approach using 3GPP compliant rout-
ing; (2) A hypothetical INTERMEDIATE design that uses network
functions virtualization (NFV), requires no changes to existing cel-
lular signaling and core routing, and performs dynamic load dis-
tribution; and (3) A CLEANSLATE solution that uses NFV but is
not constrained to be 3GPP compatible and can use fine-grained
per-flow routing. Our analysis shows (perhaps surprisingly) that

http://dx.doi.org/10.1145/2890955.2890971


Resource Manager

Orchestration

DC1 DC2

Monitored)
traffic)results)

Legacy)backbone)
routers)

Intra6DC)path)setup)
and)VM)deployment)

Control)and)data))
traffic)placement)

eNodeB)
Other NFs

MMEs) S/P6GWs)

DC3

Other NFs

MMEs) S/P6GWs)

Other NFs

MMEs) S/P6GWs)

Legacy)cellular)protocols)
eNodeB

Mobile

Device

MME

HSS

EPC

IMS

Internet

RAN

NAT/ FW/

Proxies

Data Traffic

Voice Traffic

PCRF

S-GW

Control Traffic

PCRF

P-GW

P-GW

Figure 1: Typical LTE elements and architecture.
handover). To cover a large geographic footprint and
to provide high quality service, a typical cellular service
provider employs tens of thousands of eNodeBs.

The main elements of the EPC consist of the MME,
the serving gateway (S-GW), and the Packet Data Net-
work Gateway (P-GW). The MME is responsible for all
control plane messaging including user authentication via
the Home Subscriber Server (HSS), session establish-
ment and release, and mobility management. The S-GW
and P-GW are on the data path, and their main function
is packet routing/forwarding, traffic management and ac-
counting, and policy enforcement. The S/P-GW also
act as anchor points in the cellular network with the S-
GW being the anchor for inter-eNodeB handover, and the
P-GW acting as a gateway/anchor to external networks
(e.g., the Internet). The LTE standard allows for the
specification and enforcement of dynamic policies (e.g.,
changing priority for a flow) within the cellular network.
The Policy and Charging rules function (PCRF) is the
repository of such policies. Whenever a new flow starts,
the PCRF is consulted to identify policies that apply to
the flow. The policy and charging enforcement function
(PCEF), which is typically built into the P-GW, is re-
sponsible for the enforcement of cellular policies. Fi-
nally, most cellular EPCs also include middleboxes like
NATs, firewalls and proxies that are traversed before a
packet reaches the Internet.

A typical cellular network has a few hundred of these
EPC components. The data plane elements are typically
deployed in a small number of pre-provisioned data cen-
ters [9] while the control plane elements are deployed
closer to eNodeBs for efficiently handling latency sensi-
tive control plane traffic. When building out these data
centers, the EPC is typically provisioned in distinct units
we call as ‘zones’. A zone typically consists of P-GWs,
possibly S-GWs, and other associated middleboxes (e.g.,
NAT, firewall) and network elements. When the traffic in
existing zones reaches a capacity threshold, a new zone
is added.

The EPC is typically partitioned to handle different
types (e.g., LTE VoIP or VoLTE, Internet data, M2M,
corporate VPN) of traffic. This partitioning is achieved
through the use of access point names (APN). A cellu-
lar provider can associate different traffic types to one or
more APNs. A set of APNs – depending on their traf-

fic volume – is mapped to a zone. As a result, the P-
GW and other middleboxes and network elements in the
zone are configured to serve a set of APNs. Roughly, a
zone serves as a basic provisioning unit in the data center
while an APN serves as a traffic classifier where its traf-
fic is load-balanced across multiple zones (e.g., a zone
serving a metropolitan area).

Before a UE can send or receive data, it has to first
establish a GTP (GPRS Tunneling Protocol) tunnel. The
GTP tunnel, established between the eNodeB and the P-
GW, provides logical point-to-point connectivity per UE
as it moves around in the network. The GTP tunnel com-
prises of two halves; one between eNodeB and S-GW
and one between S-GW and P-GW. While the latter is
retained as long as the UE is registered in the network,
the former is torn down whenever the UE goes idle, and
re-created whenever data is exchanged. When the UE
moves from one eNodeB to another, the tunnel between
the eNodeB and the S-GW also moves. To setup the
tunnel, the UE first identifies the APN to use and then
the associated P-GW. It then initiates establishment of a
GTP tunnel. Similarly, it initiates tunnel creation when it
wakes up and has data to send. However, the network has
to “page” the UE whenever there is data for the UE and
the UE is idle. The UE, when it receives a page, wakes
up and reestablishes the tunnel between the eNodeB and
the S-GW.

To summarize, there are multiple services and devices
that run inside a cellular core network supporting not
only LTE, but also 3G and 2G networks. Today, the plat-
forms running these services comprise of fixed hardware
appliances that are statically provisioned and configured.
Different traffic types, however, may have different load
patterns and peaks. Similarly, traffic at different loca-
tions may behave differently. Finally, the traffic for one
service, e.g., 3G, may reduce over time and be replaced
with another, e.g., LTE. Virtualizing the cellular network
elements allows us to consolidate these functions and dy-
namically scale and place these functions based on de-
mands across specific dimensions.

3 A Case for a Minimalistic Roadmap

We begin by identifying the key opportunities that could
be enabled by an elastic cellular core. We then discuss
clean slate proposals for realizing these opportunities.
The driving question that we ask in this section is whether
all the changes that clean slate designs argue for are nec-
cessary? We then consider a design point which requires
minimalistic changes to the existing cellular core, lever-
aging network function virtualization. We argue through
a quantitative and qualitative analysis how most of these
opportunities could potentially be achieved with a mini-
malist design.

2

Figure 1: KLEIN overview.

the INTERMEDIATE design achieves close-to-optimal provisioning
tradeoffs and load balancing objectives relative to the CLEANS-
LATE approach.

We thus argue that this INTERMEDIATE design can serve as the
basis for a minimally disruptive design for future cellular core ar-
chitectures that can address today’s cellular core limitations. In
particular, NFV is already a reality for carriers [7, 24, 6, 44], and
there are many open-source and commercial efforts to virtualize
cellular core functions [13, 19, 18, 5, 2, 3].

Building on these insights, we design KLEIN (Figure 1),1 which
provides a practical realization of this above INTERMEDIATE de-
sign. Specifically, KLEIN extends existing cellular core in two
minimally disruptive ways: (1) use of virtualized EPC functions to-
gether with (standard) SDN mechanisms for service chaining inside
the datacenters and (2) a global resource management scheme for
mapping devices’ traffic to different datacenter locations. KLEIN
is 3GPP-compliant and requires no changes to existing cellular sig-
naling and core routing.

This paper addresses two key challenges to translate the hypo-
thetical INTERMEDIATE design into reality. First, we design a re-
sponsive resource management layer that can handle billions of de-
vices and thousands of data centers. Second, we engineer backwards-
compatible network orchestration mechanisms to realize these dy-
namic resource management decisions.

We prototype KLEIN using the open source OpenAirInterf-
ace [18] platform. We use Floodlight [10] and custom con-
trollers for the KLEIN control plane to manage the core network.
We validate KLEIN using a range of trace-driven and real testbed
experiments. We find that: (a) KLEIN is scalable: it takes less
then 20 s to reconfigure the load with 2000 data centers and 5 bil-
lion devices; (b) KLEIN is close to optimal — within 10% of an
ideal CLEANSLATE for different traffic mix and latency budgets;
(c) KLEIN can improve end-application performance by a factor of
5; and (d) KLEIN can handle data center failures both rapidly and
efficiently, taking less than 2.3 s and reducing the maximum data
center load by a factor of 2.

Contributions and Roadmap: In summary, this paper makes the
following contributions:
• An empirical demonstration of key limitations of today’s cellular

core with respect to cost-performance tradeoffs (§2).
• A data-driven design space exploration (§3) that shows that it

1The name is inspired by Yves Klein, a pioneering artist in the Min-
imal art movement, https://en.wikipedia.org/wiki/Yves_Klein. The
name also means “small” or little in German which is indicative of
the change we mandate.

is indeed possible to address these limitations with a minimally
disruptive design.
• A practical architecture (§4), with a responsive and scalable re-

source management algorithm that can handle billion of devices
and thousand of sites (§5) and backwards compatible orchestra-
tion mechanisms (§6).
• A proof-of-concept implementation (§7), to show the benefits of

elastically scaling and balancing load on virtualized EPC func-
tions.
We discuss related work (§9) before concluding in §10.

2 Background and Motivation
In this section, we use data from a nationwide cellular provider to
highlight the limitations of today’s cellular core networks. Before
doing so, we provide a brief introduction to the cellular network
architecture and how the cellular core is implemented today.

