
Using GENI to Evaluate Congestion Control Protocols for
NextGeneration Networks

Ihsan Ayyub Qazi, Rami Melhem
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260 USA

{ihsan,melhem}@cs.pitt.edu

1. Introduction
The past few years have seen a tremendous increase in the diver-

sity of networked systems, ranging from large-scale data centers
to small, highly mobile vehicular networks. These networks have
characteristics that differ significantly from the traditional Internet
in terms of their capacity, latency, loss behavior, energy require-
ments, cost, and mobility. This diversity is likely to increase as
the Internet evolves to support a much richer set of applications
than enabled today by the existing Internet such as remote surgery,
911 access, etc. While such diversity is highly beneficial as it en-
ables new kinds of applications but it also raises new challenges
for the design of transport protocols for resource allocation and
management. These challenges require that next-generation trans-
port protocols not only achieve better performance but must also
provide richer semantics, have evolvable design characteristics, be
self-adaptive across diverse networks and have mechanisms for in-
teroperability with other transport protocols.

In order to meet these challenges, there exists an important need
to gain experience with new transport protocols and understand the
broad implications of their design, many of which can only be as-
sessed with long running, large-scale experiments over heteroge-
nous technologies with real user traffic. Indeed, the history of the
Internet informs us that this has been the case with earlier protocols.
For example, the need for congestion control was only realized af-
ter an actual congestion collapse was observed on the Internet [5].
Gaining experience with these protocols will help us in appreciat-
ing the real issues and better assess the tradeoffs involved. This
will also help us in evolving towards better designs for the future
and realize the deployment of next-generation of congestion con-
trol protocols

In the last few years, several promising congestion control proto-
cols (e.g., XCP [6], RCP [2], BMCC [13], MaxNet [16]) have been
proposed to address performance issues in high-speed networks but
their evaluation remains limited to simulations or small testbed ex-
perimentations over homogenous technologies [2, 6, 13, 14, 16].
The major reason why these protocols were not tested under larger
settings was due to the absence of a large-scale environment for ex-
perimentation that allowed programmatically inside the network.
Global Environment for Network Innovations (GENI) is such a fa-
cility, which aims to support at-scale experimentation on shared,
heterogeneous, and highly instrumented infrastructure. In GENI,
all components (computers, storage clusters, switches, and sensor
networks, etc.,) are expected to be deeply programmable and vir-
tualizable [3, 4]. These characteristics provide an ideal platform
for the evaluation of existing and future proposals for congestion
control.

In the set of experiments we propose, we to seek to address the
following questions related to future transport protocols. We be-

lieve these questions will provide the much needed insights that
will not only enable future deployments but would also help future
designs.

• What level of performance can be achieved from next-
generation feedback-based transport protocols in a large-
scale environment running over heterogenous technologies
with real user traffic?

• How can these experiments inform us about the design char-
acteristics of feedback-based transport protocols in terms of
evolvability and self-adaptiveness across diverse networks?

• Can we perform scalable computations inside the network to
provide richer congestion feedback to the end-hosts without
affecting end-to-end performance?

• How do legacy protocols and technologies impact the perfor-
mance of new feedback-based end-to-end transport protocols
in case the desired congestion feedback cannot be obtained?

In the next section, we outline the resources we need for our
experiments, which will then be followed by the experiment design.

2. Resource Requirements
Many proposals for next-generation congestion control proto-

cols require more functionality than provided by existing routers
in order to aide end-host decisions. Typically such modifications
mean computing a new congestion signal (e.g., load [13], avail-
able bandwidth [6], per-flow rates [2]), marking packets based on
signal values, and/or treating flows differently [14]. To realize this
end, we need a resource which allows programmability inside the
routers. We believe OpenFlow [10] and NetFPGAs [9] are suitable
resources for our experiments. NetFPGAs would allow scalable
processing in the data and control paths, whereas OpenFlow would
provide the ability to change routes dynamically and forward traffic
to NetFPGAs for scalable processing. At end-systems, we can use
a resource such as PlanetLab. We now explain the reasons behind
our choices by first providing some background on OpenFlow and
PlanetLab.

