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ABSTRACT
Many data center transports have been proposed in recent
times (e.g., DCTCP, PDQ, pFabric, etc). Contrary to the
common perception that they are competitors (i.e., protocol
A vs. protocol B), we claim that the underlying strate-
gies used in these protocols are, in fact, complementary.
Based on this insight, we design PASE, a transport frame-
work that synthesizes existing transport strategies, namely,
self-adjusting endpoints (used in TCP style protocols), in-
network prioritization (used in pFabric), and arbitration
(used in PDQ). PASE is deployment friendly: it does not
require any changes to the network fabric; yet, its perfor-
mance is comparable to, or better than, the state-of-the-art
protocols that require changes to network elements (e.g.,
pFabric). We evaluate PASE using simulations and testbed
experiments. Our results show that PASE performs well for
a wide range of application workloads and network settings.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols
Keywords: datacenter; transport; scheduling

1. INTRODUCTION
Popular data center applications (e.g., search) have many

distributed components that interact via the internal data
center network. Network delays, therefore, inflate applica-
tion response times which, in turn, affects user satisfaction.
Thus, several recent data center transport proposals focus on
providing low latency for user-facing services. These propos-
als optimize for specific application goals, such as minimiz-
ing flow completion times (FCT) or meeting flow deadlines,
and use a variety of underlying techniques to achieve their
objective, from the more traditional TCP-style approaches
(e.g., DCTCP [11]) to those that use an explicit rate control
protocol (e.g., PDQ [18]) or a new prioritized network fabric
(e.g., pFabric [12]).
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All these techniques have their own strengths and weak-
nesses: some provide good performance, but require changes
to the network fabric [12, 18, 24], while others are deploy-
ment friendly, but have inferior performance [22, 23]. In this
paper, we take a clean slate approach towards designing a
data center transport that provides good performance while
also being deployment friendly. To this end, we take a step
back and ask the following question: how can we design a
data center transport from scratch while leveraging the in-
sights offered by existing proposals?

As a first step towards answering this question, we distill
the three underlying strategies used in data center trans-
ports: i) self adjusting endpoints, where senders indepen-
dently make their rate increase/decrease decision based on
the observed network conditions (used in DCTCP [11] style
protocols), ii) arbitration, where a common network entity
(e.g., a switch) allocates rates to each flow (used in D3 [24],
PDQ [18], etc), and iii) in-network prioritization, where
switches schedule and drop packets based on their priority
(used in pFabric [12]).

We observe that each strategy has its own role. It works
best when it is fulfilling its role and encounters problems
otherwise. Unfortunately, existing protocols only use one of
the above strategies and try to make it work under all sce-
narios. In this paper, we make a case that these transport
strategies should be used together as they nicely complement
each other. For example, approaches that rely on arbitra-
tion alone have high flow switching overhead because flows
need to be explicitly paused and unpaused [18]. With in-
network prioritization, switching from a high priority flow
to the next is seamless [12]. Conversely, arbitration can also
help in-network prioritization approaches. For example, in-
network prioritization mechanisms typically need to support
a large number of priority levels whereas existing switches
only have a limited number of priority queues. An arbitra-
tor can address this problem by dynamically changing the
mapping of flows to queues — flows whose turn is far away
can all be mapped to the lowest priority queue while flows
whose turn is about to come can be mapped to the high
priority queues.

To demonstrate the benefits of using these strategies to-
gether, we design PASE, a transport framework for private
data center environments. PASE employs distributed arbi-
trators that decide the share (priority) of a flow given other
flows in the system. A TCP-like end-host transport uses this
information for its rate control and loss recovery. Within the
network, PASE uses existing priority queues to prioritize the
scheduling of packets over network links. This appropriate



division of responsibilities among the three strategies makes
PASE outperform state-of-the-art transport protocols while
also being deployment friendly i.e., no changes to the net-
work fabric are required.

A key aspect of PASE is a scalable control plane for arbi-
tration. For every link in the data center topology, a dedi-
cated arbitrator is responsible for arbitration. This function-
ality can be implemented at the end-hosts themselves (e.g.,
for their own links to the switch) or on dedicated nodes
within the data center. We exploit the typical tree based
data center topology features to make the arbitration deci-
sions in a bottom up fashion, starting from the endpoints
and going up to the core. This has several performance
and scalability benefits. First, for intra-rack communica-
tion, which can constitute a sizeable share of data center
traffic [11], only the source and destination are involved, ob-
viating the need to communicate with any other entity. Sec-
ond, lower level arbitrators (those closer to the leaf nodes)
can do early pruning by discarding flows that are unlikely
to become part of the top priority queue. Third, higher
level arbitrators (those closer to the root) can delegate their
arbitration decisions to lower level arbitrators. Both early
pruning and delegation reduce the arbitration overhead (at
the cost of potentially less accurate decisions).

The outcome of arbitration is the priority queue and
reference rate for the flow – this information is used by
PASE’s end-host transport for rate control and loss re-
covery. Compared to traditional transport protocols (e.g.,
TCP/DCTCP), our rate control is more guided. For ex-
ample, instead of slow start, the transport uses the refer-
ence rate as its starting point. However, loss recovery in
PASE is more challenging because packets can be delayed
in a lower priority queue for a long time, which may trig-
ger spurious timeouts if we use today’s timeout mechanisms.
Thus, for lower priority flows, instead of retransmitting the
data packet, PASE uses small probe packets which help in
determining whether the packet was lost, or waiting in a
lower priority queue.

We implement PASE on a small testbed and in the ns2
simulator [6]. We compare PASE with the best perform-
ing transport protocol (pFabric [12]) as well as deployment
friendly options (D2TCP [23]). Compared to deployment
friendly options, PASE improves the average FCT (AFCT)
by 40% to 60% for various scenarios. PASE also performs
within 6% of pFabric in scenarios where pFabric is close to
optimal while in other scenarios (all-to-all traffic pattern or
under high network load), PASE outperforms pFabric by
up to 85% both in terms of the AFCT as well as the 99th

percentile FCT.
This paper makes the following key contributions.

• We distill the underlying strategies used in data center
transport protocols and highlight their strengths and
weaknesses.

• We design PASE, a data center transport framework
which synthesizes existing transport strategies. PASE
includes two new components: a scalable arbitration
control plane for data center networks, and an end-host
transport protocol that is explicitly aware of priority
queues and employs a guided rate control mechanism.

• We conduct a comprehensive evaluation of PASE,
which includes macro-benchmarks that compare

PASE’s performance against multiple existing trans-
port protocols, and micro-benchmarks that focus on
the internal working of the system.

PASE shows the promise of combining existing transport
strategies in a single transport framework. We view it as a
first step towards a more holistic approach for building the
next generation data center transport protocols.