2.1 Cellular Core Background
The 3GPP LTE cellular network (See Figure 1) consists of two
main components: the LTE Radio Access Network (RAN), and the
Evolved Packet Core (EPC). The RAN consists of the eNodeB (i.e.,
base station), which communicates with the User Equipment (UE)
via the radio link and then forwards packets to the eventual desti-
nation via the EPC.

The main network elements in the EPC include the MME (mo-
bility management unit), S-GW, and P-GW (serving and packet
gateways). The MME is responsible for all control plane mes-
saging including user authentication, session establishment and re-
lease, and mobility management. The S-GW and P-GW provide the
data plane functions, specifically packet routing/forwarding, traf-
fic management and accounting, and policy enforcement. The EPC
also includes middleboxes (e.g., NATs, firewalls and proxies) that
are traversed before a packet reaches the Internet [48, 27]. Today,
these network functions are realized via dedicated hardware appli-
ances deployed in a small number of central data centers (DCs).
Traffic from a UE is statically mapped to one of these data centers;
e.g., the nearest data center. Between the eNodeBs and the data
centers, there are a large number of small data centers (e.g., cen-
tral offices) [12], which act as aggregation points for traffic from
eNodeBs. There is a natural hierarchy in the deployment, where
a geographical region usually consists of a large data center, and
many small data centers.

2.2 Limitations of Today’s Cellular Core
We highlight three key limitations of today’s cellular core using
data collected at the core network of a major provider. We start by
describing the data set.

Dataset description: We use load traces collected for several
months during 2014-2015 at tens of thousands of base stations of a
large cellular provider in the US. The dataset gives a time series of
data traffic volumes at 5 minute intervals at each base station, for
each ‘APN’, and ‘GW device’. APN refers to one or more collec-
tion of services (e.g., Voice, Data, M2M). GW device refers to the
actual hardware appliance in the datacenter that runs an EPC data-
path element (S-GW or P-GW) that processes the corresponding
data. For each device, we have the information about the corre-
sponding data center the GW is located in. The data set covers tens
of data centers and hundreds of APNs. No user data or any personal
information that identifies individual users are collected.

Next, we focus on specific set of analyses on this data set to
highlight specific limitations.

https://en.wikipedia.org/wiki/Yves_Klein


(a)

��

����

����

����

����

��

� � � � � �� �� �� �� �� �� ��

�
��
�
��
��
��
��
��
��
�
��
��
��
��
��

���������

���
���

���
���

���
���

(b)

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��
��
��
��
�

�������������������������� (c)

��

����

��

����

��

�� ��� ��� ��� ��� ����

��
��
��
��
��
��
��
�
��
��
��
�

������������������������

���������������
���������������

Figure 2: Load imbalance and potential impact on applications: (a) one sample snapshot of load distribution across DCs; (b) CDF
of (max-min) DC loads over all snapshots; (c) impact of EPC load on file download time

(1) Impact on applications: The fixed nature of provisioning and
static routing in the cellular core causes load imbalance, which in
turn could impact user-perceived application performance. Fig-
ure 2(a) shows the imbalance in S/P-GW loads across data centers
for one entire day. Since the data centers capacities vary, the load
of each data center is normalized by the peak load seen in that data
center in the entire data set. This quantity serves as proxy for the
capacity. We observe that the difference between the minimum and
maximum data center utilization could be as high as 80%.

Such load imbalance is not an anomaly. Figure 2(b) shows the
distribution of the difference between maximum and minimum nor-
malized data center loads over all snapshots collected over a 2
month period. We observe that the difference is more than 50%
for more than 60% of the times. Also, for about 15% of the time,
load imbalance is more than 70%. This means that one data center
is maximally loaded while another is almost free.

Such load imbalance can potentially hurt application performance.
To demonstrate this, we benchmarked the impact of EPC load on
file download times on a software EPC testbed (Phantomnet [28]).
Here, we increase the P-GW load by generating background traf-
fic, and observe the impact on downloading files of two different
sizes (16 KB and 58 KB) over a TCP connection. We observe in
Figure 2(c) that when P-GW utilization is ≥ 80%, the file down-
load time is more than an order of magnitude higher as compared to
the case when P-GW utilization is <70%. A high EPC load clearly
hurts user-perceived performance. Extreme load imbalance demon-
strated in Figure 2(b) means that such performance metrics would
improve if flexible provisioning could be made available.

(2) Resource provisioning: At the same time, today’s networks
are significantly over-provisioned. We compare sum of peak loads
on individual S/P-GW devices with peak of sum loads on these de-
vices. The ratio of sum of peak vs. peak of sum is a good indicator
of resource over-provisioning. We observe that the sum of peak
GW/DC load is about 1.7 times the corresponding peak aggregate
load respectively. This means at most only 60% of provisioned
resources are utilized at any time.

(3) Provisioning cost vs. wider deployment: Today’s networks
suffer from path inflation as all UE data traffic has to be routed to
one of the few large centralized data centers [48]. Wider deploy-
ment of processing sites can improve latency,2 but due to the fixed
nature of mapping traffic to processing sites this can happen only
at the expense of higher provisioning cost. Figure 3 demonstrates
this. The plot here assumes various number of data centers. The
locations of such data centers are assumed close to the eNodeBs
they meant to serve. This is done by a nearest-neighbor clustering
of eNodeBs in the 2D space and locating the data centers at the
2This can be done by expanding the use of small on path data cen-
ters e.g., central offices. (See Section 2.1).

��
��
��
��
��
���
���
���

��� ���� ����� ������

�
��
�
��
��
��
�

��
��
��
��
��
��
��
�
��
�

����������������������

Figure 3: Provisioning cost vs. number of data centers with
static provisioning and routing.

Minimize
∑
d

Provd, subject to (1)

∀d, e : Loadd,e < Provd (2)

∀d, e : Loadd,e =
∑

a,d,e,i

fa,d,i,e × Ta,e,i × Fa (3)

∀a, d, e, i : fa,d,e,i ∈ [0, 1] (4)
∀d : Provd < Capd (5)

∀a, e, i : Ta,e,i =
∑
d,e

fa,d,e,i × Ta,e,i (6)

∀a, d, e, i : Latencyd,i × fa,d,e,i < Budgeta (7)

Figure 4: Linear Program (LP) formulation for CLEANSLATE.

centroid of such clusters. We map the traffic to the nearest data
center and compute the sum of peak loads on the data centers as
the provisioning cost. The plot shows that in order to get an order
of magnitude improvement in latency, for example, the cost will
increase 5 fold (while from 10 to 500 data centers).

2.3 Summary of Key Observations
In summary, our data-driven analysis shows that:
• Load imbalance in cellular core network can be as high as 80%.

This could impact application performance by as much as 7 fold.
• At most only 60% of the core network compute resources are

utilized at any time.
• For wider cellular core deployments e.g., 500 data centers, pro-

visioning cost is 5× higher than in the case of 10 data centers.

3 A Case for a Minimalistic Roadmap
The previous analysis shows the limitations in today’s cellular core.
These can potentially be addressed by a clean slate redesign - a gen-



����

�����

��

�����

����

�����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��
��
��
��
��
��
��
��
��
���
��
��
�

���
��
��
��
��
��
��
��
��
��
��
��

���������������������������������������������

����
����
����
����

Figure 5: The load balancing optimality gap between INTER-
MEDIATE and CLEANSLATE.

eralization of recent work in [34, 39] - that distributes the process-
ing resources widely and performs a fine grained (such as per-flow
in the ideal case) dynamic mapping of traffic to such resources.
While an approach like this could be optimal, this also requires
a fundamental redesign of the cellular core. In this section we
demonstrate – using a similar data-driven analysis as before – that
such a disruptive redesign is unnecessary and an intermediate 3GPP
compatible design can be used to address these limitations.

3.1 Design space
We consider a broad design space characterized by four dimen-
sions: (1) Implementation Platforms: We could have each network
function running on a fixed, hardware-based appliance or as a virtu-
alized/software appliance; (2) Routing granularity: packets can be
routed across the cellular core network e.g., per-flow (e.g., SDN-
like) routing vs per-UE tunnels (conforming 3GPP); and (3) Re-
source management: How the traffic from different UEs and APNs
are allocated to the available compute and network resources.

Given the dimensions of this design space, we consider three
concrete instances.

