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ABSTRACT
Congestion control can be improved by using more accurate con-
gestion feedback from the network. However, when new protocols
either do not obtain information from all congested network ele-
ments, or share resources with existing congestion control proto-
cols, it is possible for one or other to obtain unfairly low through-
put. This paper investigates the performance of Binary Marking
Congestion Control when deployed in conjunction with SACK and
Drop-Tail or ECN routers. We propose and evaluate solutions that
allow for a fairer bandwidth sharing between BMCC and SACK
flows in these cases. The proposed solutions can also be applied to
other protocols which use explicit feedback from the network.

1. INTRODUCTION
Current implementations of the Transmission Control Protocol

(TCP) respond to congestion once it has become bad enough to
overflow network buffers, or at least to form significant standing
queues. It is desirable for congestible devices, such as routers, to
signal the TCP agents about incipient congestion before it becomes
bad enough to affect the quality of service. Many protocols have
been proposed for this purpose, but most have problems with incre-
mental deployment.

Deployment of protocols that use explicit feedback from the net-
work requires changes in the routers. These changes, however, can-
not be done overnight. Thus, it is important that a new protocol is
able to run over existing infrastructure, and share routers will ex-
isting protocols. Moreover, it is also important that a protocol per-
forms well when congestion occurs at a device, such as a firewall,
which does not provide any feedback.

Since many new protocols aim to avoid queueing, they are likely
to be starved by Reno-like flows which continue to increase their
rate until the buffer overflows. Conversely, if a new protocol de-
creases its rate less (or increases more) than Reno, then it is likely
to starve Reno-like flows if a congested resource does not provide
feedback.

It is often proposed that the former problem be solved by hav-
ing separate queues for packets which do and don’t support the
new protocol [15]. However, that raises complex management is-
sues and unnecessarily increases the cost. Many proposals for high
bandwidth-delay products include a “compatibility mode” which
revert to Reno-like behavior when the bandwidth-delay product is
low. Similarly, it is possible for a new protocol to seek to detect the
presence of congestion at points which do not provide explicit feed-
back, and revert to a loss-based mode. Problems may arise if the
detection process fails, but such mode switching may have a useful
role in the migration towards more efficient congestion control.

This paper evaluates and improves the incremental deployability
of Binary Marking Congestion Control (BMCC), a recently pro-

posed ECN-compatible congestion control protocol [10, 11]. The
proposed solutions allow BMCC to safely coexist with standard
TCP traffic in the same queue. These solutions have applicability
beyond BMCC.

The rest of the paper is organized as follows. In Section 2, we
discuss the motivation behind BMCC. In Section 3, we describe the
BMCC protocol in detail. We analyze the performance of BMCC
under different deployment scenarios in Section 4. In Section 5, we
propose and evaluate solutions to overcome incremental deploy-
ment issues. We offer concluding remarks in Section 6.

2. WHY BMCC?
BMCC is one of the many protocols which use network feed-

back, but it is one particularly suited to deployment in the Internet
because its signalling is compatible with the existing Internet Pro-
tocol (IP) packet header.

Many protocols, such as XCP [19], RCP [15], MaxNet [14] and
MLCP [12] require that routers send a (quantized) real number in-
dicating the amount of congestion. This requires additional fields,
either in an IP option, a TCP option [14] or modified header [19],
or a “shim layer” [15]. None of these can be universally deployed
because many routers are configured to drop packets containing IP
options, and IP payloads may be encrypted.

An alternative, used by ECN [13] and VCP [18] is to squeeze two
extra bits into the IP header. Because they signal only binary [13] or
ternary [18] congestion indication, these schemes provide minimal
benefit, although [18] allows low mean queue size at the expense
of slow convergence [11].

BMCC uses these bits to send a continuous congestion signal
by coding the value over multiple packets, using ADPM [2]. This
is an enhancement of random marking [7, 3, 1] and of Thommes
and Coates’s scheme [16] to achieve a wider dynamic range of sig-
nals using few packets. This allows BMCC to be IP-compatible
while achieving fast convergence. BMCC achieves efficient and
fair bandwidth allocations on high bandwidth-delay product paths
while maintaining low queues, negligible packet loss rate and small
average flow completion times [10, 11].