2. TRANSPORT STRATEGIES
To achieve high performance,1 existing data center trans-

ports use one of the three following transport strategies: (a)
Self-Adjusting Endpoints, (b) Arbitration, or (c) In-network
Prioritization. We first describe these strategies and discuss
their limitations when they are employed in isolation. We
then discuss how these limitations can be addressed if these
strategies are used together.

2.1 Transport Strategies in Isolation
Each transport strategy has its own advantages and dis-

advantages as shown in Table 1. We now describe the basic
working of each strategy, discuss its advantages, and high-
light their key limitations through simulation experiments.

Self-Adjusting Endpoints: Traditional transport proto-
cols like TCP use this strategy. Under this transport strat-
egy, endpoints themselves decide the amount of data to send
based on network congestion. The state of network conges-
tion is determined through a congestion signal that could be
implicit (e.g., packet loss) or explicit (i.e., ECN). In case of
congestion, the window size is reduced by the same factor for
all flows, if fairness is the objective [11], or the factor could
depend on other parameters (e.g., remaining flow size [22]
or deadline [23]), if flow prioritization is the objective.

Protocols in this category are easy to deploy because they
do not require any changes to the network infrastructure or
depend on any entity except the endpoints. However, when
considering flow prioritization, their performance is inferior
to the state-of-the-art data center transport protocols (e.g.,
pFabric [12], PDQ [18]). One reason for their poor perfor-
mance is that they do not provide strict priority scheduling –
even low priority flows, which should be paused, continue to
send at least one packet per RTT. This hurts performance,
especially at high loads when multiple flows are active.

To illustrate this behavior, we consider two protocols that
follow the self-adjusting endpoint strategy: DCTCP [11] and
D2TCP [23] (a deadline-aware version of DCTCP), and com-
pare their performance with pFabric [12], the state-of-the-art
data center transport with the best reported performance.
We replicate a deadline oriented scenario in ns22. Figure 1
shows the fraction of deadlines met (or application through-
put) as a function of load for the three schemes. While at
low loads, D2TCP is able to meet deadlines (i.e., achieve
prioritization), at higher loads its performance approaches
its fair-sharing counterpart, DCTCP. Moreover, both these

1In the context of data center transports, high performance
usually refers to minimizing completion times, maximizing
throughput, or reducing the deadline miss rate [11, 18].
2This corresponds to Experiment 4.1.3 in the D2TCP pa-
per [23] – it represents an intra-rack scenario, where the
source and destination of each flow is picked randomly and
the flow sizes are uniformly distributed between [100 KB,
500 KB] in the presence of two background long flows. The
deadlines are uniformly distributed from 5 ms-25 ms.



Transport Strategy Pros Cons Examples
Self-Adjusting Endpoints Ease of deployment Lack of support for strict priority

scheduling
DCTCP [11], D2TCP
[23], L2DCT [22]

Arbitration 1) Supports strict priority scheduling
2) Fast convergence

1) High flow switching overhead
2) Hard to compute precise rates

D3 [24], PDQ [18].

In-network Prioritization 1) Work conservation
2) Low flow switching overhead

1) Limited number of priority
queues in existing switches
2) Switch-local decisions

pFabric [12]

Table 1: Comparison of different transport strategies.
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Figure 1: Comparison of two self-adjusting end-
point based protocols (D2TCP and DCTCP) with
the state-of-the-art data center transport (pFabric).

protocols perform much worse than pFabric at high loads,
highlighting their limitations in achieving priority schedul-
ing across a wide range of network loads.

Arbitration: Explicit rate protocols, like PDQ [18], use ar-
bitration as their underlying transport strategy. Instead of
endpoints making decisions on their own, arbitration based
approaches [18, 24] require the switches to make the schedul-
ing decision, keeping in view all network flows and their in-
dividual priorities (e.g., deadline, flow size). The scheduling
decision is communicated as a rate at which flows should
send data. The rate could be zero, if the flow needs to be
paused because of its low priority, or it could be the full link
capacity, if the flow has the highest priority. While a cen-
tralized problem in general, prior work [18, 24] shows that
arbitration can be done in a decentralized fashion – each
switch along the path of a flow adds its rate to the packet
header and the minimum rate is picked by the sender for
transmitting data.

The explicit nature of arbitration based approaches en-
sures that flows achieve their desired rate quickly (typically
in one RTT). Moreover, the ability to pause and unpause
flows enables strict priority scheduling of flows: the highest
priority flow gets the full link capacity (if it can saturate
the link) while other flows are paused. However, this ex-
plicit rate assignment comes with its own set of problems.
For example, calculating accurate rates for flows is challeng-
ing as flows could be bottlenecked at non-network resources
(e.g., source application, receiver). Another important issue
is the flow switching overhead, which refers to the overhead
of pausing and unpausing flows. This overhead is typically
∼1-2 RTTs, which can be significant in scenarios involving
short flows (when flows last for a small duration) and at high
loads (when flows need to be frequently preempted).

We illustrate the impact of flow switching overhead in
a practical scenario through a simulation experiment. We
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Figure 2: Comparison of PDQ (an arbitration based
approach) with DCTCP. At high loads, PDQ’s high
flow switching overhead leads to poor performance.

consider PDQ [18]3, which is considered the best perform-
ing arbitration based scheme, and compare its performance
with DCTCP [11]. The scenario is a repeat of the previous
intra-rack, all-to-all experiment, except the metric here is
AFCT. Figure 2 shows the AFCT as a function of network
load. At low loads, PDQ outperforms DCTCP because of
its fast convergence to the desired rate. However, at high
loads, the flow switching overhead becomes significant as
more flows contend with each other, thereby requiring more
preemptions in the network. As a result, PDQ’s performance
degrades and the completion time becomes even higher than
that of DCTCP.

In-network Prioritization: In transport protocols that
use in-network prioritization (e.g., pFabric [12]), packets
carry flow priorities, such as the flow deadline or size, and
switches use this priority to decide which packet to sched-
ule or drop (in case of congestion). This behavior ensures
two desirable properties: work conservation, a lower priority
packet is scheduled if there is no packet of higher priority,
and preemption, when a higher priority packet arrives, it
gets precedence over a lower priority packet.

The well-known downside to in-network prioritization is
the limited number of priority queues available in switches
– typically ∼ 4-10 [24] (see Table 2). For most practical
scenarios, this number is much smaller than the number of
unique flow priorities in the system. Proposals that sup-
port a large number of priority levels require changing the
network fabric [12], which makes them hard to deploy.

Another shortcoming of this strategy is that switches
make local decisions about prioritization which can lead
to sub-optimal performance in multi-link scenarios. This
is shown in Figure 3 through a simple toy example involv-

3Based on the simulator code obtained from the PDQ au-
thors. It supports all the optimizations that reduce the flow
switching overhead.
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Figure 3: Toy example illustrating problem with
pFabric.