2.1 OpenFlow and NetFPGA
An OpenFlow switch consists of a flow table, which performs

packet lookup and forwarding, and has a secure channel to an ex-
ternal controller (possibly located anywhere on the Internet) using
the OpenFlow protocol. The flow table contains a set of flow entries
(which are a set of header values to match the packet against), ac-
tivity counters, and a set of zero or more actions to apply to match-
ing packets. A controller is responsible for managing flow table



entries. As of now, the possible header values to match against in-
clude ingress port, Ethernet source/destinations addresses, Ethernet
type, VLAN id, VLAN priority, IP source/destination addresses, IP
protocol, Transport source/destination ports, ICMP Type and ICMP
Code. The counters are maintained per-table, per-flow, and per-
port. The actions that are required to be supported by all Open-
Flow switches include ALL (broadcast to all ports except the in-
coming port), CONTROLLER (send to controller), LOCAL (send
to local networking stack), TABLE (perform actions in flow table),
IN PORT (send the packets out the input port)1 [10].

OpenFlow switch can forward non-IP packets based on Ethernet
addresses or VLAN ids and for processing, these packets can be
sent to the OpenFlow controller. Making the controller do process-
ing can be quite useful but in order to provide scalable processing
of non-IP packets as well as support periodic computation of con-
gestion signals such as available bandwidth and load, there exist
at least two possibilities: (1) OpenFlow switches can route these
packets to programmable switches/routers such as NetFPGA-based
programmable routers2 [9] and (2) an OpenFlow implementation
on the NetFPGA platform can be used [8]. Note that in the lat-
ter case, users would still benefit from the the ability of OpenFlow
switches to provide traffic isolation and do dynamic routing [7].

2.1.1 NetFPGA
The NetFPGA is a low-cost reconfigurable hardware platform

that is optimized for high-speed networking. The NetFPGA in-
cludes the logic resources, memory, and Gigabit Ethernet interfaces
necessary to build a complete switch, router, and/or security device.
Because the entire datapath is implemented in hardware, the system
can support back-to-back packets at full Gigabit line rates and has
a processing latency measured in only a few clock cycles. It has a a
user programmable Field Programmable Gate Array (FPGA), and
four banks of locally-attached Static and Dynamic Random Access
Memory (SRAM and DRAM). It also has a standard PCI interface
allowing it to be connected to a desktop PC or server [9].

2.2 PlanetLab
PlanetLab provides virtual machines on nodes distributed

throughout the world. These nodes are able to virtualize a sub-
set of OS resources and functions such as the CPU, Memory and
Storage. They also provide some degree of network stack isola-
tion, however, they do not virtualize the network stack (i.e., they do
not contextualize the variables in the network stack for each virtual
node). As a result, different virtual nodes share a common kernel
forwarding table. Virtual machines inside a node share a common
IP address and the service provided by these nodes is best-effort in
nature.

3. Experimental Protocol
For our experiments, we propose to use the recently proposed Bi-

nary Marking Congestion Control (BMCC) protocol that requires
explicit feedback from the network [13]. BMCC achieve efficient
and fair bandwidth allocations on high bandwidth-delay product
networks, while maintaining low persistent queue length and neg-
ligible loss rates. Moreover, BMCC reduces average flow comple-
tion times by up to 4-5x over TCP and outperforms several other
protocols [13].

With BMCC, each router periodically computes the load (ratio of
demand to capacity) on its output links and sets appropriate fields

1Actions requiring modifications in the packet fields are optional
but it is suggested that at least such VLAN actions be supported.
2a typical NetFPGA-based programmable router supports 4 ports

Figure 1: Experimental Setup

in each arriving packet to convey this information to the end-hosts.
Note that fields are set in a way such that the maximum load along
the path of a flow is communicated to the sources. Based on the
load values, sources apply either Multiplicative Increase (MI), Ad-
ditive Increase (AI) or Multiplicative Decrease (MD) to achieve the
desired goals of congestion control (For details, please see the re-
lated paper [13]). BMCC requires changes at the end-hosts as well
as inside routers.

