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Abstract— For provisioning large-scale online applications such
as web search, social networks and advertisement systems, data
centers face extreme challenges in providing low latency for short
flows (that result from end-user actions) and high throughput for
background flows (that are needed to maintain data consistency
and structure across massively distributed systems). We propose
L2DCT, a practical data center transport protocol that targets
a reduction in flow completion times for short flows by approx-
imating the Least Attained Service (LAS) scheduling discipline,
without requiring any changes in application software or router
hardware, and without adversely affecting the long flows. L2DCT
can co-exist with TCP and works by adapting flow rates to the
extent of network congestion inferred via Explicit Congestion
Notification (ECN) marking, a feature widely supported by the
installed router base. Though L2DCT is deadline unaware, our
results indicate that, for typical data center traffic patterns and
deadlines and over a wide range of traffic load, its deadline
miss rate is consistently smaller compared to existing deadline-
driven data center transport protocols. L2DCT reduces the mean
flow completion time by up to 50% over DCTCP and by up to
95% over TCP. In addition, it reduces the completion for 99th
percentile flows by 37% over DCTCP. We present the design
and analysis of L2DCT, evaluate its performance, and discuss an
implementation built upon standard Linux protocol stack.

I. INTRODUCTION

Data centers are now being used as a critical infrastructure

for high-revenue online services such as web search, social

networking, advertisement systems, and recommendation sys-

tems. Such data center applications pose demanding latency

requirements and even a small fraction of a second can make

a quantifiable difference in user experience thus impacting the

revenue. For example, Google observed a 20% traffic reduction

from an extra 500 ms of latency (introduced inadvertently), and

Amazon found that every additional 100 ms of latency costs

them a 1% loss in business revenue [1], [2].

Large-scale online applications are typically hosted at data

centers and follow the Partition/Aggregate workflow pattern, in

which user requests are partitioned amongst layers of worker

nodes within the data center and the results from the workers

are then combined by an aggregator node before a final

response is sent back to the user [3], [4].

Provisioning these applications leads to data center traffic

that is a mix of short and long flows. Prior work shows that

most flows are short arising from end-user actions, however

most bytes are contained in a very small number of background

long flows that are needed to maintain data consistency and

structure across massively distributed systems [3]. The time-

liness of response to the end-user is determined by the short

foreground flows while the quality of response is determined

by both the short and the long flows. Long-lived TCP flows

cause the length of the bottleneck queue to grow until packets

get dropped. When long flows and latency-sensitive short flows

share the same queue, short flows experience increased latency

due to queue buildup by long flows [1], [5], [6].

In this paper, we present L2DCT (Low Latency Data Center

Transport), a practical data center transport protocol that

targets a reduction in the completion times for short flows.

L2DCT can be deployed incrementally as it can co-exist with

TCP and does not require any changes to router hardware or

application software. At the heart of L2DCT is the additive

increase and backoff mechanism for setting the transport layer

window size. Under this mechanism, end hosts make use of

the information inferred from Explicit Congestion Notification

(ECN) marking and adjust their flow rates (by setting the

window size) based on the amount of data a flow has already

sent. Intuitively, conservative backoff and aggressive increase

for short flows allows these flows to finish relatively quickly.

A number of transport protocols have previously been

proposed for large-scale data center applications with Parti-

tion/Aggregate workflow.

One class of data center protocols approximate the processor

sharing (PS) discipline by dividing the link bandwidth equally

among flows [1], [7], [8]. This solution ignores the disparate

requirements for short foreground and long background flows.

Furthermore, it has previously been shown that although the

PS discipline leads to fairness, it is far from optimal in terms

of minimizing the average flow completion time (AFCT) [9].

Another class of data center protocols assign deadlines to

flows and try to meet those deadlines as the main objective [4],

[6]. Such protocols require changes to applications (for passing

deadline and/or flow size information) and may need router

hardware modifications [4]. Furthermore, there is no estab-

lished basis for accurately choosing the deadlines, which are

currently set based on user experience surveys [1], [4].

L2DCT focuses on reducing the completion times for short

flows. PDQ [10] shares a similar objective and improves

the flow completion times over TCP, RCP [8] and D3 [4].

However, it requires modifications to switch hardware and

software and is incompatible with TCP, leading to practical

difficulties with deployment. Indeed, a protocol can optimally

minimize the AFCT by using the Shortest Remaining Pro-

cessing Time (SRPT) scheduling discipline. However, SRPT

requires knowledge of flow sizes (which may or may not be

available), a centralized scheduler, and incurs an overhead

for passing flow size information to the scheduler. L2DCT

overcomes all these limitations: it does not need a centralized

scheduler, is compatible with TCP, does not require any

software or hardware support from the routers (except for

the ECN marking which is a standard feature in present-day

routers [1], [6]), and is easy to implement (requires fewer than

75 lines of code change to TCP in the Linux kernel).



