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Abstract—Many promising congestion control protocols use
explicit feedback from the network to achieve high performance.
These protocols often use congestion signals whose computation
requires an estimate of link capacity. Such estimates are not
available in networks where capacity varies over time. This
paper studies the impact of inaccurate capacity estimates on
the performance of congestion control protocols over variable
capacity links. As a case study, we focus on 802.11 WLANs. We
show that such estimates can lead to either under-utilization or
unfairness and network overload. Using a model, we characterize
the available capacity of a node in a 802.11 WLAN and then
study a method for capacity estimation. Using simulations, we
show that the method leads to high utilization and fairness over
shared, multi-access networks.

I. INTRODUCTION

Technological advances in the last few decades have lead
to the deployment of very high speed links on the Internet.
Proliferation of wireless networks coupled with the increased
diversity of applications on the Internet has stressed the
congestion control algorithm in the Transmission Control
Protocol (TCP) [1]. To meet these challenges, researchers have
proposed several congestion control protocols that use explicit
feedback from the network [1], [2], [3].

Many of these protocols (e.g., XCP [1], RCP [2], BMCC
[3]) use feedback signals that provide a more accurate charac-
terization of congestion than signals used by various versions
of TCP, such as packet loss and delay. Improved feedback
allows these protocols to achieve efficient and fair bandwidth
allocations while maintaining low queues and negligible loss
rates. However, computation of such feedback often requires
an estimate of capacity (see Table I). While capacity esti-
mates are available in wired point-to-point links, this is not
the case in shared, multi-access networks, such as 802.11
Wireless LANs (WLAN), where capacity changes over time.
The absence of accurate capacity estimates poses a significant
deployment challenge for such protocols [4].

In this paper, we ask, “What is the impact of inaccurate
capacity estimates on the performance of congestion control
protocols that require them for feedback computation?" Our
results show that inaccurate estimates can lead to either under-
utilization or unfairness and network overload. To address
this, we study the use of per-packet throughput observed at
the network layer as an estimate of capacity. Our evaluation
focusses on 802.11 WLANs since most end-to-end paths
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XCP [1] per-flow ∆cwnd αd(y(t)− C)− βq
BMCC [3] load factor (λ+ κ1q)/γCtp
MaxNet [5] congestion price p(t) + tp.(y(t)− γC)/C

TABLE I
FEEDBACK USED BY DIFFERENT PROTOCOLS WHERE C , R, y, λ, q, p, d,
tp , AND γ IS THE LINK CAPACITY, FLOW RATE, ARRIVAL RATE, ARRIVED

BYTES, QUEUE LENGTH, ROUND-TRIP TIME, UPDATE INTERVAL, AND
TARGET UTILIZATION, RESPECTIVELY AND THE REST ARE CONSTANTS.

today contain a wireless segment. Moreover, we consider
scenarios where the wireless segment is the bottleneck, which
is increasingly the case in Internet cafes, offices, and airports.

Our results show that per-packet throughput estimates can
vary widely over short timescales due to variations in channel
conditions. To reduce the noise in estimates, capacity is
measured over an interval, whose value presents a tradeoff
between estimation accuracy and congestion responsiveness.
We show that exponential averaging across intervals can
help in addressing this tradeoff. Using simulations, we then
evaluate the impact of resulting estimates on the performance
of the recently proposed Binary Marking Congestion Control
(BMCC) protocol [3]. Our results show that these estimates
allow BMCC to achieve high throughput and fairness in
diverse scenarios. However, under high channel loss rates,
performance can still degrade due to decrease in estimation
accuracy (e.g., 50% loss rate introduced up to 20% estimation
error). Lower MAC bitrates result in smaller errors as they
are more robust to losses. When clients have heterogeneous
channel conditions to the Base Station (BS), these estimates
lead to throughput proportional to the loss rate experienced by
each client. This suggests that these estimates can be adapted
to provide service differentiation to applications.

The rest of the paper is organized as follows: We discuss
related work in Section II and study the impact of inaccurate
capacity estimates in Section III. In Section IV, we present
a model to characterize the capacity of a node in a 802.11
WLAN. We study a method for capacity estimation in Section
V, evaluate its performance with BMCC in Section VI, and
offer concluding remarks in Section VII.