 0

 10

 20

 30

 40

 50

 60

 70

 10  20  30  40  50  60  70  80  90 95

Lo
ss

 R
at

e 
(%

)

Offered load (%)

pFabric

Figure 4: Loss rate for pFabric with varying load.
Local prioritization leads to losses at high loads.

ing three flows. Flow 1 has the highest priority; Flow 2 has
medium priority and flow 3 has the lowest priority. Flows
1 and 2 share link B, so only flow 1 can progress while flow
2 should wait. A protocol like pFabric continues to send
packets of flow 2 on link A even though these packets are
later dropped at link B. These unnecessary transmissions
stall flow 3, which could have run in parallel with flow 1 as
both flows do not share any link.

The above toy example highlights a common use case
present in all-to-all traffic patterns (e.g., MapReduce [16],
Search) where a node typically has data to send to many
other nodes. To quantify this problem under such practi-
cal settings, we simulate the interaction between workers
and aggregators within a single rack of a search applica-
tion. Each worker-aggregator flow is uniformly distributed
between [2-198] KB. We focus on the loss rate of pFabric
when the network load is increased. As shown in Figure 4,
loss rate shoots up as the load on network links is increased.
For a load of 80%, more than 40% packets are dropped.
These lost packets translate into loss of throughput as we
could have used these transmissions for packets belonging
to other flows. In Section 4, we show how this high loss rate
results in poor FCT for pFabric.

2.2 Transport Strategies in Unison
We now discuss how combining these transport strategies

offers a simple solution to the problems identified earlier.

In-network Prioritization complementing arbitra-
tion: The high flow switching overhead of arbitration-only
approaches can be avoided with the help of in-network pri-
oritization. As today’s arbitration-only approaches, like
PDQ [18], assume no prioritization within the network, they
have to achieve priority scheduling by communicating ex-
plicit rates to end-hosts, which takes time, and thus results
in a high flow switching overhead. If we have in-network pri-

oritization, the arbitrator can just assign relative priorities
to the flows (e.g., high priority flow vs low priority flow),
leaving it up to the switches to enforce this relative prior-
ity through a suitable scheduling and dropping mechanism.
The current in-network prioritization mechanisms (e.g., pri-
ority queues) provide seamless switching between flows of
different priorities, so there is no flow switching overhead
and link utilization remains high during this period.

A simple example illustrates this benefit. Assume we have
two flows – F1 (higher priority) and F2 (lower priority).
With arbitration-only approaches, F1 is initially assigned
the entire link capacity while F2 is paused during this time.
When F1 finishes, we have to explicitly signal F2 to un-
pause. With in-network prioritization, we can just assign
these flows to different priority classes – F1 is mapped to
the high priority class while F2 is mapped to the low pri-
ority class. The switch ensures that as soon as there are
no more packets of F1 in the high priority queue, it starts
scheduling packets of F2 from the lower priority queue.

Arbitration aiding In-network Prioritization: The
small number of priority queues cause performance degra-
dation when multiple flows get mapped to the high priority
queue [12]. This results in multiplexing of these flows in-
stead of strict priority scheduling (i.e., one flow at a time).
This problem can be avoided with the help of arbitration.
Instead of statically mapping flows to queues, an arbitrator
can do a dynamic mapping. So a flow’s priority queue keeps
on changing during it’s lifetime. A flow whose “turn” is far
away is mapped to lower priority queue. As a flow’s turn is
about to come, it moves up to a higher priority queue.

We explain this idea through a simple two queue example.
Suppose queue A (QA) is the high priority queue and queue
B (QB) is the lower priority queue. We have four flows to
schedule (F1, F2, F3, and F4, with F1 having the highest pri-
ority and F4, the lowest) — as the number of flows is more
than the number of queues, any static mapping of flows to
queues will result in sub-optimal performance. With the
help of arbitration, we can initially map F1 to QA and the
other three flows to QB . When F1 finishes, we can change
the mapping of F2 from QB to QA while flows F3 and F4

are still mapped to QB . A similar process is applied when
F2 (and later on, F3) finishes. In short, the highest prior-
ity queue is used for the active, high priority flow while the
lower priority queue is used primarily to keep link utiliza-
tion high (i.e., work-conservation). The example shows how
arbitration can help leverage the limited number of priority
queues without compromising on performance.

Arbitration helping Self-Adjusting Endpoints : With
arbitration-only approaches, calculating precise flow rates
can be hard because the arbitrator may not have accu-
rate information about all the possible bottlenecks in the
system [18, 24]. Thus, we can end up underestimating
or overestimating the available capacity. Unfortunately,
in arbitration-only approaches, endpoints – which typically
have a better idea of path conditions – are dumb: they al-
ways transmit at the rate assigned by the arbitrator, so even
if they are in a position to detect congestion or spare capac-
ity in the network, they cannot respond.

The self-adjusting endpoint strategy naturally addresses
this problem as it constantly probes the network: if there
is any spare capacity, it will increase its rate, and if there
is congestion, it will back off. For example, suppose there



Switch Vendor Num. Queues ECN
BCM56820 [2] Broadcom 10 Yes

G8264 [4] IBM 8 Yes
7050S [1] Arista 7 Yes

EX3300 [5] Juniper 5 No
S4810 [3] Dell 3 Yes

Table 2: Priority Queues and ECN support in pop-
ular commodity top-of-rack switches. The numbers
are per interface.

are two flows in the system with different priorities. The
higher priority flow is assigned the full link capacity but
it is unable to use it. The lower priority flow will remain
paused if we do not use self-adjusting endpoints. However, if
the endpoint uses a self-adjusting policy, it will detect spare
capacity and increase its rate until the link is saturated.
Note that arbitration also helps the self-adjusting endpoint
strategy: instead of just blindly probing the network for its
due share, a flow can use information from the arbitrator to
“bootstrap” the self-adjusting behavior.

3. PASE
PASE is a transport framework that synthesizes the

three transport strategies, namely in-network Prioritization,
Arbitration, and Self-adjusting Endpoints. The underlying
design principle behind PASE is that each transport strategy
should focus on what it is best at doing, such as:

• Arbitrators should do inter-flow prioritization at
coarse time-scales. They should not be responsible
for computing precise rates or for doing fine-grained
prioritization.

• Endpoints should probe for any spare link capacity on
their own, without involving any other entity. Further,
given their lack of global information, they should not
try to do inter-flow prioritization (protocols that do
this have poor performance, as shown in Section 2).

• In-network prioritization mechanism should focus on
per-packet prioritization at short, sub-RTT timescales.
The goal should be to obey the decisions made by the
other two strategies while keeping the data plane sim-
ple and efficient.

Given the above roles for each strategy, the high-level
working of PASE is as follows. Every source periodically
contacts the arbitrator to get its priority queue and refer-
ence rate. The arbitration decision is based on the flows
currently in the system and their priorities (e.g., deadline,
flow-size). As the name suggests, the reference rate is not
binding on the sources, so depending on the path conditions,
the sources may end up sending at higher or lower than this
rate (i.e., self-adjusting endpoints). A key benefit of PASE
is that we do not require any changes to the data plane:
switches on the path use existing priority queues to schedule
packets and employ explicit congestion notification (ECN)
to signal congestion. As shown in Table 2, most modern
switches support these two features.