Fig. 1. Motivating example.

Practicality of L2DCT also stems from the fact that it

approximates the Least Attained Service (LAS) scheduling dis-

cipline, which does not require flow size information. LAS also

targets a reduction in AFCT and closely approximates SRPT

[11] even though it is not optimal, as illustrated in Figure 1.

Three flows (A, B, and C), having different transfer sizes,

arrive at different times. Assuming a fluid traffic model i.e.,

with infinitesimally small units of transmission, the progress

of flows with fair sharing, SRPT, and LAS is as shown. With

fair sharing or Processor Sharing (PS), the flows A, B, and

C finish at times 3.5, 6.5, and 7, respectively and have an

AFCT of 2.5+4.5+7
3 = 4.67. With SRPT, the AFCT becomes

1+2+7
3 = 3.33 and with LAS, the AFCT is 1+3+7

3 = 3.67.

The congestion control mechanism of L2DCT approximates

LAS as follows: in the face of congestion, long flows back

off aggressively while short flows do so conservatively. In

contrast, the additive increase of congestion window is more

aggressive in case of short flows. This intuitively favors the

short flows to finish quickly without causing any starvation

of long flows. Furthermore, window size adjustment based on

the extent of congestion, as estimated by ECN marking, allows

long flows to achieve high throughput in the absence of short

flows and prevents congestion collapse.

L2DCT reduces the AFCT by up to 50% over DCTCP and

by up to 95% over TCP. It also reduces the completion time

for the 99th percentile flows by 37% over DCTCP. Though

L2DCT focuses on AFCT and is deadline unaware, our results

also show that it would miss fewer deadlines compared to

existing deadline-driven data center transport protocols, for

typical data center traffic patterns and deadlines and over a

wide range of traffic load. Altogether, this paper makes the

following contributions:

• A data center transport protocol L2DCT that targets

a reduction in flow completion times, is incrementally

deployable, requires no changes to the data center appli-

cation code base or the router hardware, and is able to

co-exist with TCP.

• Design and analysis of the congestion control mechanism

used in L2DCT.

• Extensive evaluation of L2DCT (using at-scale simula-

tions) in comparison with TCP and other proposed data

center transport protocols under typical data center traffic

patterns for large-scale online applications over a wide

range of workloads, measuring the impact in: average

flow completion times, proportion of deadlines missed,

per flow throughput in a multihop setting, and bottleneck

queue length.

• A small-scale testbed evaluation using an implementation

built upon the standard Linux protocol stack.

The rest of the paper is organized as follows. We describe

the details of L2DCT and present its analysis in Section II.

We evaluate L2DCT’s performance in Section III. Linux im-

plementation and real testbed results are presented in Section

IV. We discuss related work in Section V, followed by some

discussion and future work in Section VI. We offer concluding

remarks in Section VII.

II. L2DCT PROTOCOL

L2DCT modulates the congestion window size based on

estimated flow sizes as well as the extent of congestion in

the network. Flow sizes are estimated based on the amount of

data a flow has sent so far. This enables L2DCT to adapt

congestion window sizes in a size-aware manner without

requiring flow size information and approximate scheduling

disciplines such as LAS. With such size-aware congestion

management, L2DCT is able to significantly reduce the AFCT.

A. Congestion Avoidance Algorithm

The congestion avoidance algorithm used by L2DCT has

two components, one at the sender side and the other at the

routers. Like DCTCP [1], a router marks all packets by setting

the Congestion Experienced (CE) bits using ECN [12] when

the queue length exceeds a certain threshold. L2DCT senders

measure the extent of network congestion by maintaining a

weighted average of the fraction of marked packets, α, as:

α = g × F + (1− g)× α

where F is the fraction of packets marked in the most recent

window, and g is the weight given to new samples.

In order to realize different scheduling disciplines, such as

SRPT and LAS, which prioritize flows based on their sizes,

L2DCT modulates the congestion window size of each flow

based on α and a weight. In the context of LAS, these weights

are assigned based on the amount of flow data sent so far but

can differ across scheduling disciplines (which we discuss in

Section III-E). These weights implicitly define priorities of

a flow. Based on these weights and α, we determine k, the

increase in congestion window per round-trip time (RTT) and

the backoff penalty b, as follows:

k = wc/wmax (1)

b = αwc (2)

where wc ∈ [wmin, wmax] is the current flow weight, wmin

is the minimum weight, and wmax is the maximum weight

any flow can assume. We evaluate the impact of these bounds

on wc in Section III. Each flow starts by setting wc to wmax.

As flows send more data, wc decreases before converging to

wmin. Observe that since wc ≤ wmax and α ≤ 1, therefore
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Fig. 2. Changes in backoff penalty b as a function of α and wc.

k ≤ 1 and b ≤ 1, respectively. While the increase in window

size per RTT can be more than one but due to burstiness in

packet arrivals in data center applications [5], we limit k to at

most 1, which is the increase factor used by TCP [1].