II. RELATED WORK

Several congestion control protocols have been proposed
that rely on capacity estimates for feedback computation.



XCP [1] and RCP [2] use these estimates to determine per-
flow window changes and rates, respectively, MaxNet [5] for
computing the congestion price and BMCC [3] and MLCP [6]
for determining the load factor. Some of these protocols have
been considered in wireless settings, for instance, performance
of XCP in wireless environments was studied in [4].

In [4], queue variation/speed is used for estimating spare
bandwidth. This approach does not provide estimates when
the queue is empty. Moreover, it can result in widely varying
estimates because changes in queue occupancy occur not only
due to variations in channel conditions but also due to bursty
packet arrivals. Furthermore, the proposed algorithm is closely
tied with XCP and thus difficult to generalize. In [7], the
output traffic rate is used as an estimate for capacity. While
this approach can provide good estimates when a node always
has a packet to send, it can lead to estimation errors when the
input traffic rate is less than the available capacity.

In [8], authors use analytical models of the 802.11 MAC to
estimate capacity. While such approaches can provide accurate
estimates, they can be hard to use in general settings due to
model limitations. In [9], [10], [11], [12], either inter-packet
delays or packet transmission delays are used for capacity
estimation. The usage of measured throughput of packets for
bandwidth estimation has been employed in [9], [10], [11]
but in different contexts. In [11], these estimates are used in
a dynamic admission control scheme for providing soft rate
guarantees in WLANs whereas [10] uses them to improve the
performance of adaptive multimedia applications in AODV
MANETs. However, such estimates have not been used in a
congestion control protocol, such as BMCC, in which flows
adapt their rates based on network feedback.

III. IMPACT OF INACCURATE CAPACITY ESTIMATES

In this section, we study the impact of capacity estimates
on the performance of BMCC over a 802.11 WLAN using ns2
simulations. We first provide a brief background on BMCC.

A. Background: BMCC

With BMCC [3], each router computes the load factor
(ratio of demand to capacity) every tp interval as shown in
Table I. This is explicitly communicated to the sources that
apply either multiplicative increase, additive increase, or the
multiplicative decrease policy depending on the bottleneck
load factor. BMCC achieves efficient and fair bandwidth
allocations on large bandwidth-delay product (BDP) networks
while maintaining low bottleneck queue and loss rate. We use
BMCC in our evaluation for two reasons: (i) it outperforms
TCP SACK, XCP, and in some cases RCP, in terms of flow
completion times for typical Internet flow sizes and (ii) it
is particularly amenable to deployment as it uses only the
existing ECN bits for representing congestion feedback.

B. Evaluating the Impact of Capacity Estimates

We consider a 802.11b WLAN with five clients. The mod-
ulation rate is fixed at 11 Mbps and the channel conditions
between the clients and the BS are assumed to be similar. We
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Fig. 1. Performance of BMCC clients as a function of the capacity estimate.

start a long-lived download flow on each client. We vary the
downlink capacity estimate, Ce, from the BS to the clients and
measure the throughput and loss rate of each client.

Figures 1(a) and 1(b) show the aggregate throughput and
loss rate as a function of Ce, respectively. In this scenario, the
true downlink capacity, Cl, is ≈4.2 Mbps (see Section IV).
When Ce < Cl, the aggregate throughput increases linearly
with Ce and the loss rate remains negligible. Since the estimate
is smaller than the true capacity, the BS advertises higher than
actual load factor, similar to a virtual queue [13], which causes
sources to backoff early resulting in an under-utilization of
(1 − Ce/Cl). When Ce > Cl, the BS indicates lower than
true load, causing sources to send more packets than can
be handled by the network, which increases packet losses.
Observe that the aggregate loss rate increases almost linearly
with Ce in this regime and becomes ≈12% when Ce=11 Mbps.