3. BMCC
The IP header contains two Explicit Congestion Notification (ECN)

bits for providing feedback from the routers to the sources. An ar-
riving packet with ECN bits set to (00)2 indicates that the source is
not ECN compatible, whereas the symbols (01)2 and (10)2 signify
an ECN-capable transport. The ECN bits on an unmarked packet
are initially (10)2 and the routers set these bits to (11)2 in order to
indicate congestion [13].

BMCC [11] employs ADPM, a packet marking scheme, which
uses these bits to estimate the load factor f on the most congested



link, and then uses the estimate, f̂ , to adjust the send window, w.
Let us first consider how f is computed at the routers, then how the
estimate f̂ is determined, and finally how f̂ is used by the senders.

3.1 BMCC Router
During every time interval tp = 200 ms, each BMCC router

computes the load factor on each of its output links as

f =
λ + κ1qav

γlCltp
(1)

where λ is the amount of traffic received during tp, Cl is the ca-
pacity of the link and γl ≤ 1 is the target utilization. Also, qav is
the exponentially weighted moving average queue length, using a
time-constant of 8tp, and κ1 = 0.75 controls how fast to drain the
queue [18, 3, 5, 6].

3.2 BMCC Receiver and ADPM
The router conveys its load factor to the sender by applying ADPM

[2] to the ECN bits. Let u be the maximum value of f that ADPM
can signal. If f ≥ u or the packet already contains a mark (11)2,
then BMCC marks the packet with (11)2. Otherwise, ADPM com-
putes a deterministic hash h of the packet contents, such as the
16-bit IPid field. This hash is compared to f , and the packet is
marked with (01)2 if f > h, or left unchanged otherwise. At the
receiver, the ECN bits will reflect the state of the most congested
router on the path.

The receiver maintains the current estimate, f̂ of the load factor
at the bottleneck on the forward path. When a packet is received,
this estimate is updated as:

f̂ ←





u if becn = (11)2
h if (becn = (10)2 and h < f̂ )

or (becn = (01)2 and h > f̂ )
f̂ otherwise

where becn refers to the two ECN bits of the received packet. Note
that the receiver’s estimate will lag behind the true value [17], ex-
cept that values over u are signaled immediately to indicate severe
overload. The resolution depends on the fraction of packets that
hash to a particular range. For BMCC, values of f below a thresh-
old η0 = 15% are rounded up to η0 = 15%, and the hash is such
that 1/4 of packets hash to values in (η0, η) for some design param-
eter η, 1/4 of packets hash to (η, 1) and 1/2 hash to (1, u).

3.3 BMCC Sender
BMCC uses the following control laws based on whether the

most loaded link is lightly-, heavily- or over-loaded, corresponding
to f ∈ [0, η), [η, 1) or [1,∞), where η = 75%.

Low Load (0 ≤ f̂ < η): To achieve high utilization rapidly,
sources apply MI with factors proportional to 1− f̂ . In particular,

w(t + T ) = w(t)(1 + ξ(f̂)), (2)

where T is the RTT of the flow, ξ(f̂) = κ2(1 − f̂)/f̂ and κ2 =
0.35. As shown in [11], this rule yields a concave negative expo-
nential window growth function. BMCC aims to give equal rate to
flows with different RTTs. Since flows with large RTTs update less
often, the rule

w(t + T ) = w(t)(1 + ξ(f̂))T/tp (3)

is used so that windows grow at a rate independent of T .
High Load (η ≤ f̂ < 1): When the system has achieved high

utilization, the algorithm must seek fairness. This is achieved using

AIMD. In high load, sources apply AI:

w(t + T ) = w(t) + α, (4)

with α = (T/tp)2 chosen to cause the equilibrium window to be
proportional to the flow’s RTT, giving RTT fairness [18].

Overload (1 ≤ f̂ < ∞): When the load factor is greater than 1,
the sources use MD:

w(t + T ) = w(t)β(f̂), (5)

β(f̂) = βmax − ∆β(f̂ − 1)

(u− 1)
(6)

varies linearly in [βmin = 0.65, βmax = 0.875], u = 1.2, and
∆β = βmax − βmin.