When a marked ACK (i.e., with ECN-Echo flag set) is

received, L2DCT uses b to reduce the window size as:

cwnd = cwnd× (1− b/2). (3)

Note that TCP, unlike L2DCT, always cuts its window size by

half1. When no packets are CE-marked, the window size is

increased as:

cwnd = cwnd+ k. (4)

Therefore, when congestion is high (α = 1 and b = 1) the

window size is reduced by half, similar to TCP. When α = 0,

and so is b, window increase depends on wc. When α varies

between 0 and 1, the window size is adapted based on k and

b. In particular, flows with high weight (i.e., short flows) incur

a smaller backoff penalty and apply a larger k compared to

flows with smaller weights (i.e., long flows). Note that when

wc = wmax, the window size is increased by one packet,

similar to TCP.

Flow weights: The weight wc decreases with the amount

of data a flow has already sent. Some possible functions for

wc include 1/s and e−s, where s is the data sent so far. We

discuss the choice of the weight function in Section III.

B. Understanding Congestion Behavior

The congestion behavior of L2DCT depends on wc and α
as they impact the window increase and decrease policies.

We now discuss how the choice of L2DCT’s window control

policies allows it to achieve the following goals:

1) When short flows and long flows co-exist, the latter

should relinquish bandwidth to allow the former a

greater short term share of the bandwidth.

2) When only long flows are present, they should be able to

achieve high throughput and not be penalized any more

than regular TCP or DCTCP.

3) When congestion becomes severe (i.e., α is close to

1), all flows should converge to applying full backoff,

similar to TCP, to prevent congestion collapse.

The first goal suggests that short flows should increase their

window faster than long flows and backoff less. Consequently,

we vary k as a function of wc. When a new flow starts, it

1TCP and L2DCT both reduce their window size at most once per RTT.

increases its window by 1 pkt/RTT (similar to TCP). However,

as the flow transmits more packets, its weight decreases,

leading to a proportional decrease in the increase/RTT. This

helps in prioritizing short flows over long flows.

Figure 2 shows the backoff penalty as a function of wc and

α. Observe that when 0 < wc < 1 (i.e., long flows), b increases

rapidly even with small increases in α, and approaches 1
as α tends to 1. This implies that minor congestion causes

rapid reduction in the window sizes of long flows but severe

congestion (e.g. α = 1) does not penalize such flows any more

than regular TCP or DCTCP as suggested by the second goal.

When wc > 1 (i.e., short flows), b increases slowly in

response to increases in α, until α approaches 1, at which

point b rapidly converges to 1. Therefore, minor congestion

does not penalize short flows by much, which allows such

flows a greater short-term share of the bandwidth to finish

quickly. However, severe congestion causes a full backoff.

When congestion continues to grow in severity after long

flows have backed off, then two scenarios are possible: (i)
there are many short flows, who are not reducing their share

of the bandwidth (ii) there may be TCP flows who are con-

suming bandwidth. Both these situations are handled because

as α tends to 1, even short flows will throttle themselves,

thus allowing TCP and other short flows to make progress.

Consequently, the shortest flows will have the largest share of

the bandwidth.

C. Analysis

To understand the impact of wc and k on the steady state

behavior of L2DCT, we now present the analysis of L2DCT

in a simplified setting. We consider N long-lived flows with

identical RTTs T and weight wc, sharing a single bottleneck

link of capacity C. It is further assumed that the N flows are

synchronized i.e., their window dynamics (or sawtooths) are

in-phase. Of course, this assumption is only realistic when N
is small, however, this is the case we care about most in data

centers, where responses from worker nodes are synchronized

[7]. We further assume that wc is fixed. In reality, wc changes

over time, however, this assumption still allows us to capture

the impact of wc on the protocol performance.

Due to flow synchronization, the window sizes of N flows

follow identical sawtooths, and therefore, the queue size

process also follows a sawtooth [13]. We are interested in

determining the backoff penalty b as a function of wc, k, and

the maximum window size (W o) as well as quantities which

completely specify the queue sawtooth: the amplitude of queue

oscillations (A), period of oscillations (TC), and the maximum

queue length (Qmax).

With synchronized flows, the queue length exceeds the

marking threshold K for exactly one RTT in each period

of the sawtooth, before the sources receive ECN marks and

reduce their window sizes accordingly. Therefore, we compute

the fraction of marked packets, α, by dividing the number of

ACKs received during the last RTT by the total number of

ACKs received during the full period of the sawtooth, TC .

We now consider one of the flows and determine its backoff

penalty. Let X(W1,W2) denote the number of packets sent by



a flow, while its window increases from W1 to W2 > W1. This

takes (W2 −W1)/k RTTs2 during which the average window

size is (W1 +W2)/2.