We now analyze the impact of varying capacity estimates
on per-flow performance. Figures 1(c) and 1(d) show the
throughput and loss rate of two (out of the five) randomly
chosen flows, respectively. Observe when Ce < Cl, each
flow gets equal throughput, experience negligible losses and
incur little variations across runs as shown by the error bars.
However, when Ce is increased beyond Cl Mbps, flows start
experiencing more losses which leads to degraded fairness
and unstable throughput behavior (observe the large varia-
tions in throughput). With higher capacity wireless MACs,
such as 802.11n, performance degradation can be even more
significant. These results show that in order to prevent under-
utilization or unfairness and network overload, the time-
varying capacity should be estimated accurately.

IV. LINK CAPACITY

In this section, we present a simple model to study the key
factors that affect the capacity of a wireless link. In contrast to
existing MAC models (e.g., see [14] and references therein),
the model is not specific to a particular MAC and is applicable



to all shared, multi-access networks. In this work, however, we
consider its application in 802.11 WLANs.

Let Cl be the maximum achievable throughput or capacity
above the MAC layer on link l, where a link refers to a sender-
receiver pair. Suppose the PHY bitrate used by a node on link
l is Rl bps and the channel loss rate is pl. As the wireless
medium is a shared resource, the air time available on link l
depends on the air time used by transmissions on other links.
Let US−{l} be the fraction of air time utilized by transmissions
on links other than link l, where S is the set of all links in a
WLAN. Then the PHY layer capacity of link l is given by

CPHY
l = Rl(1− pl)(1− US−{l}) (1)

To determine Cl, we need to account for all the overheads
induced by the 802.11 MAC and PHY. Let the transmission
time of a MAC frame on link l be T tr

l and the overhead
introduced by the MAC and PHY layers be T ov

l , then

Cl =
T tr
l

T tr
l + T ov

l

· CPHY
l (2)

We now characterize T ov
l in a 802.11 WLAN.

802.11 MAC+PHY Overhead: The 802.11 DCF introduces
a variable amount of overhead on every packet it transmits
[14]. For unicast transmissions, these overheads correspond to
the time needed to gain channel access, synchronize transmis-
sions, and transmit a link layer ACK. Therefore, the total time
taken by the interface to send a packet is given by T tr

l +T ov
l .

T tr
l = X/Rl where X is the MAC frame size and

T ov
l = DIFS + T pr + TBO

l + SIFS + T pr + T ack (3)

where T pr is the transmission time of the PLCP preamble and
header, TBO

l is the average backoff experienced by packets
on link l, T ack is the ACK transmission time, and DIFS
and SIFS are the inter-frame spacings. The capacity above
the network layer is given by (X − H/X) · Cl, where H
is the sum of the MAC and IP header sizes. For reliable
protocols, such as TCP and BMCC, the overhead of transport
layer ACKs also needs to be considered. Using Equation 2, we
can now derive the capacity. For instance, consider a 802.11b
WLAN, where X=1500 b, Rl=11 Mbps, and TBO

l =320µs.
This gives a BS→client capacity of ≈6 Mbps for UDP traffic
and ≈4.2 Mbps (assuming 40 b transport ACKs) for BMCC.

V. ESTIMATING CAPACITY
In the previous section, we showed that the link capacity

depends on the PHY bitrate, channel loss rate, free air time,
packet size, and the variable amount of per-packet overhead
introduced by the underlying MAC and PHY layers. One
method for estimating capacity is to directly use Equation 2
by measuring the average values of pl, US\l, Rl, TBO, and X
in a given interval T . However, this involves measurement and
tracking of several variables by the MAC. A simpler approach
is to use the average transmission rate experienced by success-
ful network layer packets as estimates for capacity [10], [11].
This requires maintaining only the average transmission time
of packets, which accounts for all possible delays introduced
by lower layers. In this work, we take the latter approach.
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Fig. 2. Compares the maximum UDP throughput with different capacity
estimates. The model-based estimates are obtained using Equation 2 and
smoothed per-interval estimates are obtained through exponential averaging.

A. Using Packet Transmission Times for Capacity Estimation

The transmission time of a network layer packet is the
difference between ts, the time when a packet is released to
the MAC and te, when the corresponding MAC layer ACK
is received. Note that ts − te includes MAC overhead delays,
deferrals due to channel contention, retransmissions due to
packet losses, the transmission delay, and the propagation
delay. Given a packet of size X bits, the network-layer trans-
mission rate is equal to X/(te − ts).