To achieve high performance while being deployment
friendly, PASE incorporates two key components: a control
plane arbitration mechanism and an end-host transport pro-
tocol. While existing arbitration mechanisms operate in the
data plane (and hence require changes to the network fab-
ric), we implement a separate control plane for performing

arbitration in a scalable manner. To this end, we introduce
optimizations that leverage the typical tree structure of data
center topologies to reduce the overhead of arbitration. Fi-
nally, PASE’s transport protocol has an explicit notion of
reference rate and priority queues, which leads to new rate
control and loss recovery mechanisms.

In the following sections, we describe the control plane
and the end-host transport protocol of PASE, followed by
the details of its implementation.

3.1 Arbitration Control Plane
While a centralized arbitrator is an attractive option for

multiple reasons, making it work in scenarios involving short
flows is still an open problem [10, 15]. Prior work [18] shows
that the problem of flow arbitration can indeed be solved in
a distributed fashion: each switch along the path of a flow
independently makes the arbitration decision and returns
the allocated rate for its own link, and the source can pick
the minimum rate. While prior work implements arbitration
as part of the data plane, PASE supports this as part of the
control plane because experiences with prior protocols (e.g.,
XCP [20]) show that even small changes to the data plane
are hard to deploy.

We first describe the basic arbitration algorithm used in
PASE and the key sources of overhead that limit the scala-
bility of the arbitration process. We then present two opti-
mizations that reduce the arbitration overhead by exploiting
the characteristics of typical data center topologies.

Algorithm 1 Arbitration Algorithm

Input: < FlowSize, F lowID, demand(optional) >
Output: < PrioQue,Rref >
Arbitrator locally maintains a sorted list of flows
Step#1: Sort/update flow entry based on the FlowSize
Step#2: Compute PrioQue and Rref of the flow.
//Link capacity is C, and AggregateDemandHigher
(ADH) is the sum of demands of flows with priority higher
than current flow.
1: Assign rate:
if ADH < C then
Rref = min(demand,C −ADH);
else
Rref = baserate;
end if
2: Assign PrioQue:
PrioQue = dADH/Ce;
if PrioQue > LowestQueue then
PrioQue = LowestQueue;
end if
3: return < PrioQue,Rref >;

3.1.1 Basic Arbitration Algorithm
For each link in the data center topology, there is an ar-

bitrator that runs the arbitration algorithm and makes de-
cisions for all flows that traverse the particular link. The
arbitrator can be implemented on any server in the data
center or on dedicated controllers that are co-located with
the switches. The arbitration algorithm works at the gran-
ularity of a flow, where a flow could be a single RPC in a
typical client-server interaction, or a long running TCP-like
connection between two machines.



The interaction between a flow’s source and the arbitra-
tor(s) is captured in Algorithm 1. The source provides the
arbitrator(s) with two pieces of information: i) the flow size
(FlowSize), which is used as the criterion for scheduling
(i.e., shortest flow first). To support other scheduling tech-
niques, the FlowSize can be replaced by deadline [24] or
task-id for task-aware scheduling [17]. ii) demand, this rep-
resents the maximum rate at which the source can send data.
For long flows that can saturate the link, this is equal to the
NIC rate, while for short flows that do not have enough data
to saturate the link, this is set to a lower value. Demand
and flow size are inputs to the arbitration algorithm whereas
the output is the reference rate (Rref ) and a priority queue
(PrioQue) of the flow.

To compute Rref and PrioQue, the arbitrator locally
maintains a sorted list of flows based on their sizes. This
list is updated based on the latest FlowSize information of
the current flow. The flow’s priority queue and reference rate
depend on the aggregate demand (AggregateDemandHigher
- or ADH) of flows that have higher priority compared to
the current flow. An ADH value less than the link capacity
C implies that there is some spare capacity on the link and
the flow can be mapped to the top queue. Thus, if the flow’s
demand is less than the spare capacity, we set the reference
rate equal to the demand. Otherwise, we set the reference
rate equal to the spare capacity.

The other case is when the ADH exceeds link capacity.
This happens when a link is already saturated by higher
priority flows, so the current flow cannot make it to the top
queue. In this case, the flow’s reference rate is set to a base
value, which is equal to one packet per RTT. This allows
such low priority flows to make progress in case some capac-
ity becomes available in the network, and to even increase
their rate in the future based on self-adjusting behavior.

Finally, if the current flow cannot be mapped to the top
queue, it is either mapped to the lowest queue (if ADH
exceeds the aggregate capacity of intermediate queues) or
is mapped to one of the intermediate queues. Thus, each
intermediate queue accommodates flows with an aggregate
demand of C and the last queue accommodates all the re-
maining flows.

Challenges. While the above design provides a simple
distributed control plane for arbitration, it has three sources
of overhead that limit its scalability.

• Communication Latency. The communication latency
between the source and the arbitrator depends on their
physical distance within the data center. This delay
matters the most during flow setup time as it can end
up increasing the FCT, especially for short flows. To
keep this delay small, arbitrators must be placed care-
fully, such that they are located as close to the sources
as possible.

• Processing Overhead. The second challenge is the pro-
cessing overhead of arbitration messages, which can
potentially add non-negligible delay, especially under
high load scenarios.

• Network Overhead. Due to a separate control plane,
each arbitration message is potentially processed as a
separate packet by the switches which consumes link
capacity. We need to ensure that this overhead is kept
low and that it does not cause network congestion for
our primary traffic.
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Figure 5: The bottom-up approach employed by
PASE for intra-rack and inter-rack scenarios.

To reduce these overheads, we extend the basic PASE de-
sign by introducing a bottom-up approach to arbitration,
which we describe next.

3.1.2 Bottom Up Arbitration
We exploit the typical tree structure of data center topolo-

gies. Sources obtain information about the PrioQue and
Rref in a bottom-up fashion, starting from the leaf nodes
up to the core as shown in Figure 5. For this purpose, the
end-to-end path between a source and destination is divided
into two halves – one from the source up to the root and the
other from the destination up to the root.

For each half, the respective leaf nodes (i.e., source and
destination) initiate the arbitration. They start off with
their link to the ToR switch and then move upwards. The
arbitration request messages move up the arbitration hier-
archy until it reaches the top level arbitrator. The responses
move downwards in the opposite direction.

This bottom-up approach ensures that for intra-rack com-
munication, arbitration is done solely at the endpoints, with-
out involving any external arbitrator. Thus, in this scenario,
flows incur no additional network latency for arbitration.
This is particularly useful as many data center applications
have communication patterns that have an explicit notion
of rack affinity [11, 13].