X(W1,W2) = (W 2
2 −W 2

1 )/2k

Let W o = (CT + K)/N . This is the window size at which

the queue length reaches K, and switch starts marking the

packets with the CE codepoint. During the round-trip time

it takes for the sender to react to these marks, another W o

packets have been sent. Hence, fraction of marked packets, α,

can be calculated by,

α = X(W o,W o + k)/X((W o + k)(1− b/2),W o + k)

= ((W o+k)2− (W o)2)/((W o+k)2− (W o+k)2(1− b/2)2)
(5)

Simplifying and rearranging the equation gives,

α(b− b2/4) = (2W ok + k2)/(W o + k)2

Assuming b is small, we can rewrite the equation as,

αb = (2W ok + k2)/(W o + k)2

Plugging the value of b = αwc , gives us,

α =
[

(2W ok + k2)/(W o + k)2
]1/(wc+1)

(6)

and b =
[

(2W ok + k2)/(W o + k)2
]wc/(wc+1)

(7)

Note that when wc=1 and k = 1, we obtain α for DCTCP [1].

The amplitude of oscillation in the window size of a single

flow, D, is given by,

D = (W o + k)− (W o + k)(1− b/2) = b(W o + k)/2 (8)

As there are N flows in total, A can be computed as follows,

A = ND = Nb(W o+k)/2 ≈ NW o

2
.

(

2k

W o

)wc/(wc+1)

(9)

where the final expression assumes that W o >> k. The period

of the oscillations and the maximum queue length are,

Tc = D = b(W o + k)/2 (10)

Qmax = N(W o + k)− C × T = K +Nk (11)

We compared the accuracy of the above results with NS2

simulations. Figure 3 shows the results for wc ∈ {0.5, 1}
and N ∈ {1, 2} on a 1 Gbps link with a RTT of 300µs.

Observe that the analysis provides a fairly accurate prediction

of the window dynamics when wc = 1. For wc = 0.5,

the analysis yields larger variations in window size com-

pared to simulations due to the continuous approximation

we made. An important property, revealed by Equation 9, is

that the amplitude of the queue oscillations of L2DCT is in

O((C×T )1/(wc+1)) when N is small. In particular, the queue

oscillations become independent of C × T (i.e., the BDP)

when wc is large and the ratio 1/(wc + 1) approaches zero

2Note that when k < 1, a flow sends W packets/RTT until the window
becomes W +1. However, we found the above continuous approximation to
be fairly accurate compared to the precise expressions, which require solving
α numerically.
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Fig. 3. Comparison of the window size dynamics predicted by the analysis
with NS2 simulations for different weights wc.

because senders backoff less. When wc = 1 and N is small,

the amplitude is in O(
√
C × T ), which is also the case for

DCTCP [1]. Finally, when wc approaches zero, the oscillations

become similar to those of TCP. The lower bound we chose

on wc (i.e., wmin = 0.125) implies that the amplitude of

the queue oscillations for small N in the worst case is in

O((C×T )8/9), which is much smaller than that of TCP. This

implies that we can have a small marking threshold K without

losing throughput in the low statistical multiplexing regime

seen in data center environments. We know that,

Qmin = Qmax −A (12)

To determine the lower bound on K, we minimize (12) over

N to get,

K >
wwc

c (C × T )

2(wc + 1)wc+1 − wwc

c
(13)

In the worst-case scenario, where wc = 0.125, we get K >
(C × T )/2.

III. EVALUATION

We evaluate the performance of L2DCT using at-scale

simulations and a real Linux implementation. First, we eval-

uate L2DCT using a benchmark generated from the traffic

measurement study conducted in [1]. Second, we evaluate

L2DCT’s throughput and queuing behavior in single and multi-

hop environments. Finally, we evaluate L2DCT’s performance

when it co-exists with TCP.

We compare the performance of L2DCT with DCTCP

and TCP SACK with drop-tail queueing. For deadline-aware

scenarios, we compare L2DCT with D2TCP [6], a recently

proposed deadline-aware transport protocol. Unless otherwise

stated, we use a single-rooted tree; a commonly used data

center topology for our evaluation [1], [4], [7], [14]. In our

simulations, we use 1 Gbps interfaces, round-trip propagation

delay of 300µs, and a static buffer size of 250 packets unless

stated otherwise. We set the RTOmin of all protocols to be

10 ms as suggested by previous studies [1], [14]. We set the

parameters of DCTCP and L2DCT to match those in [1]. In
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Fig. 4. Benchmark results at varying traffic loads. (a) Improvement in AFCT of L2DCT over DCTCP and TCP. 1st, 5th, 50th, 95th, and 99th percentile
completion times of L2DCT and DCTCP with two long-lived flows along with (b) uniformly distributed flow sizes and (c) Pareto distributed flow sizes.

particular, the weighted averaging factor g is set to 1/16 and the

marking threshold K to 20. For L2DCT, we cap wc between

2.5 and 0.125, except in cases where we explore the effect

of varying the cap on wc. In our evaluation, we assume that

wc, which is initially 2.5, stays constant when the amount of

data sent so far is < 200 KB, and then decreases linearly to

0.125 for 1 MB, and stays constant afterwards. This matches

the traffic profiles observed in real data centers, where delay-

sensitive traffic is generally less than 200 KB and long-lived

flows are of > 1 MB size [1], [5].