Packet loss: The original description of BMCC [11] did not
specify its response to packet loss, since BMCC does not induce
self-loss like Reno does. However, this response is important when
operating over non-BMCC equipment. The response to a loss is
the same as the response to a (11)2 mark, except that the window
is reduced by a factor of 2. SACK is used for loss recovery.

3.4 Illustration
To illustrate the convergence and fairness properties of BMCC,

consider a simple network scenario with one bottleneck link of ca-
pacity 100 Mbps. Figure 1 shows the throughput of three BMCC
flows that arrive with an inter-arrival time of 100 s and have round-
trip propagation delays of 150 ms, 200 ms and 250 ms, respectively.
Observe that the three flows rapidly achieve rates that are within
70% of their fair share before converging to a fair (≈50 Mbps each)
and efficient (≈100 Mbps) bandwidth allocation. Figure 2 shows
the corresponding load factor at the bottleneck and the flows’ esti-
mates. ADPM allows flows to quickly track changes in load factor
at the bottleneck.
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4. DEPLOYMENT EVALUATION
In this section, we study the performance of BMCC under dif-

ferent partial deployment scenarios and protocol mixes using ns-
2 simulations. First, we study the performance of BMCC under
Drop-Tail and RED (with ECN support) routers. We then add
SACK flows to the existing BMCC traffic and study their interac-
tion under different bottlenecks. Second, we study the performance
of a mix of protocols under BMCC-enabled bottleneck.

In all simulations, the non-bottleneck routers are assumed to be
Drop-Tail. Unless explicitly stated otherwise, the bottleneck capac-
ity, C, and the round-trip propagation delay, T , are set to 45 Mbps
and 40 ms, respectively. The capacity of the non-bottleneck links
is set to 10·C Mbps. The buffer size of all routers is set to the
bandwidth-delay product. We always maintain bidirectional cross
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Figure 3: Congestion window size of two BMCC flows passing
through a BMCC router
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Figure 4: Congestion window size of two BMCC flows passing
through a Drop-Tail router

traffic, with an offered load equal to 10% of the bottleneck capac-
ity. The cross traffic arrives according to a Poisson process and has
sizes that follow the Pareto distribution with an average file size of
30 kB and a shape parameter of 1.2 [8]. All flows use a data packet
size of 1 kB.

4.1 Performance over non-BMCC routers
We now evaluate the performance of BMCC under different bot-

tlenecks while considering a single bottleneck, dumbbell topology.
To aid comparison under different bottleneck types, we first ana-
lyze the performance of BMCC under BMCC-enabled bottleneck
routers. Figure 3 shows the variations in the congestion window
size of two BMCC flow traversing a BMCC-enabled bottleneck
router. The source uses the precise load factor estimates it re-
ceives via ADPM to adjust its congestion window size. Observe
that BMCC introduces little variations in the flows’ rates.

4.1.1 BMCC over Drop-Tail
Figure 4 shows the variations in the congestion window size

of two BMCC flows, passing through a Drop-Tail bottleneck, for
T = 40 ms and T = 300 ms. In this case, sources increase their
windows by a factor of 3 per tp until a packet gets dropped at the
bottleneck (since new BMCC flows assume the initial value of f
to be 15%). This cycle gets repeated because there is no change in
the receivers’ estimates1. In other words, BMCC employs MIMD
with a MI factor of 3T/tp per round-trip time and a MD factor of
0.5. In the presence of synchronous feedback, it has been shown
that MIMD may not converge to a fair bandwidth allocation [4].