• TODAY’s network deployment, where (1) fixed, hardware based
appliances are used to implement the EPC functions, (2) routing
of flows is done at a per-UE granularity and (3) the resource
management is static and each UE is routed to the nearest data
center.
• At the opposite extreme, we consider a CLEANSLATE approach,

where (1) network functions are virtualized, (2) fine-grained per-
flow routing (which is in conflict with 3GPP constraints), and
(3) dynamic resource management. This a logical extension of
recent clean slate designs [34, 39]; the key addition is that we as-
sume some form of optimal resource management scheme which
these prior efforts largely ignore.
• Finally, we consider an intermediate approach that we call IN-

TERMEDIATE. INTERMEDIATE attempts to preserve the benefits
of CLEANSLATE while also preserving full 3GPP compatibility.
Here, (1) the network functions are still virtualized; but (2) rout-
ing decisions are at a per-UE granularity rather than the per-flow
approach in CLEANSLATE; (3) dynamic resource management
is used to re-balance the load as necessary.

3.2 Methodology
In order to compare the three design points, we conduct a data-
driven study, using same data as in (Section 2.2). We devise lin-
ear programming based optimizations for modeling CLEANSLATE
and INTERMEDIATE designs to evaluate the provisioning and load

��

��

��

��

��

���

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
�
��
�

����������������������

������ �����������
����������� �����������

������ ������
����������� ������

Figure 6: Reduction in provisioning cost with INTERMEDIATE
and CLEANSLATE.

balancing benefits. Below we describe the simulation setup and
optimizations.

Simulation Setup: We classify APNs into 3 different groups:
Data, M2M, and Voice. For the first class, we assume that the traf-
fic can be further divided into latency-sensitive and latency-tolerant
applications. We vary the mix of latency sensitive data traffic and
the delay budget for latency sensitive applications. The input to
the simulations is the data traffic volume corresponding to different
traffic classes from the data set.

Optimizations: In the CLEANSLATE design, we assume that the
traffic can be split from each base station and application class, and
routed to different data centers. We formulate CLEANSLATE as a
linear program, with the objective of minimizing the total resources
provisioned in the core network (Eq (1)). Provd corresponds to the
capacity to be provisioned in a data center d . The key decision vari-
able in CLEANSLATE is a fractional variable fa,d,e,i which gives
the fraction of traffic from base station i and application a, that
should be routed to the data center d, in a time epoch, e. Figure 4
shows the LP. It includes the constraints that all the traffic should
be served Eq (6), and that the latency budget for each traffic class
should satisfied Eq (7). Loadd,e is the load on a data center d in an
epoch e, Ta,e,i is the traffic volume from eNodeb i for traffic class
a in epoch e, Capd is the maximum capacity that can be allocated
to data center d, Fa is the total resource footprint of an application
class a, Latencyd,i is the latency from the eNodeb i to data center
d, and Budgeta is the latency budget for application class a.

For INTERMEDIATE, we map each base-station’s load to a single
data center. This is because of the 3GPP constraint that at any time
we can only have a single SGW attached to a UE. We model IN-
TERMEDIATE as an ILP with the objective of minimizing the total
resources provisioned in the core network – the sum of resources
provisioned in each data center. However, the key decision vari-
able in this case is a binary variable ba,d,e,i which gives mapping
of traffic from base station i, application a, that should be routed to
the data center d, with the additional constraint that all the traffic
from a base station i is routed to the same data center.

We also consider a load balancing exercise, where we minimize
the maximum data center utilization for CLEANSLATE and INTER-
MEDIATE. The formulations are similar, except (1) the objective is
minimizing MaxDCUtil, where MaxDCUtil is the utilization
of the most utilized data center in the core network, (2) provisioned
capacity, Provd at each data center d is fixed, and (3) the key deci-
sion variables are not per-epoch: fa,d,i and ba,d,i. We use CPLEX
to solve these optimization problems.



3.3 Results

Load balancing: We first consider a load balancing objective,
where we try to minimize the maximum utilization of any data cen-
ter for CLEANSLATE and INTERMEDIATE, and evaluate the opti-
mality gap: Intermediate

CleanSlate
. We vary the mix of traffic (delay sensi-

tive and delay tolerant) and the latency budgets of the applications.
We consider 4 hours of peak load on a week day in November and
reconfigure the traffic routing every 5mins. We take the maximum
load observed for each data center over the 4 hour period for both
CLEANSLATE and INTERMEDIATE. Figure 5 shows the optimality
gap with different delay budgets and traffic mix. The key takeaway
is that for all latency budgets, INTERMEDIATE performs close to the
CLEANSLATE design. More concretely, we observe an optimality
gap of about 5-10%, if the latency budget is 10ms and fraction of
latency-sensitive traffic is less than 70%. For all other cases, the
optimality gap is less than 5%, and it converges to close to 0 if the
fraction of latency sensitive traffic is 90% or more. The reason the
optimality gap is reducing as the fraction of latency-sensitive traffic
increases is because then even clean slate has very few opportuni-
ties for balancing load across sites. Since most traffic is latency
constrained, there are only a few sites where the traffic can be sent
to.

Reduction in provisioning cost: Next, we consider a provisioning
exercise to minimize the resources needed to handle the time vary-
ing traffic patterns generated across a week. The metric of interest
here is the relative savings that INTERMEDIATE and CLEANSLATE
provides vs. today’s deployment model where all traffic is usu-
ally routed to the nearest data center:

CostIntermediate/CleanSlate

CostToday
.

We observe that with increasing number of data centers, we can
achieve similar benefits in resource savings in Figure 6. We can
save as much as 2 times more S/P-GW resources with INTERME-
DIATE and CLEANSLATE as compared to Today’s static architec-
ture, and as 6 times more total resources, if we also consider other
network functions.3. CLEANSLATE and INTERMEDIATE achieves
these benefits while satisfying the latency budgets for data traffic.

3.4 Summary
The data-driven simulations show that:
• INTERMEDIATE is within 10% of CLEANSLATE in terms of load

balancing for a variety of traffic mix and latency budgets.
• Both CLEANSLATE and INTERMEDIATE need 6× less resources

as compared to Today for a cellular core with 1000 data centers.
We argue that this INTERMEDIATE approach can form the basis

of a minimally disruptive cellular core. We show in the follow-
ing sections how such an approach can be implemented using only
minimal changes in cellular infrastructure while assuring complete
legacy compliance. This makes it a very attractive option for the
carriers.

4 System Overview and Challenges
The previous section showed that we can potentially address most
of the limitations of the cellular core today through a hypothetical
INTERMEDIATE design, which is 3GPP compliant. In this section,
we give an overview of KLEIN, a practical instantiation of the IN-
TERMEDIATE design. We discuss our envisioned core network de-
ployment, the challenges in realizing KLEIN and outline our key
ideas to address these challenges.
3In the case of "ALL NF" in Figure 6, we also took into ac-
count placement of middleboxes other than S/P-GW (e.g., Fire-
walls, Transcoder etc.) by assuming hypothetical service chains
for different traffic classes.

Number
of UEs

Number of data
centers

Computation
Time

∼50,000 6 ∼20s
∼50,000 100 ∼500s
∼50,000 1000 >1 day

Table 1: Scalability with a 2-level resource management de-
composition.

4.1 Overview
We envision that the cellular carrier has deployed many data cen-
ters. We assume that the cellular carrier can have both large data
centers and small data centers. Large nation wide carriers already
have a few thousand central offices [12]. We assume data centers
are connected from the base station via traditional backbone routers
and inter-connecting links. Each data center has commodity hard-
ware servers and runs virtualized EPC functions (e.g., MME, S/P-
GW) and other network functions (e.g., Firewall, NAT).

Our objective is to dynamically distribute the network load and
provision virtualized network functions over the provider’s avail-
able compute/network resources. This requires a resource manager
which deals with load distribution and placement of virtualized net-
work functions. For achieving these we want to construct a back-
wards compatible network orchestration layer, which is compatible
with existing 3GPP mechanisms and requires minimal changes to
the existing core network.

As seen in Figure 1, KLEIN extends the existing cellular core
in three simple ways: (1) virtualized network functions instead of
fixed hardware appliances, (2) resource manager, which performs
dynamic resource management, and (3) a backwards-compatible
network orchestration layer for implementing the output of the re-
source manager. We argue that each of these changes is minimally
disruptive. First, for (1), we observe that the use virtual functions
is already on several carrier roadmaps [7, 24, 6, 44]. Second, (2) is
a “bolt-on” control component that does not require any additional
network infrastructure. Finally, for (3), we observe that in contrast
with CLEANSLATE, KLEIN does not require changes to the exist-
ing 3GPP mechanisms or core network routing.