Capacity Measurement Interval: The wireless channel and
the 802.11 MAC can introduce significant variations in these
estimates on short timescales (see Figure 2). To reduce these
variations, we measure capacity over an interval T . The value
of T presents a tradeoff between accuracy and congestion
responsiveness and is related to the round-trip time flows.
While small T results in noisy estimates, large T reduces re-
sponsiveness to congestion. To balance this tradeoff, we set T
to the same value as used by network-based congestion control
protocols for computing feedback. For instance, XCP and RCP
dynamically vary the measurement interval depending on the
average round-trip of flows, whereas BMCC uses a fixed value,
larger than the average round-trip of flows on the Internet [3].
Note that averaging per-packet transmission rates can bias the
estimate towards higher rates. To remove this bias, we measure
the total bytes sent in an interval and divide this by the sum
of the packet transmission times.

Figure 2 compares the maximum UDP throughput with
different capacity estimates for three clients that join the
WLAN with an inter-arrival time of 20 s. The maximum UDP
throughput is obtained by making each client send packets
in backlogged mode. Observe that as new clients arrive, the
per-interval transmission rate is able to track capacity quite
accurately. However, the increase in the number of clients
increases the burstiness in per-interval estimates. To reduce
variations in estimates, we use exponential averaging across
intervals as follows: Cav

e = a · Cav
e + (1 − a) · Csample

e ,
where Cav

e is the running average, Csample
e is the current

capacity sample, and a is a filter constant. Note that the model-
based estimates (computed using Equation 2) are similar to the
transmission rate estimates.

Impact of Channel Losses on Estimation Accuracy: Channel
losses can often occur in a wireless medium due to signal
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Fig. 3. Capacity estimation error as a function of time for different PERs.

attenuation, fading, and shadowing effects. These losses can
affect the accuracy of capacity estimates. Assuming an error
model that introduces packet errors uniformly at random, we
vary the Packet Error Rate (PER) from 10% to 50% and
analyze the capacity estimation error, |Ce−Ca|/Ca, where Ca

and Ce are the actual and estimated capacities, respectively.
The actual capacity is computed using Equation 2.

Figure 3 shows the estimation error as a function of time
for different PERs. Observe that for PERs less than 30%, the
estimation error remains below 5%. As the PER increases, the
estimation error also increases, reaching an average value of
≈10% (and a maximum value of 20%) for PER=50%. This
happens because as the PER increases, packets start experienc-
ing burst losses that result in successive retransmissions at the
MAC layer and an increase in the average backoff period. This
increases the variability in packet transmission times, resulting
in larger estimation errors.

Handling Heterogenous Packet Sizes: Larger packet sizes
result in higher measured throughput as they allow more bytes
to be sent on every channel access. In the presence of packets
with different sizes, the measured capacity can vary widely.
To handle this heterogeneity, we can make capacity estimation
independent of the packet size. To achieve this, each wireless
node maintains the average size of all the packets seen in a
moving window. The available capacity is then determined by
normalizing the transmission rate of a packet to the average
packet size. Observe that the transmission rate of two packets
only differ in their times to transmit a data packet at the
link layer. The normalized transmission rate is then given by
Xav/(TX + Xav/Rl − X/Rl), where X is the packet size,
Xav is the average packet size, and TX is the transmission
time of a packet with size X . Note that capacity estimation is
not affected by link-layer fragmentation.

VI. PERFORMANCE EVALUATION

In the last section, we showed that packet transmission rates
can be effectively used as estimates of capacity. In this section,
we evaluate the impact of using these estimates on the end-to-
end performance of BMCC by allowing each node in a WLAN
to compute the load factor feedback based on these estimates.
We consider diverse network scenarios in our evaluation and
study the impact of channel losses, number of clients, PHY
bitrates, and heterogeneous Client-BS channel conditions on
the performance of BMCC.

(a) Without estimation (Ce=11 Mbps) (b) With estimation

Fig. 4. Throughput of five clients as a function of the channel loss rate

(a) Without estimation (Ce=11 Mbps) (b) With estimation

Fig. 5. Throughput of BMCC as a function of the number of clients.

