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Congestion control with multi-packet feedback
Ihsan Ayyub Qazi, Lachlan L. H. Andrew, and Taieb Znati

Abstract— Many congestion control protocols use explicit feed-
back from the network to achieve high performance. Most of
these either require more bits for feedback than are available
in the IP header or incur performance limitations due to
inaccurate congestion feedback. There has been recent interest
in protocols which obtain high resolution estimates of congestion
by combining the ECN marks of multiple packets, and using this
to guide MI-AI-MD window adaptation. This paper studies the
potential of such approaches, both analytically and by simulation.
The evaluation focuses on a new protocol called Binary Marking
Congestion Control (BMCC). It is shown that these schemes can
quickly acquire unused capacity, quickly approach a fair rate
distribution, and have relatively smooth sending rates, even on
high bandwidth-delay product networks. This is achieved while
maintaining low average queue length and negligible packet loss.
Using extensive simulations, we show that BMCC outperforms
XCP, VCP MLCP, CUBIC, CTCP, SACK, and in some cases
RCP, in terms of average flow completion times. Suggestions are
also given for the incremental deployment of BMCC.

Index Terms— Congestion Control, TCP, AQM, ECN

I. INTRODUCTION

The Transmission Control Protocol (TCP) has been in-
strumental to the successful development and growth of the
Internet and its applications. However, recent advances in
wired and wireless communications technology have lead to
a tremendous growth in the range of path bandwidth-delay
products (BDP) in the Internet [1]. There has simultaneously
been an increase in the diversity of applications carried over
the Internet (e.g., voice over IP, video conferencing, and social
networking). These advances have stressed the congestion
control algorithm in TCP and the need for more efficient,
fair, robust, and easy to deploy congestion control protocols
is increasingly important.

While considerable research has gone into addressing the
limitations of TCP, prior research has focused on two extreme
points in the design space of congestion control protocols.

At one end are end-to-end schemes that rely on implicit
congestion signals such as packet loss [2], delay [3], jitter [4]
or combinations of these [5]. Since loss and delay only occur
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once a link is overloaded, these schemes must introduce
unnecessary packet losses or queuing at the bottleneck.

On the other end are “network-based” schemes in which
routers explicitly specify a rate (used by RCP [6] and ATM’s
Available Bit Rate (ABR) [7]) or change in window size (used
by XCP [1]) for each individual flow. These schemes face
two big deployment challenges on today’s Internet: (1) They
require more bits for feedback than are available in the IP
header (128 for XCP [8] and 96 for RCP [9]) which requires
either changing the IP header1, use of IP options, or the
addition of a “shim” layer. This makes universal deployment of
such protocols challenging. (2) It is difficult for such protocols
to co-exist with TCP traffic, often requiring complex router-
level mechanisms for fair bandwidth sharing [8], [9].

Between these extremes are “limited feedback” schemes,
such as TCP with random early discard (RED) and explicit
congestion notification (ECN) [11], [12], and VCP [13], which
require changes at the end-hosts with incremental support
from the routers. In these schemes, each packet signals the
congestion level with up to 2-bit resolution. VCP uses a 2-
bit estimate of the load factor (ratio of input traffic plus
queue length to capacity) to trigger a fixed multiplicative
increase (MI), additive increase (AI) or multiplicative decrease
(MD) window update, at low load, high load and overload.
However, convergence speed improves significantly when the
load is estimated to 4-bit resolution [14], for which there is
insufficient space in the IP header of a single packet.

There are several methods for obtaining high resolution
congestion estimates using the existing ECN bits of streams
of packets. Random marking of packets based on the level
of congestion was proposed in [15], and used by the REM
protocol [16]. Higher resolution estimates can be obtained
using side-information in packet headers to indicate how to
interpret the ECN mark of a given packet [17], [18], [19]. Most
of these schemes require a pre-specified resolution, which is
traded against the number of packets needed to carry the ECN
marks. Adaptive deterministic packet marking (ADPM [20])
implicitly adapts its effective quantization resolution based on
the dynamics of the value and obtains a resolution of 1/n after
receiving n packets, for n up to 216 or beyond. ADPM pro-
vides a MSE that is several orders of magnitude smaller [20],
[21] than the estimators based on random marking of packets
[15], [16] or deterministic marking with static quantization
[19], [22].

This paper investigates the ability of MI-AI-MD schemes
(such as VCP [13]) to use high-resolution estimates of load
factor based on ECN marks spread over multiple packets. To
this end, we design the Binary Marking Congestion Control

1Modifying IP is slow: work on IPv6 started around 1992, but it accounted
for less than 1% of Internet traffic as of December 2008 [10].



(BMCC) protocol that uses ADPM to obtain congestion es-
timates with up to 16-bit resolution using ECN, in a way
compatible with existing RED/ECN. We present analytical
models that provide insights into the convergence properties of
MI-AI-MD algorithms, and study the incremental deployment
of these protocols when they co-exist with TCP traffic and
traverse different kinds of bottleneck routers.