A. Data Center Specific Impairments

1) Benchmark Settings: We generate short query traffic

with flow sizes drawn from the interval [2 KB, 98 KB] using a

uniform distribution, as done in a prior study [4]. In addition,

we generate two long-lived flows, which represents the 75th

percentile traffic multiplexing in data center networks [1].

Figure 4 shows the flows completion time results as a

function of the offered traffic load. Observe that L2DCT

improves the AFCT over DCTCP and TCP by up to 45%

and 95%, respectively (see Figure 4(a)). The improvement in

AFCT over DCTCP is at least 40% for 10-20% load, which is

a realistic load in present-day data centers [4], [5], [6]. L2DCT

also improves both the 95th and 99th percentile of completion

times by up to 37% compared to DCTCP (see Figure 4(b)).

Figure 5 shows the corresponding throughput of long back-

ground flows. Observe that for data center traffic loads of 10%,

there is a difference in the throughput between L2DCT and

DCTCP of about 6.7%. At higher loads, more short flows

arrive per second, which increases this difference. As we

discuss in Section III-B.3, throughput of long flows can be

increased in these scenarios by a corresponding reduction in

flow completion times by adjusting the cap on wc.

2) Pareto Distributed Traffic: We generated flows with

sizes drawn from a Pareto distribution with mean 50 KB and

shape 1.2. This yields flow sizes that capture realistic data

center workloads [1]. In these settings, L2DCT improves over

DCTCP at all loads as shown in Figure 4(c), with 99th

percentile of FCT improved by up to 53%.

3) Incast Behavior: With L2DCT, short flows behave more

aggressively to increase their share of the network bandwidth.

Consequently, L2DCT may exacerbate Incast. To study the
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Incast behavior, we assume a topology where multiple servers

send data (responses to queries) to one aggregator simultane-

ously through a single bottleneck link.

a) Impact of Number of Sending Servers: We vary the

number of simultaneous senders from 1 to 40 as done in

[1] and flow sizes are generated uniformly at random with

a mean of 25 KB. Even though RTOmin is set to 10 ms, TCP

performance still degrades when the number of senders in-

creases beyond 25. In contrast, even though L2DCT uses more

aggressive parameters for short flows, its stringent marking

policy allows Incast to be mitigated as shown in Figure 6(a).

b) Impact of Flow Size: We assume 5 sending servers

and vary the mean flow size (i.e., the size of response from

each server) from 50 KB to 600 KB. As the size of the flow

increases, AFCT for L2DCT and DCTCP degrades gracefully.

However, AFCT with TCP starts degrading when the mean

flow size is increased beyond 400 KB (see Figure 6(b)).



 0.95

 0.96

 0.97

 0.98

 0.99

 1

 5  10  15  20

T
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Number of Senders

L
2
DCT

DCTCP
TCP

(a)

 20
 40
 60
 80

 100

 10  10.5  11  11.5  12

Q
u

e
u

e
 L

e
n

g
th

 (
P

kt
s)

Time (sec)

TCP

DCTCPL
2
DCT

TCP

(b)

Fig. 7. Performance of long-lived L2DCT flows. (a) Throughput achieved
by flows. (b) Queue length dynamics for two long-lived flows.
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Fig. 8. Performance of two long L2DCT flows when a sudden burst of short
flows arrives at time t = 6 s. (a) Throughput (b) Queue length dynamics.

B. L2DCT Specific Testing

We now evaluate how L2DCT performs as a congestion

control protocol.

1) Single Bottleneck Scenario: In this scenario, we evaluate

the throughput performance of long-lived L2DCT flows and

perform comparison with TCP and DCTCP. Figure 7(a) shows

the throughput of L2DCT, DCTCP, and TCP flows as a

function of the number of senders, each generating a single

long-lived flow. Observe that all protocols achieve ∼100%

throughput. However, L2DCT and DCTCP maintain much

smaller queue length compared to TCP as shown by Figure

7(b). L2DCT is able to maintain small queues due to gentle

backoffs based on the extent of network congestion.

2) Effect of Sudden Short Flow Bursts: We now consider

the scenario where a sudden burst of short flows arrive while

long-lived flows are active. This is a fairly common scenario

in data center environments.