4.1.2 BMCC over RED+ECN
Figure 5 shows the variations in the congestion window size of

two BMCC flows traversing a RED (with ECN support) bottleneck
router. In this case, BMCC flows increase their congestion win-
dows by a factor of 3T/tp per T until overload. In overload, BMCC
1Note that with drop-tail routers, all received packets will be un-
marked. Hence, there won’t be any change in f̂ because h > f̂, ∀h.
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Figure 5: Congestion window size of two BMCC flows passing
through a RED router with ECN support

sources apply MD with a factor of 0.65 (if there is no packet loss)
because RED routers mark the ECN bits with the (11)2 symbol that
is interpreted by BMCC as severe overload. After which, receiver’s
estimate decreases until it approaches 15%. Observe that conges-
tion window sizes assumed by BMCC flows are lower than in the
case of Drop-Tail routers. This is because RED signals congestion
earlier than via packet drops. However, note that higher conges-
tion window sizes in case of Drop-Tail routers do not necessarily
imply higher throughput. In fact, increasing the congestion win-
dow beyond a certain threshold (depending on the aggressiveness
of the source control laws) only increases the RTT of flows without
changing the flow throughput. This hurts the performance of other
flows due to increased queueing delays.

4.1.3 Mix of Protocols over Drop-Tail and RED
We now mix three BMCC flows with three SACK flows and ana-

lyze their performance under different bottlenecks. Figure 6 shows
the congestion window sizes under Drop-Tail and RED routers.
With Drop-Tail routers, BMCC flows grab a much large share of
bandwidth than SACK since SACK uses AIMD whereas BMCC
uses a much more aggressive MIMD. Note that SACK flows get
completely starved when T = 300 ms.

In case of RED (with ECN support) routers, performance is sim-
ilar to the Drop-Tail case. SACK flows achieve small congestion
window sizes when T = 40 ms and get completely starved when
T = 300 ms.

4.2 Performance over BMCC routers
We now consider a mix of protocols while assuming a BMCC-

enabled bottleneck router.

4.2.1 BMCC and SACK
We generate 3 SACK and 3 BMCC flows while retaining all the

settings as in the previous experiments. The SACK flows arrive
between 10 s and 12 s. Observe that the SACK flows completely
starve BMCC flows (see Figure 7). This happens because SACK
fills router buffers until a packet loss and thus maintains a high
bottleneck queue. Since BMCC does not rely on packet loss as a
signal of congestion, this gives rise to a sustained increase in the
load factor, causing BMCC flows to back-off very frequently.

4.2.2 BMCC and SACK+ECN
We now generate 3 ECN-compatible SACK flows and 3 BMCC

flows while retaining all the settings as in the previous experiments.
Figure 8 shows that in this case also, the BMCC flows get com-
pletely starved by SACK flows. In this case, when the load fac-
tor exceeds 100%, BMCC flows back-off probabilistically using
ADPM. Since ADPM allows quick detection of overload, this causes
BMCC flows to back-off. However, SACK flows continue to grab
more bandwidth by increasing their rate until load factor exceeds
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Figure 6: Congestion window size of 3 BMCC and 3 SACK flows sharing a common, non-BMCC bottleneck
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Figure 7: 3 SACK and 3 BMCC flows sharing a BMCC-enabled
bottleneck link

120% (after which SACK flows receive the (11)2 mark and back-
off). When f̂ ∈ [100, 120], BMCC flows back-off repeatedly, lead-
ing to very low congestion window sizes.
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Figure 8: 3 SACK+ECN and 3 BMCC flows sharing a BMCC-
enabled bottleneck link

5. ENABLING DEPLOYMENT OF BMCC
In the previous section, we observed that SACK flows (with and

without ECN support) starve BMCC flows. This is due to the fact
that SACK flows maintained high persistent queue length, leading
to sustained value of load factor above 100%. This caused BMCC
flows to back-off multiple times, leading to starvation. In this sec-
tion, we discuss a number of solutions and their shortcomings. We

then propose one solution and show that it is effective in handling
the issues raised in the previous section.

5.1 Deployment over BMCC bottlenecks
Deterministically marking/dropping packets in overload: One

possible solution to the above problems is to disable ADPM in
overload and mark ECN-capable transports with the (11)2 symbol
and drop packets from non-ECN-capable transports. However, this
change will force BMCC flows to use a single back-off factor. This
will remove the benefit that BMCC has of dynamically adapting
the back-off factors depending on the load at the bottleneck, which
has a significant impact on network utilization and convergence
rates. Moreover, this solution is likely to starve or result in very
low throughput for SACK flows with T ¿ 200 ms. The reason is
that BMCC routers keep load factor estimates for tp = 200 ms. A
small RTT flow (e.g., with T = 40 ms) will reduce its congestion
window multiple times in one tp, leading to very small windows.
Note that reducing tp is not likely to help because that would cause
large variations in traffic loads due to the burstiness induced by
sources with T À tp.