With BMCC, each router periodically computes the load
factor on each of its links. End-hosts obtain a high resolution
estimate of the bottleneck load factor using ADPM. With
ADPM, each packet signals a bound on the bottleneck load
factor. The receiver’s estimate of the load factor is updated
whenever a new packet provides a tighter bound. This estimate
is echoed back to the sources via acknowledgement packets
using TCP options. Based on this value, sources apply load-
dependent MI-AI-MD algorithm. BMCC achieves efficient
and fairness bandwidth allocations on high BDP paths while
maintaining low bottleneck queue and loss rate. In terms of
average flow completion times (AFCT) for typical Internet
flow sizes, BMCC outperforms XCP, VCP, MLCP, CUBIC,
CTCP, SACK [23] using RED/ECN, and sometimes even RCP,
which was optimized for AFCT.

The main contribution of this paper is the design and
analysis of a congestion control protocol that achieves per-
formance comparable to that of feedback-rich protocols, such
as RCP, using only incrementally deployable signaling. The
presentation and analysis of the proposed protocol involves
three different components.

The first component, presented in Section II, focuses on the
specification of the BMCC protocol, which uses the existing
two ECN bits to obtain high resolution congestion estimates.
The major issues related to the design of BMCC are discussed
in Section III. BMCC achieves faster convergence by using
ADPM to increase the feedback resolution, allowing faster rate
increase during low load and more precise decreases during
congestion.

The second component, presented in Section IV, focuses on
the analysis of BMCC. It is worth noting that the analysis is
applicable, not only to BMCC, but also to the class of MI-AI-
MD algorithms with multi-bit resolution, including UNO [24]
and MPCP [25].

The analysis shows that reducing the MI factor when load
increases results in a concave window growth, which quickly
acquires spare capacity with minimal overshoot. The ns-2 sim-
ulation results in Section V show that BMCC achieves better
throughput, fairness and short AFCT than many benchmark
protocols in a wide range of scenarios.

The final component, discussed in Section VI, studies the
feasibility of BMCC’s incremental deployment in the Internet.
The study focuses on the co-existence of BMCC with different
versions of TCP, such as CUBIC [2], CTCP [5], and TCP
SACK, and on how to deal with situations where traffic may
traverse network bottlenecks that do not all support BMCC
marking. To prevent starvation of BMCC flows, a modification
of the original BMCC protocol is proposed, whereby the
decision of when to respond to congestion is decoupled from
the decision of how to respond to congestion. This allows
TCP and BMCC sources to back off based on a common

signal while allowing BMCC sources to retain the benefit of
basing the backoff factor on the estimated congestion level.
This solution has applicability beyond BMCC.

II. ALGORITHM AND PROTOCOL

A congestion control protocol must specify how congestion
is estimated, how that information is communicated to the
sender, and how the sender should respond. BMCC estimates
congestion in terms of the load factor at each link, which
is a weighted sum of the link utilization and the queueing
delay [13]. The maximum load factor along a flow’s path is
communicated using ADPM, to the sender which responds us-
ing load-dependent MI-AI-MD. The components of a BMCC
system are as follows.

A. BMCC Router

A BMCC router divides time into intervals of length tp, and
computes the load factor in each interval as [7], [13], [16]

f =
λ+ κ1qav
γlCltp

(1)

where λ is the amount of bytes received during tp, Cl is the
link capacity in bytes/sec, γl ≤ 1 is the target utilization2 [26],
qav is an estimate of the average queue length in bytes3, and
κ1 ≤ 1 controls how fast to drain the queue [11], [16].

The router conveys its load factor to the sender by applying
ADPM [20] to packets’ ECN bits as follows: Recall that
the ECN bits on an unmarked packet are initially (10)2, and
routers set these bits to (11)2 to indicate congestion. Choose
u to be a “severely congested” load factor. BMCC marks the
packet with (11)2 if f ≥ u or the packet already contains a
mark (11)2. Otherwise, ADPM computes a deterministic hash
h of the packet contents, such as the 16-bit IPid field in the
IPv4 header or the checksum of the payload in case of IPv6.
This hash is compared to f , and the packet is marked with
(01)2 if f > h, or left unchanged otherwise. At the receiver,
the ECN bits will reflect the state of the most congested router
on the path.

Router Implementation Complexity: For each packet, a
BMCC router calculates a hash of the packet (simply reversing
the bits of the IPid field [20]), performs a comparison, and sets
up to two header bits. At the larger timescale of tp, it requires
multiplication by two constants and an addition to calculate f .
(Note that the denominator of (1) is a constant.) It also uses a
count of the total bytes sent, which routers already record, and
the average queue size, which can be measured at a frequency
that does not scale up with bit-rate.