Figure 8(a) shows the throughput of flows when 50 short

flows, each of size 50KB, arrive simultaneously in the presence

of an ongoing long-lived flow. Observe that L2DCT quickly

adapts to the sudden bursts of short flows converging to full

link utilization afterwards. In particular, the arrival of short

flows increases the queue occupancy, causing the long flows

to backoff more than short flows (see Figure 8(b)). When short

flows complete, long flow quickly grabs the entire bottleneck

capacity. Note that the low queue occupancy with L2DCT

implies that there is more room in the queue for absorbing

packet bursts. Moreover, long flows (> 1 MB) use k = 0.05,

which means they take ∼200 ms to achieve 1 Gbps.

3) Impact of the Weight Function: The performance

achieved by L2DCT depends on the weights assigned to

flows. Extremely low or high values may cause undesirable

behavior due to which we cap wc to be within (wmax = 2.5,

wmin = 0.125). In this section, we evaluate the impact of

varying wmax and wmin.

Figures 9(a) and 9(b) show the impact of varying wmax on

the AFCT of short flows and the throughput of long-lived flows

when the offered load is 20%. Observe that increasing wmax

reduces the AFCT as well as the throughput of long flows. This

happens because increasing wmax makes short flows more

aggressive, which leads to higher values for α. Since long

flows backoff significantly even for small α, this reduces their

throughput. Next, we vary wmin. Observe that the AFCT of

short flows and the throughput of long flow decreases when

wmin is decreased as shown in Figures 9(c) and 9(d). This

happens because decreasing wmin, increases the backoff factor

and lowers the additive increase for long flows, which reduces

their throughput in the presence of short flows. Therefore, we

set wmax to 2.5 and wmin to 0.125 to achieve a compromise

between the performance of short and long flows.

4) Deadline Constrained Flows: We now evaluate the

performance of L2DCT when flows have deadlines associated

with them and compare its performance with D2TCP [6], a

recently proposed deadline-aware protocol.

We replicate the traffic settings of Section III-A.1, and

determine the number of flows missing their deadlines. To

generate deadlines, we use the same approach as employed

in [4]. In particular, flow deadlines are generated using the

exponential distribution with mean 40 msec (tight deadlines),

60 msec (moderate deadlines) and 80 msec (lax deadlines).

Figure 10(a), 10(b), and 10(c) show that L2DCT outperforms

all protocols across a range of traffic loads including D2TCP,

which specifically accounts for flow deadlines. Since deadlines

are typically associated with short flows, these results suggest

that a deadline agnostic protocol, which minimizes completion

times, can achieve better performance than deadline-aware

protocols.

C. Multiple Bottleneck Scenario

To evaluate L2DCT’s performance in a multi-hop, multi-

bottleneck environment, we use the topology shown in Figure

11(a). A total of 30 senders (where S1, S2, and S3 represent

a set of senders) and 11 receivers are used in this case. We

generate long-lived flows, S1 → R1, S2 → R1 and S3 → R1.

Note that S1 competes with both S2 and S3 but at different

links. Therefore, we expect the throughput of S1 to be lower

than S2 and S3 because the throughput of TCP flows is

inversely proportional to the number of bottlenecks it traverses

[15]. Figure 11(b) shows the average per-flow throughput in

each sender set. Observe that with L2DCT, S1 achieves higher

throughput compared to TCP and DCTCP and is also able to

maintain better fairness.

D. Co-existence with TCP

TCP is a widely used congestion control protocol in cloud

data centers [1], [7]. Therefore, we now evaluate L2DCT’s

performance when it co-exists with TCP. Using a single

bottleneck topology, we generate multiple long-lived flows

and observe the effect of varying k and wc on the relative

throughput of L2DCT and TCP.

Figures 12(a) and 12(b) show the throughput as a function

of k for two cases: (a) one flow is generated by each protocol,

and (b) each protocol generates two flows. Observe that as
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Fig. 9. Impact of varying wmax and wmin on the AFCT of short flows and the throughput performance of long-lived flows.
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(b) Moderate Deadlines

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60  70  80  90

D
e

a
d

lin
e

s
 M

is
s
e

d
 (

%
)

Offered load (%)

L
2
DCT

D
2
TCP

DCTCP
TCP

(c) Lax Deadlines

Fig. 10. Deadlines missed by various protocols. (a) Tight deadlines (40 ms). (b) Moderate deadlines (60 ms). (c) Lax (80 ms). Observe that L2DCT misses
the least number of deadlines.
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Fig. 11. Throughput performance under multiple bottleneck topology
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Fig. 12. Throughput of long-lived TCP and L2DCT flows when they co-exist.
Each protocol generates (a) one flow and (b) two flows.

k increases, L2DCT flows become more aggressive, thus

achieving much higher throughput than TCP flows. Since

there are very few concurrent long flows in data centers [1],

using k < 0.25 can provide suitable fairness between TCP

and L2DCT flows. Note that L2DCT uses k = 0.05 (as

wmin = 0.125) for long flows.
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Fig. 13. AFCT under different scheduling disciplines

E. Realizing Other Scheduling Policies

In this section, we show how L2DCT can approximate

a variety of scheduling policies such as SRPT and PS by

adapting the flow weights. To realize SRPT, the weights are

now adapted based on the remaining flow data instead of the

data sent so far. For PS, we set wc = 1 for all flows. Figure

13 shows that LAS is a good approximation of SRPT. PS,

however, results in a much larger AFCT.