4.2 Challenges
(1) Responsive resource management: The two key challenges in
designing a responsive and scalable resource manager are:
• First, the problem size makes it difficult to develop a responsive

and scalable resource manager, for instance, a nationwide cel-
lular carrier in the nearby future may have billions of devices
and few thousand data centers. Specifically, this entails solving
a large optimization problem, which cannot scale to such input
size even with state-of-the-art solvers. Even a 2-level decompo-
sition does not scale, as shown in Table 1. It takes >1 day for
it to reconfigure the load, even for a small input size of 50,000
UEs and 1000 data centers.
• Second, the resource manager has to instantiate both the cellular

control and data plane functions, which have inter-dependencies.
As we described in §2.1, MME is the cellular control function,
and S/P-GW are data plane functions in EPC. The MME inter-
acts with S/P-GW during different events, e.g., a UE’s attach-
ment to the network and eNodeB handover. 3GPP provides
guidelines for delay budgets for MME and S/P-GW [14]. The
S/P-GW delay budget depends primarily on the requirements of
the data traffic, while the delay budget for MME depends on the
device characteristics (e.g., mobile smartphone device vs sta-
tionary M2M device). MME delay budgets are more stringent



because the MME deals with all the signaling traffic from the
UE. If we assume that MME and S/P-GW can be placed in dif-
ferent data centers, we have three different types of delay bud-
gets to consider, Budgetdatat,a , BudgetUE−MME

t and
BudgetMME−SGW

t , for device type t and application a , Model-
ing these three constraints, yields a quadratic constraint, as we
show later in §5.

(2) Network orchestration: The second key challenge is to imple-
ment the output of the resource manager, i.e., map a UE’s data and
cellular control traffic to VMs. This has broadly three challenges:
1) Backwards compatible wide-area orchestration to get the UE to
the selected data center, and 2) Intra-DC orchestration: to get the
traffic through selected VMs, 3) Handling load reconfiguration, be-
cause unlike today’s static core network, KLEIN derives its benefits
from dynamically reconfiguring the network load, which may re-
quire moving a UE’s traffic to a different data center to re-balance
the load on the network. This raises the question whether KLEIN
can use existing orchestration and 3GPP mechanisms.

5 Resource Manager
The KLEIN resource management module distributes the network
load across the datacenters, while ensuring that the latency bud-
gets for different applications are satisfied. The key challenge here
is achieving responsiveness at scale. In order to realize the ben-
efits of the vision we outlined in §3, we need this module to re-
balance the load and assign UEs to compute resources on fine-
grained timescales (tens of seconds). However, this is challeng-
ing because the underlying distribution problem entails solving a
large-scale and non-linear optimization. To address this, we use a
combination of three key ideas: (1) solving the problem at an ag-
gregate rather than UE granularity; (2) decoupling the problem of
placing control and data-plane functions; and (3) decomposing the
global optimization into a three-level hierarchy. As we will show
this enables near optimal performance at scale.

We begin by setting up the key requirements of the optimization
problem and then present our key ideas.

5.1 Problem Formulation

Provider Setup: We assume that the cellular core has been pro-
visioned with a set of data centers {Dd}d and high-capacity back-
bone switches and links. Traffic from the base stations will be for-
warded to one or more data centers. Each data center Dd has pre-
provisioned capacity with fixed number of servers and each server
s has fixed number of VM slots. We assume that the network is par-
titioned into regions – a collection of data centers in geographical
proximity. This is similar to the way the core network is partitioned
today [30].

The cellular operator has historical traffic patterns and has rough
estimates of traffic volumes associated with end-user applications
and cellular control traffic. Let Datau,a,e represent the data traf-
fic associated with a UE u , an application a , in epoch e and let
Ctrlu,e represent the control signaling traffic associated with the
UE uin epoch e . This information may be collected using network
monitoring data (e.g., NetFlow).

Processing requirements: Different applications and device types
may require different processing requirements. For instance an
M2M device may be required to go through a specific chain of
service or NFs. Similarly video traffic may go through additional
transcoder middleboxes. For each traffic class c, consisting of a
combination of device-type t and application a , there is an associ-
ated policy service chain or a sequence of NFs. Each device type t
is also associated with a set of cellular control functions it needs.

Objective: The goal is to decide the assignment of data-plane and
cellular control-plane traffic to a data center, and provisioning of
required EPC functions and middleboxes. There are a few con-
siderations in this assignment. First, we want traffic load across
servers in the core network to be balanced. Specifically, the utiliza-
tion of data centers to be balanced. Second, we need to ensure that
each UE u meets it processing (e.g., service chains) and latency
bounds on data and control plane functions.

Formulation: We introduce three key decision variables: (1) nd,s
i

denoting how many VMs of type vi (can be MME, S/P-GW and
other network functions) of NF i to run on server s of data center
d ; (2) DPu,s,d which denotes whether data-traffic for UE u is pro-
cessed in server s in data center d and (3) CPu,s,d which denotes
whether cellular control traffic for UE u is processed at server s in
datacenter D .

Unfortunately, solving this problem is challenging on two key
fronts. First, this is a large discrete optimization problem where
the problem size (million of UEs and potentially thousands of data
centers) makes it computationally intractable. Second, attempting
to model constraints on the latency budgets between data-plane and
control-plane functions inevitably yields quadratic constraints as
shown below which make the problem even harder to solve with
off-the-shelf solvers.4 Specifically, Eq 8 highlights how modeling
the latency between the SGW and MME introduces a non-linear
interaction between the CP and DP variables. Ld,d′ refers to the
latency between data center d and d ′.

∀u ∈ t :
∑

CPu,s,d ×DPu,s′,d′ ×Ld,d′ ≤ BudgetMME−SGW
t

(8)

5.2 Key Ideas
As we saw above, solving this problem is challenging because of
the scale and the non-linear dependencies across the decision vari-
ables. To address these issues, we introduce three key heuristics:

• Aggregation: The first insight is that we do not need to solve
the problem at a UE granularity. We may be able to achieve
near-optimal results by aggregating UEs into groups of UEs, and
make decisions at coarser aggregate granularities.
• Hierarchical decomposition: Finally, we observe that in practice

we do not always need to solve the global optimization problem
every few seconds. We can decompose the optimization along
the natural hierarchy of global, regional, and intra-datacenter lo-
cal controllers. For instance, the global controller need not as-
sign the precise server inside the datacenter or the specific dat-
acenter and can instead delegate these to the regional and local
controllers respectively. Thus, higher levels which need a more
global view solve simpler problems at coarser timescales, while
the lower levels which need to be more responsive to avoid per-
formance issues can run more rapid reconfigurations.
• Decoupling control and data placement: The key reason for the

quadratic constraint in Eq 8 is that we were trying to solve the
joint optimization of placing control and data functions. We can
break this nonlinearity in one of two ways: (1) We can choose
the control function placement and then solve the data-plane
problem, with additional constraint of BudgetMME−SGW

t or (2)
constrain the control and data plane functions to be in the same
server (i.e., collapsing CP and DP ). As we will see below, we
find that approach (2) works well in the global controller and
approach (1) in the regional controllers.

4Note that in section §3, we only modeled the data-plane latencies,
hence there were no quadratic constraints.



Collapse(the(control(and(data(traffic(placement(problem(

First(control(traffic(then(data(traffic(placement(

Instan5ate(VMs(and(distribute(control(and(data(traffic(

Global(Controller(

Regional(Controllers(

Local(Controllers(

Figure 7: An overview of KLEIN’s resource manager.

5.3 Our Approach
Next, we describe how we synthesize the above three heuristics into
a practical and scalable resource management solution.

Three level hierarchy: We decompose the optimization problem
into three logical subproblems following the natural structure of
large cellular providers. Figure 7 shows this decomposition.

1. The global controller runs a Region Selection Problem (RSP)
that assigns (aggregate) UE groups to specific regions;

2. The regional controller then runs the Data center Selection Prob-
lem (DSP) and further subdivides set of the (aggregate) UE
groups assigned to it across the datacenters in its region;

3. The local or intra-datacenter controller runs a Server Selection
Problem (SSP) which assigns specific servers inside each se-
lected data center (as given by DSP) to run the required VMs.

This decomposition enables us to scale as the individual RSP,
DSP, SSP problems can be solved respectively by the global, re-
gional and local controllers. We also evaluated other degrees of
decomposition and found that for the workload characteristics, this
3-level decomposition was a sweet spot between scalability and
complexity; e.g., we tried a 2-level decomposition strategy and ear-
lier showed in §4 that it does not scale (Table 1). We describe the
specific optimization subproblem each tackles and the approach we
use next.