For the inter-rack scenario, the bottom up approach facili-
tates two other optimizations, early pruning and delegation,
to reduce the arbitration overhead and latency. Both early
pruning and delegation exploit a trade-off between low over-
head and high accuracy of arbitration. As our evaluation
shows, by giving away some accuracy, they can significantly
decrease the arbitration overhead.

Early Pruning. The network and processing overheads
can be reduced by limiting the number of flows that contact
the arbitrators for PrioQue and Rref information. In early
pruning, only flows that are mapped to the highest priority
queue move upwards for arbitration. Thus, in Algorithm 1
a lower level arbitrator only sends the arbitration message
to its parent if the flow is mapped to the top queue(s). This
results in lower priority flows being pruned at lower levels, as
soon as they are mapped to lower priority queues (see Figure
6). The intuition behind this is that a flow mapped to a lower
priority queue on one of its links will never make it to the
highest priority queue irrespective of the arbitration decision
on other links. This is because a flow always uses the lowest
of the priority queues assigned by all the arbitrators (i.e.,
bottleneck in the path). Thus, we should avoid the overhead
of making arbitration decisions for the flows mapped to lower
priority queues.
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Figure 6: The early pruning optimization used by
PASE for reducing the arbitration overhead. Note
that si and ki represent flows that are mapped to the
highest priority queue at the senders and the ToR
arbitrators, respectively.

There are two key benefits of early pruning. First, it re-
duces the network overhead as arbitration messages for only
high priority flows propagate upwards. Second, it reduces
the processing load on higher level arbitrators. In both cases,
the reduction in overhead can be significant, especially in the
more challenging heavy load scenarios, where such overhead
can hurt system performance.

In general, early pruning makes the overhead independent
of the total number of flows in the system. Instead, with
early pruning, the overhead depends on the number of chil-
dren that a higher level arbitrator may have because each
child arbitrator only sends a limited number of flows (the
top ones) upwards. Due to limited port density of modern
switches (typically less than 100), the number of children,
and hence the overhead, is quite small. This leads to signifi-
cant reduction in the overhead compared to the non-pruning
case where the overhead is proportional to the total num-
ber of flows traversing a link, which can be in thousands (or
more) for typical data center settings [11, 13]. However, the
above overhead reduction comes at the cost of less precise
arbitration. As we only send the top flows to the higher level
arbitrators, flows that are pruned do not get the complete
and accurate arbitration information. Our evaluation shows
that sending flows belonging to the top two queues upwards
(rather than just the top queue), provides the right balance:
there is little performance degradation while reduction in
overhead is still significant.

Delegation. Delegation is specially designed to reduce the
arbitration latency. While early pruning can significantly
reduce the arbitration processing overhead as well as the
network overhead, it does not reduce the latency involved in
the arbitration decision because top flows still need to go all
the way up to the top arbitrator.

In delegation, a higher level link (i.e., closer to the core)
is divided into smaller “virtual” links of lower capacity –
each virtual link is delegated to one of the child arbitrators
who then becomes responsible for all arbitration decisions
related to the virtual link. Thus, it can make a local decision
about a higher level link without going to the corresponding
arbitrator. On each virtual link, we run the same arbitration
algorithm i.e., Algorithm 1 as we do for normal links.

As a simple example, the aggregation-core link of capacity
C shown in Figure 7 can be divided into N virtual links of
capacity aiC each (where ai is the fraction of capacity allo-
cated to virtual link i) and then delegated to one of the child

ToRs 
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a1C a2C 

C 

aNC 

Delegated Capacities 

Link Capacity 

Figure 7: The delegation optimization used by PASE
for reducing the setup latency and control overhead.

arbitrators. The capacity of each virtual link is updated pe-
riodically, reflecting the PrioQue of flows received by each
child arbitrator. For example, one child that is consistently
observing flows of higher priorities can get a virtual link of
higher capacity.

Delegation provides two benefits. First, it reduces the
flow setup delay because arbitration decisions for higher level
links are made at lower level arbitrators, which are likely to
be located close to the sources (e.g., within the rack). Sec-
ond, it reduces the control traffic destined towards higher
level arbitrators. Note that this happens because only ag-
gregate information about flows is sent by the child arbitra-
tors to their parents for determining the new share of virtual
link capacities.

The impact on processing load has both positive and neg-
ative dimensions. While it reduces the processing load on
higher level arbitrators, it ends up increasing the load on
lower level arbitrators as they need to do arbitration for
their parents’ virtual links too. However, we believe this
may be acceptable as lower level arbitrators typically deal
with fewer flows compared to top level arbitrators.

Like early pruning, delegation also involves the overhead-
accuracy trade-off. The capacity assigned to a specific vir-
tual link may not be accurate which may lead to perfor-
mance degradation. For example, we may have assigned a
lower virtual capacity to a child who may suddenly start
receiving higher priority flows. These flows would need to
wait for an update to the virtual link capacity before they
can get their due share. On the other hand, there could be
cases where the virtual capacity may remain unused if the
child does not have enough flows to use this capacity. This
is especially true in scenarios where a link is delegated all
the way to the end-host and the end-host may have a bursty
flow arrival pattern.

Given the above trade-off, PASE only delegates the
Aggregation-Core link capacity to its children (TOR-
Aggregation arbitrators). These child arbitrators should be
typically located within the rack of the source/destination
(or co-located with the TOR switch). Thus, for any inter-
rack communication within a typical three level tree topol-
ogy, the source and destination only need to contact their
TOR-aggregation arbitrator, who can do the arbitration all
the way up to the root. In fact, flows need not wait for the
feedback from the other half i.e., destination-root. Thus, in
PASE, a flow starts as soon as it receives arbitration infor-
mation from the child arbitrator. This approach is reason-
able in scenarios where both halves of the tree are likely to
have similar traffic patterns. If that is not true then PASE’s
self-adjusting behavior ensures that flows adjust accordingly.



3.2 End-host Transport
PASE’s end-host transport builds on top of existing trans-

ports that use the self-adjusting endpoints strategy (e.g.,
DCTCP). Compared to existing protocols, the PASE trans-
port has to deal with two new additional pieces: (a) a pri-
ority queue (PrioQue) on which a flow is mapped and (b)
a reference sending rate (Rref ). This impacts two aspects
of the transport protocol: rate control and loss recovery.
Rate control in PASE is more guided and is closely tied to
the Rref and the PrioQue of a flow. Similarly, the trans-
port requires a new loss recovery mechanism because flows
mapped to lower priority queues may experience spurious
timeouts as they have to wait for a long time before they
get an opportunity to send a packet. We now elaborate on
these two aspects.

Rate Control: A PASE source uses the Rref and the
PrioQue assigned by the arbitrators to guide its transmis-
sion rate. The rate control uses congestion window (cwnd)
adjustment, based on the Rref and the flow RTT, to achieve
the average reference rate at RTT timescales.

Algorithm 2 describes the rate control mechanism in
PASE. For the flows mapped to the top queue, the con-
gestion window is set to Rref ×RTT in order to reflect the
reference rate assigned by the arbitrator. For all other flows,
the congestion window is set to one packet. Note that for
flows belonging to the top queue, the reference rate Rref is
generally equal to the access link capacity unless flows have
smaller sizes.