B. BMCC Receiver

As part of ADPM, the receiver maintains the current esti-
mate, f̂ of the load factor at the bottleneck on the forward

2Note that this corresponds to a virtual queue with capacity γlCl.
3We calculate the average as qav(t+ tq) = a.qav(t)+ (1− a).q(t+ tq),

where q(t) is the instantaneous queue length, and tq ≪ tp. We set tq =
10ms, a = 0.875, and κ1 = 0.5 similar to [13].



path. When a packet is received, this estimate is updated as:

f̂ ←


u if becn = (11)2
h if (becn = (10)2 and h < f̂ )

or (becn = (01)2 and h > f̂ )
f̂ otherwise

where becn refers to the two ECN bits in the IP header of the
received packet. The estimate f̂ is sent to the sender using TCP
options, as described in Section II-E. Note that the receiver’s
estimate will lag behind the true value [21], except that values
over u are signaled immediately to indicate severe overload.

The resolution depends on the fraction of packets that hash
to a particular range. For BMCC, values of f below a threshold
η0 are rounded up to η0, and the hash is such that 1/4 of
packets hash to values in (η0, η) for some design parameter
η, 1/4 of packets hash to (η, 1) and 1/2 hash to (1, u).

Remark 1: The systemic effect of ADPM is to indicate the
maximum load factor to the receiver. On leaving a router,
a packet will be marked if the load factor of that router or
any upstream router exceeds the packet’s hash value. When a
marked packet is received, if h > f̂ the receiver updates its
estimate to h since it is a tighter lower bound on the maximum
f . Conversely, the hash of an unmarked packet provides an
upper bound on the maximum f on the path.

C. BMCC Sender

To achieve both high bottleneck utilization and fair band-
width allocation with low fluctuation in rates, BMCC uses
three modes of operation, based on whether the load is low
(f < η), medium (f ∈ [η, 1)) or overload (f > 1).

1) Low Load (η0 ≤ f̂ < η): To increase bottleneck
utilization when the load is low, sources apply MI with factors
proportional to (1− f̂)/f̂ . In particular, flows with RTT equal
to tp apply

w(t+ T ) = w(t)

(
1 + κ2

1− f̂
f̂

)
, (2)

where T is the RTT of the flow and κ2 is the step size. BMCC
uses κ2 = 0.35, which is in the range κ2 ∈ (0, 1/2) suggested
by Theorem 1 of [13]. VCP [13] approximates this using a
fixed MI parameter independent of f̂ .

BMCC aims to give equal rate to flows with different RTTs.
Since flows with large RTTs update less often, the rule

w(t+ T ) = w(t)

(
1 + κ2

1− f̂
f̂

)T/tp

(3)

is used so that windows grow at a rate independent of T . To
mirror the benefits of traditional slow start, new flows remain
in MI until f̂ first reaches 1,

2) Medium Load (η ≤ f̂ < 1): When utilization is high,
BMCC uses AIMD to achieve fairness. In medium load,
sources apply AI:

w(t+ T ) = w(t) + α, (4)

with α = (T/tp)
2 chosen to cause the equilibrium window to

be proportional to the flow’s RTT, giving RTT fairness.

Parameter Value Purpose
tp 200 ms load factor estimation interval
κ1 0.5 controls how fast to drain the queue
κ2 0.35 stability constant
α (T/tp)2 AI parameter of flow with RTT T

βmax 0.875 maximum back-off factor
βmin 0.65 minimum back-off factor
η0 0.15 initial estimate of load factor
η 0.75 mode threshold

TABLE I
BMCC PARAMETER SETTINGS

3) Overload (1 ≤ f̂ ≤ u): When the load factor is greater
than 1, sources use MD:

w(t+ T ) = w(t)β(f̂), (5)

where the decrease factor

β(f̂) = βmax −
∆β(f̂ − 1)

(u− 1)
(6)

varies linearly in [βmin, βmax] ⊂ (0, 1), u is the maximum
value of f that ADPM can signal, and ∆β = βmax − βmin.
Note that the MD factor is a function of f̂ . This implies
that when f̂ is high, sources back off by a greater amount,
which improves responsiveness to congestion (see Section IV).
Otherwise, sources back off by a smaller amount to reduce
fluctuations in sending rates and maintain high utilization.

We now discuss the choice of different parameter values
used by BMCC.

D. Parameter values

Important BMCC parameters are summarized in Table I.
Particular choices are discussed below.

1) Measurement interval, tp : The period tp should be
greater than the RTT of most flows to smooth out sub-
RTT burstiness [27], but should be small enough to ensure
responsiveness to congestion. The majority of Internet flows
have RTTs less than 200 ms [28], [29]. Hence, BMCC uses
tp = 200 ms; the same value is used by VCP [13]. See [14]
for an analysis on the impact of tp on performance.