Region Selection Problem: (RSP): In the first step, KLEIN global
controller distributes traffic across region such that the load is bal-
anced at a region-level granularity. The global controller takes as
input the Ctrlg,e and Datag,a,e values, as well the aggregate capac-
ities of individual regions and assigns each aggregate UE group, g
to a specific region based. To break the non-linear/quadratic de-
pendency between the control and data-plane functions, the RSP
simply assigns both to be in the same region, collapsing the CP
and DP. We can formulate the RSP as an ILP, and rerun this ILP
periodically (every 60 mins). We discuss the choice of this recon-
figuration period in §8.1. In case any region is overloaded, they
can make an upcall to KLEIN’s global controller to reconfig-
ure the load. The RSP formulation in essence is similar to the ILP
formulation described in §3 for INTERMEDIATE, except that recon-
figuration decisions are made for UE groups and load is distributed
across regions.

Data Center Selection Problem (DSP): Each regional controller
then has the responsibility for selecting the data center for every
UE group g that has been assigned to it by the RSP. Specifically,
it has to choose a data-center for the control functions and another
(possibly different) datacenter for the data-functions. At this stage,

eNodeB

Mobile

Device

MME

HSS

EPC

IMS

Internet

RAN

NAT/ FW/

Proxies

Data Traffic

Voice Traffic

PCRF

S-GW

Control Traffic

PCRF

P-GW

P-GW

Figure 1: Typical LTE elements and architecture.
handover). To cover a large geographic footprint and
to provide high quality service, a typical cellular service
provider employs tens of thousands of eNodeBs.

The main elements of the EPC consist of the MME,
the serving gateway (S-GW), and the Packet Data Net-
work Gateway (P-GW). The MME is responsible for all
control plane messaging including user authentication via
the Home Subscriber Server (HSS), session establish-
ment and release, and mobility management. The S-GW
and P-GW are on the data path, and their main function
is packet routing/forwarding, traffic management and ac-
counting, and policy enforcement. The S/P-GW also
act as anchor points in the cellular network with the S-
GW being the anchor for inter-eNodeB handover, and the
P-GW acting as a gateway/anchor to external networks
(e.g., the Internet). The LTE standard allows for the
specification and enforcement of dynamic policies (e.g.,
changing priority for a flow) within the cellular network.
The Policy and Charging rules function (PCRF) is the
repository of such policies. Whenever a new flow starts,
the PCRF is consulted to identify policies that apply to
the flow. The policy and charging enforcement function
(PCEF), which is typically built into the P-GW, is re-
sponsible for the enforcement of cellular policies. Fi-
nally, most cellular EPCs also include middleboxes like
NATs, firewalls and proxies that are traversed before a
packet reaches the Internet.

A typical cellular network has a few hundred of these
EPC components. The data plane elements are typically
deployed in a small number of pre-provisioned data cen-
ters [9] while the control plane elements are deployed
closer to eNodeBs for efficiently handling latency sensi-
tive control plane traffic. When building out these data
centers, the EPC is typically provisioned in distinct units
we call as ‘zones’. A zone typically consists of P-GWs,
possibly S-GWs, and other associated middleboxes (e.g.,
NAT, firewall) and network elements. When the traffic in
existing zones reaches a capacity threshold, a new zone
is added.

The EPC is typically partitioned to handle different
types (e.g., LTE VoIP or VoLTE, Internet data, M2M,
corporate VPN) of traffic. This partitioning is achieved
through the use of access point names (APN). A cellu-
lar provider can associate different traffic types to one or
more APNs. A set of APNs – depending on their traf-

fic volume – is mapped to a zone. As a result, the P-
GW and other middleboxes and network elements in the
zone are configured to serve a set of APNs. Roughly, a
zone serves as a basic provisioning unit in the data center
while an APN serves as a traffic classifier where its traf-
fic is load-balanced across multiple zones (e.g., a zone
serving a metropolitan area).

Before a UE can send or receive data, it has to first
establish a GTP (GPRS Tunneling Protocol) tunnel. The
GTP tunnel, established between the eNodeB and the P-
GW, provides logical point-to-point connectivity per UE
as it moves around in the network. The GTP tunnel com-
prises of two halves; one between eNodeB and S-GW
and one between S-GW and P-GW. While the latter is
retained as long as the UE is registered in the network,
the former is torn down whenever the UE goes idle, and
re-created whenever data is exchanged. When the UE
moves from one eNodeB to another, the tunnel between
the eNodeB and the S-GW also moves. To setup the
tunnel, the UE first identifies the APN to use and then
the associated P-GW. It then initiates establishment of a
GTP tunnel. Similarly, it initiates tunnel creation when it
wakes up and has data to send. However, the network has
to “page” the UE whenever there is data for the UE and
the UE is idle. The UE, when it receives a page, wakes
up and reestablishes the tunnel between the eNodeB and
the S-GW.

To summarize, there are multiple services and devices
that run inside a cellular core network supporting not
only LTE, but also 3G and 2G networks. Today, the plat-
forms running these services comprise of fixed hardware
appliances that are statically provisioned and configured.
Different traffic types, however, may have different load
patterns and peaks. Similarly, traffic at different loca-
tions may behave differently. Finally, the traffic for one
service, e.g., 3G, may reduce over time and be replaced
with another, e.g., LTE. Virtualizing the cellular network
elements allows us to consolidate these functions and dy-
namically scale and place these functions based on de-
mands across specific dimensions.

3 A Case for a Minimalistic Roadmap

We begin by identifying the key opportunities that could
be enabled by an elastic cellular core. We then discuss
clean slate proposals for realizing these opportunities.
The driving question that we ask in this section is whether
all the changes that clean slate designs argue for are nec-
cessary? We then consider a design point which requires
minimalistic changes to the existing cellular core, lever-
aging network function virtualization. We argue through
a quantitative and qualitative analysis how most of these
opportunities could potentially be achieved with a mini-
malist design.

2

MME#

MME#

S%GW# P%GW#

Other NF

GTP#tunnel#

DNS#Resolver#

Global#Controller#

Regional#Controller#

Local#Controller#

Data#Center#

New$Interfaces$

Figure 8: An overview of network orchestration in a KLEIN
based cellular core.

the regional controllers seek to distribute load at an aggregate data-
center granularity within the region. Now, the DSP runs a two-step
procedure to break the quadratic dependency. First, it places the
control functions and then runs a separate ILP for data plane func-
tions. The ILP is similar to the DSP problem, except that the load
is distributed across data centers, instead of regions. This proce-
dure runs roughly every 5 minutes. We discuss the choice of this
reconfiguration period in §8.1. In case a data center is overloaded,
the local controller can make a upcall to KLEIN’s regional con-
troller.

Server Selection Problem (SSP): Finally, each local controller
within each datacenter has to distribute load across servers and in-
stantiate VMs. We use a simple greedy heuristic here, choosing
nodes with higher capacities and ensuring that NFs in the same
chain are assigned to the same server or the same rack similar to
prior work [31].

6 Network Orchestration
Given the output of KLEIN’s resource manager, UE’s data and cel-
lular control traffic need to be assigned to VMs. We discuss how
this is done in two phases: (1) wide-area orchestration to get the
UE to the correct DC, (2) intra-DC orchestration to get the traf-
fic through correct VMs. Figure 8 provides an overview of these
orchestration mechanisms. Below we describe these mechanisms,
and how KLEIN handles the reassignment of UEs.

6.1 Wide-area Orchestration
In KLEIN, the cellular carrier’s wide area network– the backbone
network connecting the base stations and the data centers remains
unmodified. We assume legacy routing, with carriers using exist-
ing tunneling mechanisms such as GTP to connect base stations to
data centers. Today, when a UE attaches to an eNodeB, the eN-
odeB performs a DNS lookup to identify a MME to forward the
attach request to. In response to the attach request, the MME acts
as a DNS resolver to help select the S/P-GWs and set up the GTP
tunnels.

In KLEIN, we enhance the attachment process slightly. In the
initial MME selection DNS query, the eNodeB now includes the
device and subscriber identifier of the UE in addition to the loca-
tion information it sends today. This DNS query is serviced by
the nearest MME using its DNS resolver capabilities. It uses the
device and subscriber identifier to map the UE into a KLEIN UE
group, and subsequently uses the mapping provided by the KLEIN
controller to select an MME for servicing the UE’s attach request
and as its future home for control plane traffic. An attach request is



now sent by the eNodeB to the chosen home MME, which similarly
identifies the UE’s group from the device and subscriber informa-
tion in request and selects a S/P-GW based on the UE group to GW
mapping provided by the KLEIN controllers.

This enhanced registration procedure requires the MME to main-
tain a connection with the KLEIN’s controllers to obtain an up-to-
date UE group to MME and S/P-GW mapping. Fortunately, since
MMEs use a standard DNS interface for server selection, such a
connection requires minimal integration on the KLEIN controller’s
part.