For the flows mapped to lower priority queues (except
the bottom queue), the subsequent increase or decrease in
congestion window cwnd is based on the well-studied control
laws of DCTCP [11]. In particular, when an unmarked ACK
is received, the window size is increased as

cwnd = cwnd+ 1/cwnd. (1)

When a marked ACK (i.e., with ECN-Echo flag set) is re-
ceived, the window size is reduced as

cwnd = cwnd× (1− α/2) (2)

where α is the weighted average of the fraction of marked
packets. This self-adjusting behavior for higher priority
queues is important for ensuring high fabric utilization at
all times because the Rref may not be accurate and there
may be spare capacity or congestion along the path.

For the flows mapped to the bottom queue, the window
size always remains one. This is because under high loads
all flows that cannot make it to the top queues are mapped
to the bottom queue, so the load on the bottom queue can
be usually high.

Loss Recovery: For flows belonging to the top queue, we
use existing loss recovery mechanisms (i.e., timeout based
retransmissions). However, flows that get mapped to the
lower priority queues can timeout for two reasons: (a) their
packet(s) could not be transmitted because higher priority
queues kept the link fully utilized and (b) a packet was lost.
In case of scenario (a), a sender should avoid sending any
new packets into the network as it increases the buffer occu-
pancy and the likelihood of packet losses especially at high
network loads. In case of scenario (b), a sender should re-
transmit the lost packet as early as it is possible so that
the flows can make use of any available capacity without

Algorithm 2 Rate Control

Input: < PrioQue,Rref >
Output: < cwnd > // congestion window
// Priority queues q1, q2,.., qk where q1 is the highest pri-
ority queue and q2, q3, and qk−1 are intermediate queues
// if an ACK with the ECN-Echo flag set is received
if ACKmarked == 1 then
cwnd = cwnd× (1− α/2); // Use DCTCP decrease law
else
if PrioQue == q1 then
cwnd = Rref ×RTT ;
isInterQueue = 0; // not an intermediate queue
else if PrioQue ∈ {q2, q3, .., qk−1} then
// if already mapped to an intermediate queue
if isInterQueue == 1 then
cwnd = 1 + 1/cwnd; // Use DCTCP increase law
else
isInterQueue = 1; cwnd = 1;
end if
else if PrioQue == qk then
cwnd = 1; isInterQueue = 0;
end if
end if

under-utilizing the network. However, differentiating be-
tween these two scenarios is a challenging task without in-
curring any additional overhead.

We use small probe packets instead of retransmitting the
entire packet whenever a flow, mapped to one of the lower
priority queues, times out. If we receive an ACK for the
probe packet (but not the original packet), it is a sign that
the data packet was lost, so we retransmit the original data
packet. If the probe packet is also delayed (no ACK re-
ceived), we increase our timeout value (and resend another
probe) just like we do this for successive losses for data pack-
ets. An alternative approach is to set suitable timeout val-
ues: smaller values for flows belonging to the top queue and
larger values for the other flows.

Finally, a related issue is that of packet reordering. When
a flow from a low priority queue gets mapped to a higher pri-
ority queue, packet re-ordering may occur as earlier packets
may be buffered at the former queue. This can lead to un-
necessary backoffs which degrades throughput. To address
this, we ensure that when a flow moves to a higher priority
queue, we wait for the ACKs of already sent packets to be
received before sending packets with the updated priority.

3.3 Implementation
We implement PASE on a small-scale Linux testbed as

well as in the ns2 simulator. Our ns2 implementation sup-
ports all the optimizations discussed in Section 3 whereas
our testbed implementation only supports the basic arbitra-
tion algorithm (described in Section 3.1.1). For the testbed
evaluation, we implement the transport protocol and the
arbitration logic as Linux kernel modules. The Linux trans-
port module, which is built on top of DCTCP, communicates
with the arbitration module to obtain the packet priority
and the reference rate. It then adds the PASE header on
outgoing packets. For the desired switch support, we use
the PRIO [7] queue and CBQ (class based queueing) im-
plementation, on top of the RED queue implementation in
Linux and ns2. We use eight priority queues/classes and
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Figure 8: Baseline topology used in simulations.
Note that L = 40 hosts.

classify packets based on the ToS field in the IP header.
Out of these eight queues, a separate, strictly lower priority
queue is maintained for background traffic. For the RED
queue, we set the low and high thresholds of RED queue to
K and perform marking based on the instantaneous rather
than the average queue length as done in DCTCP [11].

4. EVALUATION
In this section we evaluate the performance of PASE using

the ns2 simulator [6] as well as through small-scale testbed
experiments. First, we conduct macro-benchmark experi-
ments in ns2 to compare PASE’s performance against ex-
isting data center transports. We compare PASE against
both deployment-friendly protocols including DCTCP [11],
D2TCP [23], and L2DCT [22] (§4.2.1) as well as the best per-
forming transport, namely, pFabric [12] (§4.2.2). Second, we
micro-benchmark the internal working of PASE (e.g., ben-
efits of arbitration optimizations, use of reference rate, etc)
using simulations (§4.3). Finally, we report evaluation re-
sults for our testbed experiments (§4.4).

4.1 Simulation Settings
We now describe our simulation settings including the

data center topology, traffic workloads, performance met-
rics, and the protocols compared.

Data center Topology: We use a 3-tier topology for our
evaluation comprising layers of ToR (Top-of-Rack) switches,
aggregation switches, and a core switch as shown in Figure
8. This is a commonly used topology in data centers [9, 23,
24]. The topology interconnects 160 hosts through 4 ToR
switches that are connected to 2 aggregation switches, which
in turn are interconnected via a core switch. Each host-ToR
link has a capacity of 1 Gbps whereas all other links are of
10 Gbps. This results in an oversubscription ratio of 4:1 for
the uplink from the ToR switches. In all the experiments,
the arbitrators are co-located with their respective switches.
The end-to-end round-trip propagation delay (in the absence
of queueing) between hosts via the core switch is 300µs.

Traffic Workloads: We consider traffic workloads that
are derived from patterns observed in production data cen-
ters. Flows arrive according to a Poisson process and flow
sizes are drawn from the interval [2 KB, 198 KB] using a
uniform distribution, as done in prior studies [18, 24]. This
represents query traffic and latency sensitive short messages
in data center networks. In addition to these flows, we gener-
ate two long-lived flows in the background, which represents
the 75th percentile of multiplexing in data centers [11]. Note
that we always use these settings unless specified otherwise.

Scheme Parameters
DCTCP qSize = 225 pkts
D2TCP markingThresh = 65
L2DCT minRTO = 10 ms

qSize = 76 pkts (= 2×BDP)
pFabric initCwnd = 38 pkts (= BDP)

minRTO = 1 ms (∼3.3×RTT)
qSize = 500 pkts

PASE minRTO (flows in top queue) = 10 ms
minRTO (flows in other queues) = 200 ms
numQue = 8

Table 3: Default simulation parameter settings.