2) Backoff parameter, β: The backoff parameter varies
from βmin = 0.65 when f = u = 1.2 to βmax = 0.875 when
f = 1, for the following reasons: A very high value of βmax

(e.g., 0.99) is undesirable as it leads to slow convergence [30],
whereas a low value (e.g., 0.2) reduces average throughput4

and increases variations in flow rates, which is undesirable for
real-time applications [31], [32]. To balance these, BMCC uses
βmax = 0.875; the same value is used in the DECbit scheme
[33] and VCP [13]. To ensure high responsiveness and fast
convergence under high load, β(f) is decreased linearly as f
increases until β(u) = βmin. The choice of βmin determines
the range of values that β(f) can assume. Figure 1 shows
the bottleneck utilization and fairness convergence rate as a
function of βmin for two long-lived flows on a 100 Mbps link
with T = tp. While link utilization increases with βmin, the

4Since BMCC does not maintain a standing queue, reducing the window
directly reduces the throughput.
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Fig. 1. Bottleneck utilization and fairness convergence rate as a function of
β(f) = βmin for two flows on a 100 Mbps with T = tp.

convergence rate decreases. To balance these, BMCC uses
βmin = 0.65.

3) Mode threshold, η: The minimum value of β(f) de-
termines the parameter η, which defines the transition point
between applying MI and AIMD. To encourage high utiliza-
tion, η should be large, but small enough to prevent flows
from entering MI after overload detection, which can lead to
high packet loss rate. It suffices that η < minf≥1(fβ(f)).
The minimum of fβ(f) = 0.723 occurs for f = u (since
β(f) = βmin for f ≥ u, the quadratic fβ(f) for f < u is
concave, and β(1) > uβ(u)). BMCC uses η = 0.75.

E. Reverse Signalling Overhead

The BMCC receiver communicates the estimated load
factor, f̂ , to the sender using TCP options. Unlike on the
forward path, TCP options are acceptable for this because
they need not be processed by the routers. However, they
can introduce overhead. The number of bytes needed in TCP
options depends on the desired feedback resolution. If 16-bit
feedback resolution is used, as in our implementation, then
the feedback fits in a minimum sized (4 byte) TCP option.
Rather than piggybacking f̂ on every ACK, it is only necessary
to send f̂ if it changes. This approach (which we call “non-
redundant”) increases the sensitivity to lost ACKs.

The alternative used by BMCC is to send the estimate
immediately after it changes, and then to send redundant
copies with decreasing frequency. Each receiver maintains a
counter i. The ith option is sent i packets after the previous
one, so that options are sent on ACKs 1, 3, 6, 10,... The counter
is reset to 1 each time f̂ changes and incremented by 1 each
time f̂ is sent. This scheme is robust against losing a small
number of ACKs, but if f̂ changes once per n packets, the
overhead is only O(1/

√
n) times that of naı̈vely echoing on

every ACK.
The reduction in overhead was evaluated by ns2 simulations

of a dumbbell topology with a bottleneck link of capacity
100 Mbps, carrying ten long-lived flows in each direction with
T=80ms. Table II shows statistics that correspond to the
average of the ten flows in the forward path. Of 552942 ACKs
generated by the receivers, the price estimate changed for 6914
(1.3%), which carried f̂ under both schemes, whereas 12.9%
carried f̂ under BMCC’s robust scheme.

ACKs sent ACKs with f̂ Reduction(%)
non-redundant 552942 6914 98.7

BMCC 552942 71476 87.1

TABLE II
OVERHEAD OF SIGNALLING FROM RECEIVER TO SENDER.

III. DESIGN ISSUES

The design of BMCC gives rise to several questions whose
answers requires careful consideration of network load and
operating conditions. The objective of this section is to address
these questions and describe the approaches BMCC uses to
manage traffic efficiently and achieve high network perfor-
mance.

a) What is the congestion level assumed by new flows?:
ADPM needs an initial estimate of the congestion level. New
flows initially estimate f̂ = η0 = 0.15, and thus increase their
windows by a factor of 1+ κ2(1− η0)/η0 ≈ 3 per tp. This is
a faster increase than existing TCP slow start when T = tp.

b) Can new flows cause overload before ADPM has been
able to signal congestion?: The estimates of f signalled by
ADPM lag behind the true value. Hence, a flow may not
detect overload and apply MD in a given tp interval [20].
In the presence of a large number of flows, congestion will
be avoided if most reduce their windows, even if some miss
the congestion signal. However, if f > u = 1.2, each flow
decreases its window deterministically (using the standard
ECN “Congestion Experienced” codepoint) which prevents
persistent congestion. Note that ADPM provides feedback well
before the buffer overflows, and so new flows need not cause
large bursts of loss and timeouts, even if there is some delay
in detecting congestion.

c) Sources may apply different backoff factors at the same
time; does this lead to unfairness?: The backoff factor applied
by a BMCC source depends on its estimate of the load factor.
This estimate can be different across sources due to ADPM.
This may lead to short-term unfairness (on the scale of a few
RTTs). To quantify this, we compare the level of unfairness
caused by TCP SACK and BMCC for a range of time scales.