6.2 Intra-datacenter Orchestration
While the wide-area orchestration is responsible for choosing an
MME, S-GW, and P-GW to route the UE’s traffic. intra-DC orches-
tration is needed to implement the NF (middlebox) service chains
that traffic passes through after it leaves the P-GW. There are two
main considerations here:

1. After it leaves the P-GW, the next VM a packet needs to be
sent to depends on the service chain associated with the traffic.
We need to implement service chains corresponding to differ-
ent traffic classes (UE devices and applications). These NFs
may include elements such as NAT, firewalls, intrusion detec-
tion systems, TCP-termination proxies for improving latency
and throughput, content-caches, or media transcoders.

2. With elastic scaling, each service chain NF may be implemented
as a collection of load-balanced VMs and the number of such
VMs may grow or shrink based on demand. This requires a
load balancing mechanism at the level of each server.

We borrow from prior work [31, 40, 38, 8] to solve (1) and (2).
We use SDN inside data centers to enforce service-chain policies
by dynamically routing traffic to the desired sequence of VMs. We
apply service chain policies based on APN values. We use a tag-
based approach similar to [31, 40] to ensure that service chains can
be correctly implemented. Each VM has a tag value, and forward-
ing is done based on these tags. A service chain we assume is based
on the UE device-type and application.

To balance load across multiple instances of a network function,
we cannot use a dedicated load balancer, because it would itself
become a bottleneck, since its on the path of every VM. We use a
distributed load balancer at the level of each server, similar to [31,
38] to balance load among multiple instances of the same network
functions in a server while handling scale-in and scale-out of the
NF VMs.

6.3 KLEIN’s Reconfigurations
As KLEIN’s resource manager reconfigures traffic load, a UE’s pro-
cessing may need to be migrated to new EPC instances. 3GPP
protocol’s mandate that MME selects the S/P-GW for a device. To
ensure backwards-compatibility KLEIN maintains an interface with
MME instances and dynamically updates in these MME instances
mappings from UE to S/P-GW instances. We use standard 3GPP
handover mechanisms to migrate a UE to a different MME/SGW
instance [1, 11] and existing (but non-standardized) mechanisms
for P-GW handover [4, 16]. To ensure that migrating the P-GW and
NAT associated with a UE to a new site does not change the IP ad-
dress associated with the UE’s sessions we assume, as is common
practice in carriers today, that the data center sites are connected
over a layer 2 MPLS-based VPN. As has been demonstrated in
previous work [47, 33], IP session migration using L2VPNs can
accommodate even demanding applications like gaming.

Below we consider all the three possible types of reconfigura-
tions by KLEIN and how they will be handled by the network or-

chestration layer:

• Intra-DC: In KLEIN, a local controller may reconfigure the load
to a different VM, inside the same data center. If a UE’s traffic is
placed to a different MME instance, the local controller triggers
a MME handover from the old MME instance using standard
3GPP handover procedures [1]. If the UE’s data traffic needs to
be moved to another S/P-GW instance within the same data cen-
ter, the local controller initiates a S/P-GW handover that moves
the UE session context from the old S/P-GW instance to the new
S-GW instance. These handovers are standard operating pro-
cedure for supporting mobility in existing 3GPP networks, and
are well supported by existing implementations. For an intra-
DC handover, no changes to the service chain are needed, be-
cause the distributed load balancer ensures session affinity such
that the new P-GW will continue to send a UE’s packets to the
same next hop VM in the chain. Typically, session affinity is im-
plemented using a common flow-table across the SDN switches
implementing the load balancer [22].
• Intra-Region: In case the UE’s data or signaling traffic needs

to be moved to another data center, the same standard mecha-
nisms for MME, S/P-GW handover as in the intra-DC case are
used. However, there are several important differences. First, in
case of intra-DC handovers, the new mapping is provided by the
regional controller to the local controllers. Second, when a P-
GW or external facing NAT moves from one DC to another, we
need to ensure that the UE’s IP address does not change. This
is achieved through the L2 MPLS-VPNs as described above.
And finally, any middlebox state also needs to be migrated from
the old DC to the new DC. This can be achieved by ensuring
that the middleboxes support a state-migration protocol such as
OpenNF [32].
• Inter-Region: In case a UE’s traffic is moved to a data center in

a different region, the global controller passes UE remappings
to the regional controller (old-new data center), which then in
turn passes it to the local controllers. The local controllers then
trigger MME handover or S-GW handover. In case of P-GW, it
moves the instance to the new data center. Similar considera-
tions of middlebox state migration as in the intra-region case are
involved in inter-region transfers.

7 Implementation
In this section, we describe an implementation of KLEIN that we
will use in the following section for performance evaluation. The
implementation consists of EPC, resource management and orches-
tration layers and uses emulated UEs and eNodeBs.

EPC implementation: We use OpenAirInterface (OAI) ver-
sion 0.1, an open source software implementation of EPC functions
(MME, S-GW, P-GW, HSS), and eNodeB and UEs [18]. The UE
and eNodeB behaviors are emulated; they are virtualized and run
inside VMs. The EPC functions are also run inside a VM. In OAI,
the EPC functions, viz., MME, S-GW, and P-GW, are tightly inte-
grated and run inside the same VM. A key limitation of OAI is that
the binding of UE to EPC is static. We extended OAI to enable dy-
namic remapping of the UE to a different EPC instance. We made
some simplifying assumptions to do this, such as copying all UE
contexts to all MMEs at the beginning. It is possible to do this for a
small testbed and does not impact the broad performance measures
we are interested in here.

Resource management and orchestration layers: Each EPC in-
stance is realized as a VM. Emulated UEs and eNodeBs are also
run inside VMs. In our testbed, we have a single UE per eNodeB



����

��

���

����

��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
��
���
��
��
��
��
��
��
��
��
�

�������������������������������

�������
���������
����������

Figure 9: KLEIN’s responsiveness

����

�����

��

�����

����

�����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��
��
��
��
��
�

��
��
��
��
���
��
��
��
�
��
��
��
��
��
��
��
��

��������������������������������������������������������������

����
����

Figure 10: KLEIN’s optimality

because of OAI constraints. We use OpenvSwitch [20] to emulate
switches inside the DCs. We developed custom implementations of
the global and regional controllers using CPLEX to run these algo-
rithms. We use the Floodlight [10] SDN controller which in-
stalls rules inside SDN switches to dynamically route traffic among
the VMs.

8 Evaluation
In this section, we use a combination of real testbed and trace-
driven simulations to demonstrate the following benefits of KLEIN:

1. KLEIN is scalable and within 10% of the optimal. Our sys-
tem takes less than 20 s to reconfigure a network with 2000
data centers and 5 billion devices and is within 10% of an ideal
CLEANSLATE for a range of workloads. (§ 8.1)

2. KLEIN can improve end-application performance by upto a fac-
tor of 5. (§ 8.2)

3. The KLEIN end-to-end prototype implementation delivers the
promised benefits and accurately mirrors the intended load dis-
tribution. (§ 8.3)

4. KLEIN offers new dimensions of elasticity and fault tolerance.
It can handle data center failures both rapidly and efficiently,
taking less than 2.3 s, and reducing the maximum load by a fac-
tor of 2. (§ 8.4)

Setup and methodology: Before going into the results, we de-
scribe the testbed and simulation setups used for the experiments.

��
����
��
����
��
����

�� ��� ��� ��� ��� ��� ���

��
��
��
��
��
��
��
�

��
��
��
��
���
��
��
��
�
�

���������������������������������������������

Figure 11: Varying reconfiguration period

��

���

����

����

����

������� ��������� ���������
�
��
�
��
��
��
��
��
���
�
��
��
�

����������

������
�����������������
���������������

Figure 12: KLEIN’s failure handling

• Testbed: The testbed runs on Emulab [9]. The testbed uses upto
24 machine with 2.4 GHz 64-bit Quad Core and 12 GB of RAM.
On each machine, we assigned equal amount of resources to
each VM: 1 vCPU (virtual CPU) and 3 GB of memory. Each VM
runs Ubuntu 12.04 (Linux kernel version 3.13.0-32-generic).
• Simulation setup: The large scale simulations using data set

in §2 are run on a machine with 80 CPU cores and 500 GB of
RAM, with each core being a Xeon E74850 running at 2 GHz.
• Deployments: We consider different core network sizes, from

500 data centers to 2000 data centers. The locations of such data
centers are assumed close to the eNodeBs they meant to serve.
This is done by a nearest-neighbor clustering of eNodeBs in the
2D space and locating the data centers at the centroid of such
clusters.
• Traffic demands: We use the data set in §2 to get the traffic de-

mands. In addition, we vary the mix of traffic (latency sensitive
and latency tolerant) and the delay budgets from different traffic
classes to consider a variety of traffic scenarios.