We consider two kinds of flows: deadline-constrained flows
and deadline-unconstrained flows. They cover typical appli-
cation requirements in today’s data centers [23].

Protocols Compared: We compare PASE with several
data center transports including DCTCP [11], D2TCP [23],
L2DCT [22], and pFabric [12]. We implemented DCTCP,
D2TCP and L2DCT in ns2 and use the source code of pFab-
ric provided by the authors to evaluate their scheme. The
parameters of these protocols are set according to the rec-
ommendations provided by the authors, or reflect the best
settings, which we determined experimentally (see Table 3).

Performance Metrics: For traffic without any dead-
lines, we use the FCT as a metric. We consider the AFCT as
well as the 99th percentile FCT for small flows. For deadline-
constrained traffic, we use application throughput as our
metric which is defined as the fraction of flows that meet
their deadlines. We use the control messages per second to
quantify the arbitration overhead.

4.2 Macro-benchmarks

4.2.1 Comparison with Deployment Friendly
Schemes

PASE is a deployment friendly transport that does not re-
quire any changes to the network fabric. Therefore, we now
compare PASE’s performance with deployment friendly data
center transports, namely, DCTCP and L2DCT. DCTCP
[11] is a fair sharing protocol that uses ECN marks to infer
the degree of congestion and employs adaptive backoff fac-
tors to maintain small queues. The goal of L2DCT [22] is to
minimize FCT – it builds on DCTCP by prioritizing short
flows over long flows through the use of adaptive control
laws that depend on the size of the flows.

Deadline-unconstrained flows: We consider an inter-
rack communication scenario (termed as left-right) where 80
hosts in the left subtree of the core switch generate traffic
towards hosts in the right subtree. This is a common sce-
nario in user-facing web services where the front-end servers
and the back-end storage reside in separate racks [25]. The
generated traffic comprises flows with sizes drawn from the
interval [2 KB, 198 KB] using a uniform distribution. In ad-
dition, we generate two long-lived flows in the background.

Figure 9(a) shows the improvement in AFCT as a function
of network load. Observe that PASE outperforms L2DCT
and DCTCP by at least 50% and 70%, respectively across
a wide range of loads. At low loads, PASE performs better
primarily because of its quick convergence to the correct rate
for each flow. At higher loads, PASE ensures that shorter
flows are strictly prioritized over long flows, whereas with
L2DCT, all flows, irrespective of their priorities, continue
to send at least one packet into the network. This lack
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Figure 9: (a) Comparison of PASE with L2DCT and DCTCP in terms of AFCTs under the (left-right) inter-
rack scenario, (b) shows the CDF of FCTs at 70% load in case of (a), and (c) Deadline-constrained flows:
Comparison of application throughput for PASE with D2TCP and DCTCP under the intra-rack scenario.

of support for strict priority scheduling in L2DCT leads to
larger FCTs for short flows. DCTCP does not prioritize
short flows over long flows. Thus, it results in worst FCTs
across all protocols.

Figure 9(b) shows the CDF of FCTs at 70% load. Ob-
serve that PASE results in better FCTs for almost all flows
compared to L2DCT and DCTCP.

Deadline-constrained flows: We now consider latency-
sensitive flows that have specific deadlines associated with
them. Thus, we compare PASE’s performance with D2TCP,
a deadline-aware transport protocol. We replicate the
D2TCP experiment from [23] (also described earlier in §2)
which considers an intra-rack scenario with 20 machines and
generate short query traffic with flow sizes drawn from the
interval [100 KB, 500 KB] using a uniform distribution. Fig-
ure 9(c) shows the application throughput as a function of
network load. PASE significantly outperforms D2TCP and
DCTCP, especially at high loads because of the large num-
ber of active flows in the network. Since each D2TCP and
DCTCP flow sends at least one packet per RTT, these flows
consume significant network capacity which makes it diffi-
cult for a large fraction of flows to meet their respective
deadlines. PASE, on the other hand, ensures that flows
with the earliest deadlines are given the desired rates and
are strictly prioritized inside the switches.

4.2.2 Comparison with Best Performing Scheme
We now compare the performance of PASE with pFab-

ric, which achieves close to optimal performance in several
scenarios but requires changes in switches. With pFabric,
packets carry a priority number that is set independently by
each flow. Based on this, pFabric switches perform priority-
based scheduling and dropping. All flows start at the line
rate and backoff only under persistent packet loss.

PASE performs better than pFabric in two important sce-
narios: (a) multi-link (single rack) scenarios with all-to-
all traffic patterns and (b) at high loads (generally > 80%)
whereas it achieves similar performance (< 6% difference in
AFCTs) compared to pFabric in the following two cases: (a)
single bottleneck scenarios and (b) when the network load
is typically less than 80%.

We first consider the left-right inter-rack scenario where
the aggregation-core link becomes the bottleneck. Figure
10(a) shows the 99th percentile FCT as a function of load.
Observe that pFabric achieves smaller FCT for up to 50%
load and PASE achieves comparable performance. However,
at ≥ 60% loads, PASE results in smaller FCT than pFabric.

At 90% load, this improvement is more than 85%. This
happens due to high and persistent loss rate with pFabric
at high loads. Figure 10(b) shows the CDF of FCT at 70%
load for the same scenario.

Next we consider an all-to-all intra-rack scenario, which
is common in applications like web search where responses
from several worker nodes within a rack are combined by an
aggregator node before a final response is sent to the user.
Moreover, any node within a rack can be an aggregator node
for a user query and the aggregators are picked in a round
robin fashion to achieve load balancing [8].

Figure 10(c) shows that PASE provides up to 85% im-
provement in AFCT over pFabric and results in lower
AFCTs across all loads. This happens because with pFabric
multiple flows sending at line rate can collide at a down-
stream ToR-host link. This causes a significant amount of
network capacity to be wasted on the host-ToR links, which
could have been used by other flows (as this is an all-to-all
scenario). With PASE, flows do not incur any arbitration
latency in the intra-rack scenario as new flows start sending
traffic at line rate based on the information (priority and
reference rate) from their local arbitrator. After one RTT,
all flows obtain their global priorities which helps in avoid-
ing any persistent loss of throughput in case the local and
global priorities are different.

4.3 Micro-benchmarks
In this section, we evaluate the basic components of PASE

with the help of several micro-benchmarks. Our results show
that PASE optimizations significantly reduce the control
traffic overhead and the number of messages that arbitrators
need to process. In addition, we find that other features of
PASE such as its rate control are important for achieving
high performance.