Consider an averaging interval s. For two SACK flows, let
Xi(t, s) be the average rate of flow i over the interval (t, t+s),
and let the “unfairness rate” be

v(τ, s) =
1

τ

∫ τ

0

maxi(Xi(t, s))

minj(Xj(t, s))
dt,

where i, j ∈ {1, 2} and τ is the total observation period.
Figure 2 shows v(500, s) against the averaging interval s for
two link capacities and T = 80ms (The buffer size was set to
the path bandwidth-delay product). Observe that the v curve
for BMCC remains below that of SACK implying that it is
always fairer than SACK on short time scales. The unfairness
rate is higher on the 1 Mbps link due to higher average f
in overload. Since f̂ can vary randomly across sources due to
ADPM and backoff is a function of f , this increases the range
of backoff factors that can be applied by the sources; leading
to higher v values. We validated this using ns-2 simulations
which showed that the average f in overload was 105.5% and
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Fig. 2. Unfairness rate as a function of the averaging interval (T = 80ms)

100.5% and the average backoff factors were 0.84 and 0.87
corresponding to 1Mbps and 45Mbps links, respectively.

d) Why use a higher Mode threshold when flows start?:
A long-lived BMCC flow uses AIMD in steady-state. In the
presence of such a flow, a newly arriving flow would normally
apply AIMD too, which can cause slow convergence. To help
improve convergence in this scenario, a larger initial η is used
due to the availability of high resolution load estimates. This
allows new BMCC flows to apply the more aggressive, load-
factor guided MI until the end of the first congestion epoch.

IV. BMCC PROTOCOL ANALYSIS

In this section, we analyse two important properties of
BMCC. The first deals with the rate of convergence to fairness
when a new flow starts competing with multiple long-lived
BMCC flows, while the second is concerned with the rate
at which a new BMCC flow acquires the spare (unutilized)
bandwidth. The main objective of the analysis is to derive
conservative, yet sufficiently accurate, estimates of these rates
to guide BMCC parameter selection.

A. Convergence to fairness

To estimate the rate at which a new flow achieves approxi-
mately its “fair share” of the capacity of a single bottleneck,
we consider a network model, where N BMCC flows, indexed
by n = 1, . . . , N , share a single high BDP link. We model
this as an AIMD system with deterministic rate increases, and
random back-off factors, similar to the ones proposed in [30]
and [34].

1) Model: Let R+ = [0,∞) and let (·)′ denote transpose.
The state of the system is a vector w(k) ∈ RN

+ of window sizes
indexed by a discrete time variable k. All amounts of data will
be measured in units of packets (assumed to be equal for all
flows), and all times will be measured in units of the slot, tp.

Model the rate of flow n as yn(k) = wn(k)/Tn, where Tn is
the RTT of the nth flow, in slots of length tp. Queueing delay
is ignored since BMCC’s virtual queue causes queueing to be
negligible. Define a backoff event to be a slot in which the
total arrival rate λ(k) =

∑N
n=1 yn(k) satisfies λ(k) ≥ γlCl,

and let Ti be the time slot of the ith backoff event.
By (4), αn = T 2

n is the amount by which wn increases every
RTT Tn when no backoff occurs. We model this increase as
an increase by α̂n = Tn per timeslot; this is the same average
rate, differing only in quantization.

In each time slot, the router calculates a load factor. When
there is no backoff, each flow i increases its rate by approx-
imately α̂n/Tn = 1 packet per time slot. However, due to
factors such as operating system jitter and integer arithmetic,
this is not the exact increase in each time slot. It is reasonable
to model the increase as α̂n/Tn + ∆ where ∆ is a zero-
mean random variable, independent of the history. If the period
between backoff events is much larger than one slot (which
it is for a large BDP link) then the sum of the rates modulo
N becomes a mixing process. Since the randomness of ∆ has
a mixing effect, we appeal to the intuition that non-intrusive
mixing arrivals see time averages (NIMASTA, [35]) to make
the modeling assumption that this remainder modulo N has
its time-average distribution, namely U [0, N ].

The arrival rates (measured in packets/slot) in the backoff
time slots Ti are modelled as i.i.d. random variables. We
assume that in each backoff event, at least one flow reduces
its rate enough to ensure that the following slot is not also a
backoff slot. Then the arrival rate at Ti can be modeled as

λ(Ti) ∼ γlCl + U [0, N ]. (7)

Since the queue was empty in the slot before the backoff,

qav(Ti) = (λ(Ti)− Cl)
+ ∈ [0, N ].

The load factor is then

f(Ti) =
λ(Ti) + κ1qav(Ti)

γlCl

= 1 + Φ

where Φ is piecewise uniform on [0,min(N,Cl(1− γl))] and
[min(N,Cl(1− γl)), N ]. For simplicity, we take as a model

f(Ti) = 1 + ϕU [0, N ] (8)

where ϕ ∈ [1/Cl, (1 + κ1)/Cl]. We consider the case that

Nϕ < u− 1 (9)

so that backoff is only caused by ADPM, and not by receiving
a (11)2 ECN mark.