8.1 Scalability and Optimality

Scalability and responsiveness: Figure 9 shows the run time of
KLEIN for different cellular core network sizes and number of de-
vices. A configuration (A,B) corresponds to a deployment of B data
centers, where we assumed A regions. The y-axis shows the total
response time when both the global and regional controllers have
to reconfigure load. We observe that run time is less than 20 s for a
network with 2000 sites and 50 billion devices.5 In contrast with a
2-level decomposition (as shown in Table 1) even with aggregation,
it takes more than a day to reconfigure the load.

5Note for 50 billion devices, we use a total 50,000 aggregates of
UEs.



��

����

��

����

��

����

������� ��������� ���������

��
���
��
��
��
��
��
��
�
��
��
��
�

����������

�����������������
���������������

Figure 13: KLEIN’s failure response

�����

����

��

���

�� �� ���

�
��
�
��
��
��
��
��
��
��
��
��
��
���
�

�������������

�����
�����

Figure 14: Impact on end-application performance

Optimality: Figure 10 shows for different traffic mix and delay
budgets, how KLEIN’s heuristics perform. The y-axis shows the
load balancing optimality gap, (KLEIN/CleanSlate). The CleanS-
late solution optimally load balances the data and control plane
functions without considering any BudgetMME−SGW

t constraints.
We observe KLEIN’s remains within 10% of the optimal solution,
even for very stringent delay budget of 10 ms6.

Varying reconfiguration period: Figure 11 shows the impact of
reconfiguration period on the effectiveness of KLEIN’s load balanc-
ing. The y-axis shows the load balancing gap, where we compare
against a base line where every 5 mins both the regional and global
controller reconfigure the load. We vary the global controller re-
configuration period, from 5 mins to 60 mins, while the regional
controllers constantly reconfigure the load every 5 mins. Even with
global reconfiguration at 60 mins intervals, the gap is only 2.5%.
We find that one effective strategy is where global controller re-
configures the load periodically every 60 mins, while the regional
controller performs reconfigurations every 5 mins.

8.2 End-Application Performance
Figure 14 shows the potential impact of KLEIN’s load distribution
on end-application performance as compared to Today’s load dis-
tribution. We consider 3 different file sizes, and using our micro-
benchmarking experiments similar to Figure 2(c), build a database
of mapping between EPC utilization and file download time. Then
we consider a period of 2-hours from our data-set, and consider
the load distribution today and in KLEIN, specifically noting the
data centers each UE data traffic was mapped to. We observe that

6We assumed 1000 data centers for these experiments.

��

��

��

��

��

���

���

���

�� ��� ��� ��� ��� ����

��
��
��
�
��
��

��������������

����
����

Figure 15: Handling traffic overload on an EPC instance by
instantiating a new EPC instance.

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
��
�
��
��
��
��
��
��
��
��
��
��
��
� ��������

��������

Figure 16: Validation of KLEIN on EPC testbed

KLEIN can reduce median file download time by upto a factor of
5, because it ensure that data center utilization is balanced.

8.3 End-to-End System Validation
We have validated our testbed demonstrating expected load bal-
anced operation. Here, we consider 16 UEs attached to 16 base
stations, and a total of 8 EPC instances. We use traffic data from 16
different base stations from the real data set, and scale their load to
adjust to the capabilities of the testbed. We then dynamically map a
UE’s traffic to a specific EPC instance, based on the load on the net-
work and using SDN Floodlight controller, to dynamically install
forwarding rules the switches. We consider three different traffic
distributions which represent loads hour apart. Figure 16 shows the
gap between the observed load and the output from KLEIN. Fig-
ure 16 shows the gap between the observed load and the output
from KLEIN optimization (Expected). For all EPC instances, the
observed load is within 5% of the expected load.

8.4 New Opportunities

Elastic scaling: One of the new opportunities that KLEIN offers is
the ability to dynamically scale EPC functions. This is because in
KLEIN, the EPC functions are virtualized and can be instantiated
based on demand. To illustrate this, we consider an elastic scaling
experiment in our testbed, where we assume three UEs attached
to an EPC instance which experiences a spike in load. The EPC
instance is overloaded and we instantiate another EPC instance, and
move some traffic to this new instance. The Figure 15 shows the
time series. The load is evenly distributed and KLEIN avoids a
potential overload scenario. We observe it takes in the order of a



few ms to exchange UE state between different EPC instances and
be able to route data traffic to the new EPC instance.

Failure handling: We consider a scenario where we fail individ-
ual data centers, and use KLEIN’s dynamic remapping to reconfig-
ure the load on the network. We compare it against a Static failure
management strategy, where in the case of a failure, the load is stat-
ically mapped to the nearest data center. Figure 12 shows KLEIN
avoids potential overload scenarios in the face of failure. We con-
sider 3 different core network deployments, consisting of 500, 1000
and 2000 data centers. KLEIN can handle data center failures at two
levels. It can perform (1) Regional recovery, where the regional
controller tries to redistribute the load within the same region and
(2) Global recovery, where the global controller redistributes the
load across the cellular core. KLEIN can reduce maximum load on
any data center in the cellular core by upto 100% as compared to
a Static strategy. As shown in Figure 13, a Global recovery takes
KLEIN upto 2.3s and a Regional recovery upto 0.3s.

9 Related Work
Cellular SDN and NFV: Recent proposals on redesigning the
cellular core using SDN and NFV argue for an approach akin to
a clean slate design [34, 39], with new cellular signaling proto-
cols and SDN-like wide-area routing. Other proposals [29, 42,
36, 35] present backwards compatible mechanisms for virtualiz-
ing core EPC functions like S-GW and P-GW. However, all these
ignore a resource management layer for managing resources. The
core contribution of this work is a scalable resource manager, real-
ized via backwards compatible orchestration mechanisms.

Middleboxes and NFV: Related work has focused on “middle-
box” service chaining and load balancing [40, 43, 49]. Other work
has also suggested NFV-like ideas for traditional middleboxes [32,
45]. In this work we consider the problem of load distribution and
network function placement over the entire core network, consist-
ing of thousands of sites and billion of mobile devices.

Control plane design: There have been prior proposals for a hi-
erarchical control plane design in different context [39, 37], our
goal here is to investigate how we design a scalable and responsive
resource management layer for handling thousands of sites and bil-
lion of mobile devices.

Middlebox/EPC state management: One of the key benefits of
KLEIN comes from dynamic load balancing across sites, which in
turn requires moving traffic from one data center to another. Many
middleboxes maintain active per-flow state, moving traffic will re-
quire mechanisms to move the relevant state from these middle-
boxes to the new site. Recent work [32, 41] can be used to address
these challenges.

10 Conclusions
Today the cellular core suffers from a range of limitations and in-
efficiencies. As operators are rapidly improving the access band-
width in (4G/LTE) networks, the core network remains the bottle-
neck. As carriers are looking to redesign their networks, an im-
portant question is whether we need to completely redesign the
cellular core. Using a data-driven analysis we find that we can
near-optimally achieve the benefits of an optimal clean slate ap-
proach using KLEIN, a minimally disruptive redesign. The key ob-
servation is that by combining virtualized network functions with
a smart resource management layer and a more distributed cellular
core, we can achieve almost all of the promised elasticity benefits
while working within the operational constraints of existing 3GPP
standards.

Acknowledgments
We would like to thank the anonymous reviewers for their feed-
back and suggestions on improving the paper. This research was
supported in part by NSF grant CNS-1117719 and Intel Labs’ Uni-
versity Research Office.

11 References

[1] 3GPP Evolved Packet System (EPS); Evolved General
Packet Radio Service (GPRS) Tunneling Protocol for
Control Plane (GTPv2-C).
http://www.3gpp.org/DynaReport/29274.htm.

[2] ADARA. http://www.adaranet.com/.
[3] Affirmed Networks. http://www.affirmednetworks.com/.
[4] Architectural EPC Extensions for Supporting Heterogeneous

Mobility Schemes. Document by MEVICO, January 2013.
http://www.mevico.org/D22.pdf.

[5] ARICENT. https://www.aricent.com/.
[6] AT&T Domain 2.0 Vision White Paper.

http://tinyurl.com/p4uv3s3.
[7] AT&T launches virtualized packet core in Europe.

http://www.fiercewireless.com/tech/story/att-launches-
virtualized-packet-core-europe/2015-10-06.

[8] Contrail Architecture. http://www.juniper.net/us/en/local/
pdf/whitepapers/2000535-en.pdf.

[9] Emulab. https://www.emulab.net/.
[10] Floodlight. http://www.projectfloodlight.org/floodlight/.
[11] General Packet Radio Service (GPRS) enhancements for

Evolved Universal Terrestrial Radio Access Network
(E-UTRAN) access.
http://www.3gpp.org/DynaReport/23401.htm/.