3.1 Endsystems
BMCC’s end-host functionality will be implemented as a load-

able kernel module3. New congestion control protocols are often
implemented as kernel modules to avoid the need to patch the ker-
nel and the subsequent kernel recompilation. The added function-
ality at the end-hosts will include (i) execution of different sender
control laws based on the received load feedback and (ii) setting
and interpretation of appropriate packet header fields. The rest of
the functionalities required by congestion control protocols such as
retransmission timeout estimation and loss-recovery mechanisms
will be the same as used by TCP.

3.2 Routers
The BMCC router functionality can be implemented on NetF-

PGA cards for achieving high performance. NetFPGAs will be
programmed to periodically compute load on each of its links. The
data plane operations performed by the NetFPGA-based router in-
clude updating a byte counter and setting the appropriate fields in
the packets’ header to convey the router load. The control plane
operations take place at a much larger timescale. Link utilization
is computed every 200 ms and the queue length is measured ev-
ery 10 ms and then averaged using a exponentially weighted mov-
ing average. Finally, the Load is computed (every 200 ms) as a
weighted average of these two values.

4. Experiment Settings
3For experimentation with protocols that require changes in the IP
header format or require a new header, it is useful to implement this
functionality on top of IP (perhaps below TCP) so that traditional
routers allow such packets to pass through and only those routers,
which are aware of the header, can process them



In the basic experimental setup we consider, there are two clients
and one server. The server is connected to an OpenFlow switch
which in turn connects to two NetFPGA cards (called NetFPGA-
1 and NetFPGA-2) that implement the BMCC router function-
ality. Client 2 has a direct connection to NetFPGA-2 whereas
Client-1’s packets first traverse the Internet2/NLR POP and pos-
sibly the DRAGON testbed or other infrastructure before reaching
NetFPGA-2. Both the NetFPGAs have a direct connection to each
other (see Figure 1). We expect to maintain real background traf-
fic on the links, preferably carried from the Internet using solutions
such as BGP Mux [15], which provides controlled connectivity to
the global Internet routing infrastructure.

4.1 Performance on Large BandwidthDelay
Product Networks

In the first test, Client 1 downloads a long file via Path 1 as shown
in Figure 1. During this transaction, a number of measurements of
interest are collected e.g., total file transfer time, time to attain full
bottleneck utilization, packet loss rate, etc.,. In the next test, we
start two flows with an inter-arrival time of t secs. Flow 1 starts
at Client 1 following Path 1. After t secs, a new flow is started at
Client 2 which follows Path 2. We measure the time it takes for
flow 2 to achieve its fair share4. These tests can be repeated to
achieve statistically significant results.

4.1.1 Stress Testing
In the next test, we increase the number of users in order stress

the underlying infrastructure. We increase the number of client ma-
chines and start several flows in each one of them (possibly in the
order of 100s if not in 1000s). In addition to the statistics men-
tioned above, we will also collect other measurements that inform
us about the time memory required by the routers to process pack-
ets and compute congestion signals, especially under high load. For
instance, we plan to profile the CPU usage, which can done using
tools such as OProfile [11] in Linux.

4.2 Performance Evaluation under Route
Changes

BMCC uses bottleneck load information to adjust its rate. When
the flow path changes, the bottleneck may also change, requiring
the source to adjust to the new rate5. In this scenario, we are in-
terested in understanding how quickly BMCC adapts to the new
bottleneck. We start two long-lived BMCC flows as in the previ-
ous case. Using the OpenFlow switch controller, we change the
Client 1 flow entry to follow Path 3, resulting in a change in the
bottleneck.