Each flow has a probability of not backing off. Although that
depends on the instantaneous rate, we model it as dependent
only on f , as follows. Let c be the fraction of hash values in
the interval [1, u]. (In Section II, c = 1/2.) Let pf = c f−1

u−1 be
the probability that a given packet’s hash value is in the range
[1, f ] corresponding to overload. For a flow sending d packets
per slot, the probability of detecting overload in a given slot
given a true load factor f , is

P (f̂ ≥ 1|f) = 1− (1− pf )d (10)

Since the probability of backing off increases with the rate
d, it is conservative to make the simplifying approximation
that each flow instead backs off with probability at most the
average backoff probability.

This requires that we find a d such that(
1− cf − 1

u− 1

)d

≥ 1

N

N∑
n=1

(
1− cf − 1

u− 1

)yn(i)



for all i. By Lemma 1 in the appendix, it is sufficient that d
satisfy this for the largest f , namely f = 1+N/ϕ. Since the
right hand side is larger when yn are more spread out, and we
expect yn to converge, it seems conservative to set d to satisfy
this for yn(0). Thus we take

d =

log

(
1
N

∑N
n=1

(
1− c Nϕ

u−1

)yn(0)
)

log
(
1− c Nϕ

u−1

) . (11)

A simpler and more insightful, though less conservative, model
would simply use

d =
γlCl

N
.

We model flows’ f̂ at each stage as having identical
marginal distribution satisfying (10), and a joint distribution
such that f̂ > 1 for at least one flow, independent of previous
backoffs. By (6), this implies that flow n backs off by a
factor βn, where the vectors β(Ti) = (β1(Ti), . . . , βN (Ti))′
at different back-off instants are i.i.d. random variables. Flows
n for which f̂ < 1 have βn = 1. Then the dynamics of the
entire network of sources are described by [30]

Y (i+ 1) = A(i)Y (i) (12)

where

A(i) = diag(β(Ti)) +
1

N
e(e′ − β′(Ti)), (13)

Y (i) = [y1(i), y2(i), ..., yN (i)]′ and e = (1, . . . , 1)′ ∈ RN×1.
2) Rate of Convergence: We will now use the model (6)–

(13) to determine the rate of convergence to fairness.
The main result of this section is
Theorem 1: Under the model given by the numbered equa-

tions (6)–(13), the expected values of the rates converge as

E[Y (i)]− γlCl

N
e = µi−1

(
E[Y (0)]−

(
γlCl

N
+

1

2

)
e

)
(14)

where

µ = βmax(1− Z(d+ 1)) + (1 +MϕN)Z(d+ 1)+

M

(
Z(d+ 2)− 1

ζ(d+ 1)
− ϕN

2

)
, ζ =

c

u− 1
,M =

∆β

2(u− 1)
,

and

Z(x) =
1− (1− ζϕN)x

ζxϕN
.

Proof: Since β, and hence A, are i.i.d.,

E[Y (i)] =
i−1∏
j=0

A(j)Y (0) = (E[A(0)])i−1E[Y (0)]. (15)

The convergence is thus determined by the eigenvalues of
E[A(0)]. The dominant eigenvalue of E[A(0)] is 1, with
eigenvector e. This implies that the component of Y (i) in the
direction of e is constant, and by (7) is equal to (γlCl/N +
1/2)e. All other eigenvalues are E[β(f̂)]. It remains to show
that E[β(f̂)] = µ.

Recall that f̂ is the estimate of f at a given backoff time.
The expected backoff factor in overload conditioned on f is

E[β(f̂)|f ] = P (f̂ < 1|f)E[β(f̂)|f̂ < 1, f ]+

P (f̂ ≥ 1|f)E[β(f̂)|f̂ ≥ 1, f ]. (16)

Now E[β(f̂)|f̂ < 1, f ] = 1 since sources do not backoff when
f̂ < 1, and by (10), P (f̂ < 1|f) = (1− pf )d.

Finally, by (6) and (8),

E[β(f̂)|f̂ ≥ 1, f ] =
1

f − 1

∫ f−1

0

(βmax −
∆βψ

u− 1
)dψ

= βmax −
∆β(f − 1)

2(u− 1)
. (17)

Let ζ = c
u−1 . Then E[β(f̂)|f ] can be averaged over f−1 ∼

ϕU(0, N) to give

E[β(f̂)] =
1

ϕN

∫ ϕN

0

[(1− (1− ζψ)d)× (18)(
βmax −

∆βψ

2(u− 1)

)
+ (1− ζψ)d]dψ

=βmax (1− Z(d+ 1)) + (1 +MϕN)Z(d+ 1)

+M

(
Z(d+ 2)− 1

ζ(d+ 1)
− ϕN

2

)

Figure 3 shows the average window size of two BMCC flows
that have an inter-arrival time of 50 s. The bottleneck capacity
is 20 Mbps and T = tp. The data points corresponding to
the ‘Model’ curves are determined as follows: The rates in
the model evolve in terms of congestion epochs. To plot
the window versus time in Figure 3, we assume that each
epoch has the mean duration. To calculate the latter we divide
the reduction in the sum of window sizes every backoff
slot (assuming independence) by the increase in the sum of
window sizes per slot. Each data point corresponding to the
‘Measured’ curve represents the average of 200 simulation
runs with random flow starting times t1 ∼ U [0, tp] and
t2 ∼ 50U [1, 1 + tp], where t1 and t2 are the starting times
of Flow 1 and Flow 2, respectively. For the model, each flow
uses d = Cl/N . Observe that the expected window size of the
flows converge to the same value and the model conservatively
estimates the rate of convergence.