IV. REAL TESTBED IMPLEMENTATION

We built a small-scale testbed to evaluate the performance

of L2DCT in real network settings.

A. Linux Implementation Details

L2DCT requires very few changes at the end-hosts and none

at the routers. It is implemented as a kernel module in Linux

2.6.38, which supports pluggable congestion control. L2DCT

inherits important features of TCP such as retransmission

and fast recovery mechanism. We used DCTCP’s end host

implementation for building L2DCT.

a) Marking at the Switch: For realizing L2DCT’s switch,

we use the RED queue implementation in Linux. We set the
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Fig. 14. Linux results for L2DCT (a) AFCT and (b) Long flow throughput.

low and high thresholds of RED queue to K and perform

marking based on the instantaneous rather than the average

queue length as done in RED.

b) Sender-Side Modifications: L2DCT introduces changes in

the additive increase and multiplicative decrease parameters

used by TCP. In addition, it computes the fraction of marked

packets to infer the degree of congestion at the bottleneck.

L2DCT uses an array to hold pre-computed values of the

backoff penalty b for each α and weight wc in order to avoid

floating point calculations.

c) Receiver ECN Echo Mechanism: L2DCT introduces no

changes at the receiver end and its ECN echo mechanism is

the same as DCTCP.

B. Linux Evaluation

Our testbed comprises of three Linux machines, each

equipped with a 100Mbps Realtek ethernet card. One machine

acts as a client, one as a server and the other as a switch. We

set K at 8 packets. We compare L2DCT’s performance with

DCTCP and TCP NewReno with ECN support.

We use Iperf for traffic generation. Due to the timer res-

olution limitations in Iperf, we generate and give maximum

weight to flows of length 100 MB and adapt the weight

assignment policy accordingly. Note that this is just for the

validation of our implementation and does not represent actual

data center workloads.

We start a single long-lived flow in the background and

generate multiple short flows simultaneously. We repeat each

experiment 10 times for each number of flows. Figure 14(a)

shows the improvement in AFCT of L2DCT over DCTCP

and TCP as a function of the number of simultaneous short

flows. Note that this represents a very high load scenario as

each flow has 100 MB of data to send. Observe that L2DCT

improves the AFCT by up to 20% and 29% over DCTCP

and TCP, respectively. Figure 14(b) shows the corresponding

throughput of the long flow when one short flow arrives.

Observe that with L2DCT, the long flow throughput reduces to

∼20 Mbps whereas the short flow gets ∼80 Mbps. This allows

the short flow to finish quickly, thus causing the long flow to

obtain maximum throughput sooner than other protocols. Since

DCTCP and TCP are fair sharing protocols, short flows obtain

∼50 Mbps of throughput with them. This causes the DCTCP

and TCP short flows to finish 4 s and 5.5 s later, respectively.

V. RELATED WORK

The relevant literature on congestion control, scheduling,

and reducing latency is vast. Therefore, in this section, we

only summarize some of the most relevant works.

CUBIC [16], BMCC [17], XCP [18], and delay-based con-

gestion control protocols, such as FAST [19] and CTCP [20],

all successfully improve performance in high BDP networks.

However, these protocols approximate fair sharing and thus

are sub-optimal in terms of completion times. Rate Control

Protocol (RCP) improves the AFCT by reducing the startup

latency of flows [8]. However, RCP is also a fair sharing

protocol and requires router hardware modifications [1].

In [21], authors propose HULL which is based on capping

utilization at less than link capacity. By sacrificing some

amount (e.g., 10%) of bandwidth, HULL can reduce the

average and tail latencies. Our work is complementary to

HULL. In particular, L2DCT can be combined with their

proposal to further reduce completion times. However, it is

useful to note that L2DCT reduces completion times without

sacrificing link capacity. In [22], Zats et al. propose DeTail, an

in-network congestion management mechanism that reduces

the flow completion time tail in data center environments.

However, DeTail does not target AFCT. Unlike DeTail, L2DCT

can save up to ∼45% over DCTCP and ∼95% over TCP. In

addition, it reduces the completion time of almost every flow.