A. Simulation Setup

All simulations are conducted in ns2 version 2.33, which we
have extended with a capacity estimation module at the net-
work layer. We use the default parameters for 802.11b in ns2.
The bitrate is fixed at 11 Mbps, unless stated otherwise. All
the wireless nodes are assumed to be within the transmission
range of each other. We run bulk transfer flows on each client
with a data packet size of 1500 b. The interface queue size is
set to 64 packets. The capacity measurement interval, T , is set
to 200 ms, the same interval over which BMCC computes its
feedback, and the filter constant, a, is set to 0.875 as in [6].
All simulations are run for at least 180 s and the results are
averaged over 10 runs.

B. Impact of Channel Losses

In the presence of channel losses, network layer packets
may experience multiple retransmissions at the MAC layer.
This can negatively impact end-to-end performance due to
increased variability in estimates, which occurs for two rea-
sons: (1) since losses are random, some packets take longer
to complete than others and (2) more losses mean fewer
packets get sent in a measurement interval. Figure 4 shows the
throughput achieved by five BMCC clients as a function of the
PER. Observe that across a range of PERs, using an inaccurate
capacity estimate leads to unfairness and large throughput
variations. When capacity estimation is used, BMCC clients
achieve a fairer throughput distribution. However, larger PERs
still lead to noticeable variability in the throughput of clients.

C. Impact of the Number of Clients

When the number of clients in a 802.11 WLAN increases,
clients start experiencing more collisions, which causes each



(a) Without estimation (b) With estimation

Fig. 6. Throughput of five clients as a function of the PHY bitrate.

Fig. 7. Impact of different channel conditions client and the BS.

client to reduce its access probability, and thus its available
capacity. In addition, a larger fraction of the capacity is used in
transmitting transport layer ACKs, which reduces the capacity
for data packets. Figure 5 shows the throughput achieved by 5,
10, and 20 clients. When the capacity estimate is inaccurate,
client throughputs vary widely. However, when estimation is
used, each client achieves a fair bandwidth allocation.

D. Impact of PHY Bitrate

We now analyze the impact of PHY bitrate on the perfor-
mance of BMCC. Lowering the bitrate increases the trans-
mission time of packets which leads to fewer transmissions
in a given interval. This can reduce the accuracy of capacity
estimates. Figure 6 shows the throughput of five BMCC clients
as a function of the PHY bitrate, where the capacity estimate
is set to the bitrate. While inaccurate estimates lead to large
throughput variations and degrade fairness, capacity estimation
allows BMCC to achieve good performance across all the
bitrates allowed by the 802.11b standard. Since lower bitrates
are more robust to channel errors, the result suggests that they
can result in lower throughput variations than higher bitrates.

E. Impact of Heterogenous Client-BS Channel Conditions

We now evaluate the performance of BMCC, when the
channel conditions between each client and the BS are dif-
ferent. We consider three clients that upload data via the
BS. The PER of Client-1-BS, Client-2-BS, and Client-3-BS
links is 0%, 10%, and 20%, respectively. Observe that clients
achieve throughput proportional to the PER they experience
(see Figure 7). Clients with poor channel conditions to the BS
suffer for two reasons. First, due to more losses, these links
experience more retransmissions and larger backoffs at the

MAC layer. Second, clients with good channel conditions get
more transmission opportunities, which reduces the air time for
transmissions on poor quality links. This result also suggests
that the BS can adapt the capacity estimate to provide service
differentiation to clients based on application requirements.

VII. CONCLUSION

In this paper, we studied the impact of inaccurate capacity
estimates on congestion control protocols over variable ca-
pacity links. We showed that inaccurate capacity estimates
can significantly degrade performance of protocols that rely
on them for feedback computation. We then presented a
model for characterizing the capacity in a 802.11 WLAN
and studied a method for capacity estimation. Finally, we
evaluated the performance of a congestion control protocol
using the capacity estimation method. Our results show that
the mechanism works well across a range of scenarios. The
method is applicable to all shared, multi-access links with a
reliable link-layer. In the future, we plan to extend this work
to consider multi-hop wireless mesh networks.
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