[12] Introducing ONOS - a SDN network operating system for
Service Providers. http://onosproject.org/wp-content/
uploads/2014/11/Whitepaper-ONOS-final.pdf.

[13] LTE Connectem Inc. http://www.connectem.net/.
[14] LTE Design and Deployment Strategies.

http://tinyurl.com/lj2erpg.
[15] Managing the Signaling Storm. http://goo.gl/lkTyb1.
[16] Mobile Gateway Configuration Guide. Alcatel Lucent

Technical Document, 2014. http://infoproducts.alcatel-
lucent.com/cgi-bin/dbaccessfilename.cgi/
9305240102_V1_7750%20SR-OS%20Mobile%
20Gateway%20Configuration%20Guide%206.0r5.pdf.

[17] Morgan Stanley Releases The Mobile Internet Report.
http://www.morganstanley.com/.

[18] OpenAirInterface. http://openairinterface.org.
[19] The OpenEPC Project. http://http://www.openepc.com/.
[20] OpenvSwitch. http://openvswitch.org/.
[21] Percentage of all global web pages served to mobile phones

from 2009 to 2015. http://www.statista.com/statistics.
[22] Service Chain Load Balancing with OpenContrail.

http://www.opencontrail.org/service-chain-load-balancing-
with-opencontrail/.

[23] State of the News Media 2015. http://www.journalism.org/
2015/04/29/state-of-the-news-media-2015/.

[24] vEPC in LTE networks: Time to move ahead. Blog, March
2015. https://techzine.alcatel-lucent.com/vepc-lte-networks-
time-move-ahead?s_cid=smm15_tmc0481_bl.

[25] The Zettabyte Era: Trends and Analysis. Cisco Technology
White Paper, May 2015. http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-

http://www.3gpp.org/DynaReport/29274.htm
http://www.adaranet.com/
http://www.affirmednetworks.com/
http://www.mevico.org/D22.pdf
https://www.aricent.com/
http://tinyurl.com/p4uv3s3
http://www.fiercewireless.com/tech/story/att-launches-virtualized-packet-core-europe/2015-10-06
http://www.fiercewireless.com/tech/story/att-launches-virtualized-packet-core-europe/2015-10-06
http://www.juniper.net/us/en/local/pdf/whitepapers/2000535-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000535-en.pdf
https://www.emulab.net/
http://www.projectfloodlight.org/floodlight/
http://www.3gpp.org/DynaReport/23401.htm/
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://www.connectem.net/
http://tinyurl.com/lj2erpg
http://goo.gl/lkTyb1
http://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/9305240102_V1_7750%20SR-OS%20Mobile%20Gateway%20Configuration%20Guide%206.0r5.pdf
http://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/9305240102_V1_7750%20SR-OS%20Mobile%20Gateway%20Configuration%20Guide%206.0r5.pdf
http://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/9305240102_V1_7750%20SR-OS%20Mobile%20Gateway%20Configuration%20Guide%206.0r5.pdf
http://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/9305240102_V1_7750%20SR-OS%20Mobile%20Gateway%20Configuration%20Guide%206.0r5.pdf
http://www.morganstanley.com/
http://openairinterface.org
http://http://www.openepc.com/
http://openvswitch.org/
http://www.statista.com/statistics
http://www.opencontrail.org/service-chain-load-balancing-with-opencontrail/
http://www.opencontrail.org/service-chain-load-balancing-with-opencontrail/
http://www.journalism.org/2015/04/29/state-of-the-news-media-2015/
http://www.journalism.org/2015/04/29/state-of-the-news-media-2015/
https://techzine.alcatel-lucent.com/vepc-lte-networks-time-move-ahead?s_cid=smm15_tmc0481_bl
https://techzine.alcatel-lucent.com/vepc-lte-networks-time-move-ahead?s_cid=smm15_tmc0481_bl
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf


index-vni/VNI_Hyperconnectivity_WP.pdf.
[26] O. Abdelrahman and E. Gelenbe. Signalling storms in 3G

Mobile Networks. In Proc. ICC, 2014.
[27] M. Balakrishnan et al. Where’s that phone?: Geolocating IP

Addresses on 3G Networks. Proc. IMC’09.
[28] A. Banerjee et al. Phantomnet: Research infrastructure for

mobile networking, cloud computing and software-defined
networking. GetMobile: Mobile Computing and
Communications, 19(2):28–33, 2015.

[29] A. Basta et al. A virtual SDN-enabled LTE EPC architecture:
A case study for S-/P-Gateways functions. In Proc.
SDN4FNS, 2013.

[30] J. Cho, B. Nguyen, A. Banerjee, R. Ricci, J. Van der Merwe,
and K. Webb. SMORE: Software-defined Networking
Mobile Offloading Architecture. In Proc.
AllThingsCellular’14, pages 21–26, 2014.

[31] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei:
Flexible and elastic ddos defense. In Proc. SEC’15, pages
817–832. USENIX Association, 2015.

[32] A. Gember et al. OpenNF: Enabling Innovation in Network
Function Control. In Proc. SIGCOMM, pages 163–174,
2014.

[33] V. Jalaparti, M. Caesar, S. Lee, J. Pang, and J. Van der
Merwe. SMOG: A cloud platform for seamless wide area
migration of online games. In Proc. NetGames’12, pages
9:1–9:6, 2012.

[34] X. Jin et al. SoftCell: Scalable and Flexible Core Network
Architecture. In Proc. CoNEXT, 2013.

[35] J. Kempf et al. Moving the Mobile Evolved Packet Core to
the Cloud . In International Workshop on Selected Topics in
Mobile and Wireless Computing, 2012.

[36] K.Pentikousis et al. Mobileflow: Toward software-defined
mobile networks . In International Workshop on Selected
Topics in Mobile and Wireless Computing, 2013.

[37] J. MacCauley et al. Extending SDN to Large-Scale
Networks. Open Network Summit, 2013.

[38] H. Matsuba et al. Airfoil: A topology aware distributed load
balancing service. In IEEE Cloud, 2015.

[39] M. Moradi et al. Softmow: Recursive and Reconfigurable
Cellular WAN Architecture. Proc. CoNEXT ’14.

[40] Z. Qazi et al. SIMPLE-fying Middlebox Policy Enforcement
Using SDN. In Proc. SIGCOMM, pages 27–38, 2013.

[41] S. Rajagopalan et al. Split/Merge: System Support for
Elastic Execution in Virtual Middleboxes. In Proc. NSDI,
pages 227–240, 2013.

[42] M. Sama et al. Software-Defined Control of the Virtualized
Mobile Packet Core. In IEEE Communications Magazine,
2015.

[43] V. Sekar et al. Design and Implementation of a Consolidated
Middlebox Architecture. In Proc. NSDI, 2012.

[44] S.Elby. Carrier Vision of SDN and Future Applications to
Achieve a more Agile Mobile Businesss. Keynote at the
OpenFlow World Congress, 2012.

[45] J. Sherry et al. Making Middleboxes Someone Else’s
Problem: Network Processing as a Cloud Service. In Proc.
SIGCOMM, 2012.

[46] Z. Wang et al. An Untold Story of Middleboxes in Cellular
Networks. In Proc. SIGCOMM, pages 374–385, 2011.

[47] T. Wood, K. Ramakrishnan, P. Shenoy, J. Van der Merwe,
J. Hwang, G. Liu, and L. Chaufournier. CloudNet: Dynamic
Pooling of Cloud Resources by Live WAN Migration of

Virtual Machines. IEEE/ACM Transactions on Networking,
23(5):1568–1583, Oct 2015.

[48] Q. Xu et al. Cellular Data Network Infrastructure
Characterization and Implication on Mobile Content
Placement. In Proc. SIGMETRICS, pages 317–328. ACM,
2011.

[49] Y. Zhang et al. StEERING: A Software-Defined Network for
Inline Service Chaining. In Proc. ICNP, 2013.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf

	Introduction
	Background and Motivation
	Cellular Core Background
	Limitations of Today's Cellular Core
	Summary of Key Observations

	A Case for a Minimalistic Roadmap
	Design space
	Methodology
	Results
	Summary

	System Overview and Challenges
	Overview
	Challenges

	Resource Manager
	Problem Formulation
	Key Ideas
	Our Approach

	Network Orchestration
	Wide-area Orchestration
	Intra-datacenter Orchestration
	KLEIN's Reconfigurations

	Implementation
	Evaluation
	Scalability and Optimality
	End-Application Performance
	End-to-End System Validation
	New Opportunities

	Related Work
	Conclusions
	References