4.3.1 Arbitration Optimizations
PASE introduces early pruning and delegation for reduc-

ing the arbitration overhead of update messages. We now
evaluate the overhead reduction brought about by these
optimizations as well as study their impact on the perfor-
mance of PASE. Figure 11(b) shows the overhead reduction
that is achieved by PASE when all its optimizations are en-
abled. Observe that these optimizations provide up to 50%
reduction in arbitration overhead especially at high loads.
This happens because when these optimizations are enabled,
higher-level arbitrators delegate some portion of the band-
width to lower level arbitrators, which significantly reduces
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Figure 10: Comparison of PASE with pFabric under (a) 99th percentile FCT in the left-right inter-rack
scenario, (b) CDF of FCTs under the left-right scenario at 70% load, and (c) all-to-all intra-rack scenario.
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Figure 11: AFCT improvement and overhead reduc-
tion as a function of load for PASE with its optimiza-
tions in the left-right scenario.
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Figure 12: (a) Comparison of AFCT with and with-
out end-to-end arbitration and (b) PASE with vary-
ing number of priority queues (left-right scenario).

the control overhead on ToR-Aggregation links. In addition,
updates of only those flows are propagated that map to the
highest priority queues due to early pruning. Figure 11(a)
shows that these optimizations also improve the AFCT by
4-10% across all loads. This happens because of delegation,
which reduces the arbitration delays.

Benefit of end-to-end arbitration: PASE enables
global prioritization among flows through its scalable end-
to-end arbitration mechanism. This arbitration, however,
requires additional update messages to be sent on the net-
work. It is worth asking if most of the benefits of PASE
are realizable through only local arbitration, which can be
solely done by the endpoints. Thus, we now compare the
performance of end-to-end arbitration and local arbitration
in the left-right inter-rack scenario. Figure 12(a) shows that
end-to-end arbitration leads to significant improvements (up
to 60%) in AFCTs across a wide range of loads. This hap-
pens because local arbitration cannot account for scenarios
where contention does not occur on the access links, thus
leading to sub-optimal performance.
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Figure 13: (a) Comparison of PASE with PASE-
DCTCP in the intra-rack scenario with 20 nodes
and uniformly distributed flow sizes from [100 KB,
500 KB] and (b) Testbed Evaluation: Comparison of
AFCT for PASE with DCTCP.

4.3.2 In-network Prioritization and Transport
Micro-benchmarks

Impact of number of priority queues: We now eval-
uate the impact of changing the number of priority queues
in the switches. To test this scenario we repeat the left-
right inter-rack scenario with different number of queues.
Figure 12(b) shows that using 4 queues provide significant
improvement in AFCT at loads ≥ 70%. However, increasing
the number of queues beyond this provides only marginal
improvement in AFCT. These results further reinforce the
ability of PASE to achieve high performance with existing
switches that support a limited number of priority queues.

Reference Rate: We now evaluate the benefit of us-
ing the reference rate information. We compare PASE with
PASE-DCTCP, where all flows (including the ones mapped
to the top queue as well as the lowest priority queue) be-
have as DCTCP sources and do not use the reference rate.
However, these flows are mapped to different priority queues
through the normal arbitration process. As shown in Figure
13(a), leveraging reference rate results in AFCTs of PASE
to be 50% smaller than the AFCTs for PASE-DCTCP.

Impact of RTO and Probing: Flows that are mapped
to the lower priority queues may experience large number of
timeouts, which can affect performance. We implemented
probing in which flows mapped to the lowest priority queue
send a header-only probe packet every RTT rather than a
full-sized packet. We found that using probing improves
performance by ≈2.4% and ≈11% at 80% and 90% loads,
respectively in the all-to-all intra-rack scenario. Note that
unlike pFabric, PASE does not require small RTOs which
forgoes the need to have high resolution timers.



4.4 Testbed Evaluation
We now present a subset of results from our testbed eval-

uation. Our testbed comprises of a single rack of 10 nodes (9
clients, one server), with 1 Gbps links, 250µsec RTT and a
queue size of 100 packets on each interface. We set the mark-
ing threshold K to 20 packets and use 8 priority queues. We
compare PASE’s performance with the DCTCP implemen-
tation (provided by its authors). To emulate data center
like settings, we generate flows sizes that are uniformly dis-
tributed between 100 KB and 500 KB, as done in [23]. We
start 1000 short flows and vary the flow arrival rate to gener-
ate a load between 10% to 90%. In addition, we also gener-
ate a long lived background flow from one of the clients. We
compare PASE with DCTCP and report the average of ten
runs. Figure 13(b) shows the AFCT for both the schemes.
Observe that PASE significantly outperforms DCTCP: it
achieves ≈50%-60% smaller AFCTs compared to DCTCP.
This also matches the results we observed in ns2 simulations.

5. RELATED WORK
We now briefly describe and contrast our work with the

most relevant research works. We categorize prior works in
terms of the underlying transport strategies they use.

Self-Adjusting Endpoints: Several data center trans-
ports use this strategy [11, 14, 22, 23]. DCTCP uses an
adaptive congestion control mechanism based on ECN to
maintain low queues. D2TCP and L2DCT add deadline-
awareness and size-awareness to DCTCP, respectively. MCP
[14] improves performance over D2TCP by assigning more
precise flow rates using ECN marks. These rates are based
on the solution of a stochastic delay minimization prob-
lem. These protocols do not support flow preemption and
in-network prioritization, which limits their performance.

Arbitration: PDQ [18] and D3 [24] use network-wide ar-
bitration but incur high flow switching overhead. PASE’s
bottom up approach to arbitration has similarities with
EyeQ [19], which targets a different problem of providing
bandwidth guarantees in multi-tenant cloud data centers.
PASE’s arbitration mechanism generalizes EyeQ’s arbitra-
tion by dealing with scenarios where contention can happen
at links other than the access links.

In-network Prioritization: pFabric [12] uses in-
network prioritization by doing priority-based scheduling
and dropping of packets. DeTail [25], a cross layer net-
work stack, focuses on minimizing the tail latency but does
not target the average FCT. In [21], authors propose vir-
tual shapers to overcome the challenge of limited number
of rate limiters. While both DeTail and virtual shapers use
in-network prioritization, they do not deal with providing
mechanisms for achieving network-wide arbitration.

In general, prior proposals target one specific transport
strategy, PASE uses all these strategies in unison to over-
come limitations of individual strategies and thus achieves
high performance across a wide range of scenarios while be-
ing deployment friendly.

6. CONCLUSION
We proposed PASE, a transport framework that synthe-

sizes existing transport strategies. PASE is deployment
friendly as it does not require any changes to the network
fabric and yet, its performance is comparable to, or bet-
ter than the state-of-the-art protocols that require changes

to network elements. The design of PASE includes a scal-
able arbitration control plane which is specifically tailored
for typical data center topologies, and an end-host transport
that explicitly uses priority queues and information from ar-
bitrators. We believe that PASE sets out a new direction
for data center transports, where advances in specific tech-
niques (e.g., better in-network prioritization mechanisms or
improved control laws) benefit everyone.
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