Probabilistically marking packets with the (11)2 symbol: We
can prevent starvation of BMCC flows when sharing a link with
SACK+ECN flows by probabilistically marking (or dropping) pack-
ets with the (11)2 symbol when f ∈ [100%, 120%]. Packets can
be marked (or dropped) if a packet was marked (with (01)2) using
ADPM. However, this would cause most BMCC flows to back-off
by a factor of 0.65, thus reducing the benefit of small decreases in
low overload. Also, ADPM yields a marking/dropping probability
close to 0.5 which is too large and is likely lead to multiple window
reductions as in the above case. To remedy this situation, one could
mark/drop packets with low probability when overload is small and
increase this probability as f approaches 120%.

5.2 Modified BMCC router
To retain the benefit of using ADPM in overload for BMCC traf-

fic while preventing starvation of SACK and BMCC flows when
traversing a common BMCC-enabled bottleneck, the following in-
gredients are desirable in a solution: (1) packets should be marked
(or dropped) probabilistically rather than deterministically and (2)
the fact that BMCC routers keep load factor estimates for one tp



should not impact other flows, which suggests that the marking pro-
cedure should be decoupled from load factor computation.

To achieve the above ends, we make the following modifications
to the BMCC router. In overload, we replace the packet marking
policy in BMCC routers with the Adaptive RED algorithm2 while
continuing to mark packets with ADPM using load factor compu-
tation. Recall, ADPM only marks packets with the (01)2 symbol
and therefore, doesn’t interfere with the RED algorithm or the the
standard ECN behavior. This ensures that BMCC sources continue
to obtain precise load factor estimates. To retain the benefit of mul-
tiple back-off factors, BMCC sources are made to back-off only
when they receive the (11)2 symbol and f̂ ≥ 1, where the back-
off factor depends solely on the load factor estimate at the receiver.
Now since the marking (or dropping) probability is the same for
SACK and BMCC flows, they back-off roughly the same number
of times leading to a more fair bandwidth sharing.

Figure 9 shows the congestion window sizes of three SACK
flows sharing a BMCC-enabled bottleneck with a modified BMCC
router. Observe that SACK flows are now able to effectively share
bandwidth with BMCC traffic. The BMCC flows obtain the benefit
of multiple MDs by applying small back-off factors in low over-
loads whereas SACK behavior remains largely unchanged. Fig-
ure 10 shows the congestion window sizes of flows on a path with
T = 300 ms. The bandwidth-delay product of this path is about
1700 packets, which is roughly eight times larger than the previous
scenario. In this case, BMCC obtains much larger throughput than
SACK flows because it acquires the spare bandwidth much faster
than SACK flows.

In order to achieve max-min fairness, BMCC flows scale their
MI and AI parameters. This scaling depends on the ratios T/tp

and (T/tp)2 for MI and AI, respectively. This implies that on
long RTT paths, BMCC flows will achieve higher throughput than
SACK flows due to larger α, β, and ξ parameter values3. On the
other hand, it is well-known that SACK flows achieve throughput
proportional to 1/RTT z , where 1 ≤ z ≤ 2 [21]. This implies that
with SACK, short RTT flows can achieve much higher throughput
than long RTT flows. We now compare the unfairness in these two
cases. In the first case, we characterize the throughput achieved
by BMCC and SACK flows when they share a bottleneck and in
the second case, we characterize the throughput achieved by two
SACK flows with different RTTs.