4.3 Performance Evaluation on a Path with
Wired as well as Wireless Segments

In this experiment, we evaluate the performance of BMCC over a
network where the last path segment is wireless (comprising of one
or several hops). For the last segment, we can use the CMU Wire-
less Emulator testbed [1] (which is based on NetFPGAs), ORBIT
Emulator/field trial network testbed [12], or OpenFlow-enabled
Access Points. The advantage of Emulator testbeds is that they
allow experimentation for a range of possible wireless scenarios by
emulating diverse path characteristics such as in indoor residential
environments, outdoor cases, and in mobile settings. Note that this
test will require GENI to perform resource reservation across het-
erogenous wired as well wireless technologies.
4For this case, the NetFPGA-1 - NetFPGA-2 link is the bottleneck
5This may happen due to client/server mobility, load balancing, or
when routers/links fail.

4.4 Performance under a mix of transport
protocols

In the test, the goal is to understand the interaction and
bandwidth-sharing properties of the protocol. We therefore, start
several BMCC as well as several TCP flows simultaneously. We
then collect the throughput, loss rate, and response times achieved
by flows of the two protocols. This experiment will be run for two
cases (a) where the bottleneck is BMCC-enabled and (b) the bot-
tleneck is a drop-tail router.

These are only some of the tests that we plan to conduct using
GENI. We will consider other experiments as well as other trans-
port protocols based on the feedback from the community and sub-
ject to time limitations.

5. Conclusion
New and diverse networks are emerging at a fast rate. This

raises challenges of resource allocation and management in such
networks. We need to test new transport protocols using long-
running, large-scale experiments across heterogenous technologies
before they can be deployed. GENI provides deep programmabil-
ity and a unique blend of technologies that can enable such experi-
ments for the evaluation of new protocols and architectures. In this
paper, we presented a set of experiments to be carried out on GENI
and analyzed the resources need for these experiments.

6. References
[1] CMU Wireless Emulator. http://www.cs.cmu.edu/ emulator/.
[2] DUKKIPATI, N., KOBAYASHI, M., ZHANG-SHEN, R., AND

MCKEOWN, N. Procesor sharing flows in the internet. In IWQoS
(Jun 2005).

[3] ELLIOTT, C., AND FALK, A. An update on the geni project.
SIGCOMM Comput. Commun. Rev. 39, 3 (2009), 28–34.

[4] Global Environment for Network Innovations (GENI).
http://www.geni.net/.

[5] JACOBSON, V. Congestion Avoidance and Control. In Proceedings
of ACM SIGCOMM (Aug 1988).

[6] KATABI, D., HANDLEY, M., AND ROHRS, C. Internet congestion
control for high bandwidth-delay product networks. In ACM
SIGCOMM (Aug 2002).

[7] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S., AND
TURNER, J. Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38, 2 (2008), 69–74.

[8] NAOUS, J., ERICKSON, D., COVINGTON, G. A., APPENZELLER,
G., AND MCKEOWN, N. Implementing an openflow switch on the
netfpga platform. In ANCS ’08: Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems (New York, NY, USA, 2008), ACM, pp. 1–9.

[9] NetFPGA. http://netfpga.org/.
[10] The OpenFlow Switch Specification. http://OpenFlowSwtich.org/.
[11] OProfile. http://oprofile.sourceforge.net/news/.
[12] ORBIT. http://www.orbit-lab.org/.
[13] QAZI, I. A., ANDREW, L. L. H., AND ZNATI, T. Congestion control

using efficient exlicit feedback. In IEEE INFOCOM (Apr 2009).
[14] TAI, C. H., ZHU, J., AND DUKKIPATI, N. Making large scale

deployment of RCP practical for real networks. In IEEE INFOCOM
Mini-Symposium (2008).

[15] VALANCIUS, V., AND FEAMSTER, N. Multiplexing BGP sessions
with BGP-Mux. In CoNEXT ’07: Proceedings of the 2007 ACM
CoNEXT conference (New York, NY, USA, 2007), ACM, pp. 1–2.

[16] WYDROWSKI, B., ANDREW, L. L. H., AND ZUKERMAN, M.
MaxNet: A congestion control architecture for scalable networks.
IEEE Commun. Lett. 7, 10 (Oct. 2003), 511–513.