Impact of u on backoff: The value of u determines the
maximum value of f that can be signalled by ADPM. Figure
4(a) shows that the expected backoff factor E[β(f̂)] increases
with u. This happens because pf , which is the probability
that a packet detects overload, decreases with u (see Figure
4(b)). Observe that when u = 1.2, flows detect overload with
probability close to 1.

B. How Fast does BMCC Acquire Spare Bandwidth?

A well known problem of TCP SACK is that a flow sending
on a path with large BDP and spare bandwidth takes too long
to start up [6], and then causes many packet losses when
the window finally reaches the BDP [36]. BMCC addresses
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these by increasing its rate faster until incipient congestion is
explicitly signaled, and then slowing down the rate of increase.

To obtain insights into the rate at which a new BMCC flow
acquires idle capacity, we use a simplified fluid approximation
model. This analysis applies to both UNO [24] and MPCP
[25]. We consider a single bottleneck being traversed by a
BMCC flow with a constant RTT, T = tp. We assume the flow
window size w(t) is a positive, continuous, and differentiable
function and that the BDP is large enough for ADPM to
accurately estimate the load factor.

Because a new BMCC flow skips the AI mode, it adapts its
window in two phases until the first congestion epoch. In the
first, with f = w/(ClT ) < η0, it increases the window by a
factor of 1+κ2(1−η0)/η0 ≈ 3 each RTT. In the second, with
f ∈ (η0, 1), the window increases by a factor of κ2(1−f)/f =
κ2(ClT −w)/w each RTT. These phases can be modeled as:

dw

dt
=

log(3)

T
w(t), f < η0 (19)

dw

dt
=
κ2
T
(ClT − w(t)), f ∈ (η0, 1) (20)

Under the model (19), (20), (1), with w(0) = 1, the amount
of data d(t) =

∫ t

0
w(τ)/T dτ , delivered by time a t before the

load factor reaches 1 is

d(t) =

{
3t/T / log(3) t ≤ t1
d(t1) + Clt− (1− η0)e−κ2∆t1/T /κ2 t > t1

where t1T log3(η0ClT ) and ∆t1 = t − t1. Solving (19) and
applying w(0) = 1 gives

w(t) = 3t/T , t ≤ t1 (21)

for the first phase. For the second phase, solving (20) an
applying the continuity of w at t1 gives

w(t) = ClT
(
1− (1− η0)e−κ2(t−t1)/T

)
t > t1 (22)
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Integrating over [0, t] and applying the initial condition
d(0) = 0 and continuity of d at t1 establishes the result. Note
that, unlike regular multiplicative increase, the window under
(22) undergoes concave negative exponential growth.

Similar calculations show that SACK sends data

dR(t) = 2t/T / log(2)

by t < T log2(ClT ), while VCP sets Υ = 1.0625 and sends

dV (t) =

{
Υt/T / log(Υ) t ≤ t1,V
dV (t1,V ) + ∆t1,V (Υ

t1,V /T +∆t1,V ) t > t1,V

where t1,V = T logΥ (ClTηv) and ηv = 0.8.
Figure 5 compares the growth of the congestion window

of a single SACK, VCP, MLCP and BMCC flow starting
on an idle 2 Gbps link of RTT=200 ms. The buffer is set to
the BDP of 50000 pkts. The SACK window doubles every
round-trip time (a straight line on the exponential plot in
Figure 5). When it fills the router buffer, it has a window size
of ∼100000 pkts. This doubles in the next RTT, resulting in a
loss of ∼90000 pkts and consequent timeouts. In the first 2 s,
BMCC attains a larger window than SACK. As the available
bandwidth decreases, BMCC slows its growth and avoids
any loss. It achieves similar growth to that of MLCP [14],
using only the existing feedback bits. In contrast, VCP is too
conservative; by 6.5 s, the BMCC window is the BDP, but the
VCP window is well under 1% of BDP.

V. PERFORMANCE EVALUATION

To evaluate the performance and fairness of BMCC in di-
verse network settings, a ns-2 based simulation study is carried
out. In this study, the focus is on comparing the performance
of BMCC with multiple protocols designed to overcome the
limitations of TCP in high BDP networks including XCP [1],
RCP [6], VCP [13], MLCP [14], UNO [24], MPCP [25], TCP
SACK, CUBIC [2], and CTCP [5]. The interaction of BMCC
with TCP SACK is investigated in Section VI.