Earliest Deadline First (EDF) is provably optimal when in-

dividual packets are associated with deadlines. However, when

associated with flows, applying EDF to individual packets is

not only suboptimal but can increase network congestion [4].

QCN, an optional standard for Ethernet, uses multibit

feedback from the switches to reduce recovery time during

congestion. However, QCN cannot span beyond L2 domain

limiting its scope of application [1].

To approximate LAS, one could use priority queuing at

the switches. However, prior studies show that using two-

level priorities, TCP/RCP with priority queuing suffer from

high loss rate and falls behind D3 [4]. Further, increasing the

priority does not significantly improve performance as flows

within each class may have widely different sizes and yet they

are not differentiated. Consequently, large number of priority

classes are needed, however, switches nowadays provide only

a small number of classes, usually no more than ten [4], [10].

Yang et al. [23] proposed TCP SAReno, which adapts

AIMD parameters based on the residual flow size assuming

droptail queuing. First, it uses a small number of classes and

therefore, faces the same issues as TCP with priority queuing.

Second, it uses fixed parameters for each class, and thus

considerably degrades the performance of long flows even in

the absence of short flows. Zieglar et. al. [24] also proposed to

dynamically adapt AIMD parameters for improving the startup

latency of short flows. However, with their protocol, a short

flow achieves no higher throughput than long flows for the

protocol to be incentive-compatible with TCP.

Several recent works, such as [25], show the benefit of using

multi-path TCP, ranging from improved network utilization to

better reliability. However, developing a multi-path version of

L2DCT is part of future work.



VI. DISCUSSION AND FUTURE WORK

Fairness. One may argue that the performance gains of

L2DCT over other protocols are due to the fact that it unfairly

penalizes long flows. It turns out that the performance im-

provement over fair sharing protocols does not usually come

at the expense of long jobs. Bansal et al. [9] showed that

with SRPT, at least 99% of the jobs have smaller completion

times compared with fair sharing3. Moreover, this percentage

increases even further when the traffic load is less than half.

Typical data center workloads are generally less than 50% [6].

Further, if desired, an operator can always set the weight of

flows to achieve a wide range of bandwidth sharing criteria,

including fairness. For instance, to achieve fair sharing, an

operator could set wc = 1 for all flows.

Gaming the System. One could ask whether users will have

an incentive to improve the completion time of their flows

by splitting them into smaller flows. While the incentive is

greater in case of L2DCT compared to fair sharing protocols,

similar issue also arises in TCP and RCP, where users may

achieve higher aggregate throughput by splitting a flow into

smaller ones, as well as in D3, where users may request a

higher rate than the flow actually needs. With PDQ, however,

the incentive may be even greater as PDQ does preemption of

flows whereas L2DCT does not. To address this, users with

multiple flows can be penalized by changing their weights.

However, designing a scheme to achieve this end remains a

future work. We would like to point out that in data center

environments, connectivity to the external Internet is typically

managed through application proxies that effectively separate

internal traffic from external, therefore, issues of fairness with

conventional TCP outside are irrelevant [1].

When flow completion time is not the priority. For real-time

applications such as VoIP, flow completion time is not the best

metric. For such applications, a constant wc can be assigned,

making it equivalent to a DCTCP flow.

Stability. If all flows are short and thus demand a high share

of the bandwidth, network overload may occur. However,

L2DCT’s backoff mechanism guards against such overload on

two fronts: (1) When α approaches one, L2DCT defaults to the

same backoff as TCP, therefore, L2DCT’s worst case stability

is similar to that of TCP. (2) We limit the maximum value of

wc to 2.5, which limits the aggressiveness of short flows.

VII. CONCLUSION

We design and implement L2DCT, a data center transport

protocol, which targets minimizing the flow completion times

by approximating the LAS scheduling discipline. L2DCT can

co-exist with TCP and delivers high application throughput

by meeting more deadlines than existing protocols. For a

wide range of data center workload scenarios L2DCT provides

up to 45% and 95% reduction in AFCT over DCTCP and

TCP. The 99th percentile improvement in flow completion

times over DCTCP is up to 37% and 53% when the flow

size distribution is uniform and Pareto, respectively. Though

L2DCT is deadline unaware, owing to its goal of minimizing

3Assuming M/G/1/SRPT queueing model with heavy-tailed distributions.

flow completion times, it would miss up to about 35% fewer

deadline compared to a recent deadline-aware protocol D2TCP

for tight as well as lax deadlines. These improvements come at

a cost of small throughput degradation for background flows;

although this does not impact the end-user response time, it can

still be easily addressed by adjusting wc. However, data center

operators must evaluate the impact of using L2DCT using

their own traffic and network profile. We also implemented

L2DCT on Linux demonstrating that it does not require

any flow specific information from applications and can be

easily deployed without requiring any additional hardware and

software support.
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