To quantify unfairness, we measure the gain, G, in the through-
put of a more aggressive flow at the expense of a loss, L, in the
throughput of a lesser aggressive flow. In the first experiment,
called BASELINE, we run two SACK flows sharing a 45 Mbps link
with a round-trip propagation delay of T . In the second experi-
ment, we run one SACK flow and one BMCC flow, each RTT, T .
In the third experiment, we run one SACK flow with RTT, T and
another SACK flow with an RTT of 10 ms. The gain achieved by
the aggressive flow and the loss incurred by a less aggressive flow
is given by

G = T (B)Mix/T (B)Baseline,

L = T (A)Mix/T (A)Baseline

respectively, where T (A) is the throughput of a less aggressive flow
and T (B) of a more aggressive flow [20].
2We chose RED because it is the most widely deployed AQM
scheme. However, any AQM could be used.
3Note that this does not necessarily mean that BMCC flows do not
achieve higher than SACK throughput on very small RTT paths.
The fast MI phase and high β values used by BMCC allows it to
achieve high throughput in such cases.

Figure 11(a) shows that the bandwidth gained by a BMCC flow
over a SACK flow is less than the bandwidth gained by a SACK
with T = 10 ms, across a range of round-trip times. Figure 11(b)
shows that the bandwidth lost by SACK flows is roughly an order
of magnitude larger when the bottleneck is shared by a 10 ms RTT
flow compared to a BMCC flow.
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5.3 Deployment over non-BMCC bottlenecks
Simulations results in the previous section showed that when the

path of a flow contained only non-BMCC routers, BMCC applies
MIMD. This leads to degraded throughput and in some cases star-
vation for SACK flows. To remedy this situation, we now present
heuristics for detecting non-BMCC bottlenecks for switching to
SACK TCP. When a BMCC router is congested, it signals a high
load factor, f . If other signals of congestion, such as packet loss or
(11)2 marks are detected when the load factor is low, this indicates
congestion at a non-BMCC router. We propose the following rules:

• If a BMCC source detects a packet loss or (11)2 mark when
its estimate of the bottleneck load factor is less than 100%,
then it falls back to SACK operation.

• If a BMCC source detects a load factor in excess of 100%, it
exits SACK compatibility mode and resumes normal opera-
tion.

Figure 12(a) shows the congestion window size of two BMCC
flows (with this heuristic detection rule) traversing a bottlenecked
Drop-Tail router. Note that unlike as in Figure 4, BMCC quickly
detects the condition and switches to SACK.

If a BMCC flow halves its window in response to the packet
which caused it to enter SACK mode, this rule gives rise to the
anomolous situation that the window reduction is greater if f̂ <
1 than if f̂ > 1. Thus, we propose that the loss or mark which
triggers the entrance to SACK mode is not itself interpreted as a
congestion signal.
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Figure 11: Bandwidth Gain and Loss for a BMCC (RTT=T ms)
and a SACK (RTT=10 ms) flow over a SACK flow (RTT=T ms)

Note also that the estimate of f signalled by ADPM lags the
value signalled by the routers [17], it is possible for BMCC router
to estimate the load factor to be slightly below 100% when the
router’s value is actually greater, and its RED policy emits a (11)2
mark. This will cause the flow to mistakenly enter SACK mode.
However, it will to return to normal mode soon afterwards, as the
load factor is already high.

Clearly, this mechanism needs more testing and refinement, but
it is a useful approach for allowing co-existence of BMCC and non-
BMCC flows running over non-BMCC routers.

6. CONCLUSION
In this paper, we have shown that BMCC can be incrementally

deployed on the Internet, without changing the IP Header or the ad-
dition of a “shim" layer. End-host and router softwares can be grad-
ually updated in a similar way as ECN was deployed. End-hosts us-
ing BMCC can immediately get high throughput and faster down-
loads when traversing BMCC-enabled bottlenecks without signif-
icantly hurting standard TCP traffic. This is an important incen-
tive for end-users and router vendors to deploy BMCC. Moreover,
research studies have shown that the throughput of most Internet
users is limited by their “last mile" or access links. This sug-
gests that BMCC’s deployment can begin by updating such links
and users can immediately take advantage of BMCC’s high perfor-
mance.

We evaluated the performance of BMCC under different deploy-
ment scenarios and a mix a protocols. We showed that when the
bottleneck is not BMCC-enabled, SACK flows achieve low through-
put and can even get starved. On the other hand, when the bottle-
neck is BMCC-enabled, SACK flows starve BMCC flows. We pro-
posed and evaluated solutions which prevent starvation and allow
for a fairer bandwidth sharing between BMCC and SACK flows.
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