To ensure fair comparison with all protocols which obtain
router support, TCP SACK, CUBIC, and CTCP are always
used in conjunction with RED and ECN. Furthermore, the
bottleneck buffer size is set to the larger of the BDP (i.e.,
the product of the bottleneck capacity and the round-trip
propagation delay) or two packets per-flow. Data packet are
1000 bytes, while the ACKs are 40 bytes. All simulations are
run for 100 s except those in which the round-trip propagation
delay is varied. In this case, the simulations are run for 500 s.
The results represent the average of ten simulation runs, where
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Fig. 6. Bottleneck utilization with varying capacity, RTT, number of flows, and buffer size on a single bottleneck (Fig. 6(a)-(d)) and with varying number
of bottlenecks on a multiple bottleneck topology (Fig. 6(e)). BMCC, like XCP, RCP, MLCP, and VCP, maintains high utilization across a range of scenarios.
It overcomes the limitations of SACK, CUBIC, and CTCP using RED/ECN. Note that BMCC achieves ≥ 95% utilization even with buffers as small as 5%
of the path BDP. Below this, utilization is low for all protocols.
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Fig. 7. Bottleneck queue with varying capacity, RTT, number of flows, and buffer size on a single bottleneck (Fig. 7(a)-(d)) and with varying number of
bottlenecks on a multiple bottleneck topology (Fig. 7(e)). BMCC, like RCP, MLCP, and VCP, maintains low bottleneck queue (< 10%) in all scenarios expect
when RTT ≤ 1ms or the buffer size is <5% of the path BDP. XCP, SACK, CUBIC, and CTCP result in a much larger queue length in several scenarios.
Note that RED/ECN is not used when the bottleneck buffer size is varied.

in each run the starting time of flows is chosen uniformly at
random from [0, 2] s. For each result, we also determine the
95% confidence interval. The statistics neglect the first 5% of
the simulation time.

A. Single Bottleneck Topology
We first consider several variants based on a dumbbell

topology with a 155 Mbps bottleneck link and 80 ms round-trip
propagation delay. Unless stated otherwise, we use two-way
traffic with five FTP flows on both the forward and reverse
paths. We vary different parameters and study their impact on
performance.

a) Varying Bottleneck Capacity: First the bottleneck ca-
pacity is varied between 100 kbps and 2 Gbps, keeping every-

thing else fixed. Figures 6(a), 7(a), and 8(a) show that BMCC
maintains high utilization (≥90%), with small queues (<20%
BDP) and negligible packet loss. While VCP, MLCP, XCP
and RCP all also achieve ≥85% utilization, average utilization
for SACK, CUBIC, and CTCP remains below 70% for links
faster than 10 Mbps. As the link capacity increases, these
protocols take longer to converge. Consequently, the average
utilization decreases with link capacity as all simulations are
run for a fixed duration of 100 s. In addition, the presence of
reverse traffic exacerbates this as it increases the RTT. Note
that since buffers are sized based on round-trip propagation
delay, which does not account for the queueing delays on the
forward and reverse paths, they are not sufficient for achieving
full link utilization. CUBIC and CTCP achieve about 20%
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Fig. 8. Loss rate with varying capacity, RTT, number of flows, and buffer size on a single bottleneck (Fig. 8(a)-(d)) and with varying number of bottlenecks
on a multiple bottleneck topology (Fig. 8(e)). BMCC, like MLCP and VCP, introduces low loss rate (< 0.0001%) in all scenarios except when RTT ≤ 1ms,
capacity is ≤ 0.1 Mbps, and the buffer size is < 5%., in which loss rate is up to 0.1%. In many scenarios, no loss was observed with BMCC. XCP, RCP,
SACK, CUBIC, and CTCP result in larger loss rates in several scenarios.

higher average utilization than SACK when the link capacity
is 2 Gbps, because they are designed to be more aggressive
than SACK on large BDP paths. RCP, SACK, CUBIC, and
CTCP result in high loss rates for small capacities, despite the
use of ECN, whereas all other schemes experience negligible
loss rates. The average queue length with XCP (5∼40% BDP)
is much higher than other schemes for link capacities higher
than 1 Mbps. This was also observed by [13] but the reason for
this is not clear. We conjecture that this is due to the presence
of reverse traffic.

b) Varying Feedback Delay: Next the round-trip time is
varied between 1 ms and 2 s. Figures 6(b), 7(b), and 8(b) show
that BMCC, MLCP, and VCP again maintain high utilization
(≥80%), with small queues (≤25% BDP) and negligible
packet loss. While CUBIC and CTCP outperform SACK
across a range of RTTs, their average utilization remains
<70% for RTTs larger than 100 ms. XCP results in a higher
average queue length (20∼35% BDP) than other schemes and
CUBIC and CTCP lead to an average queue length of about
20% for RTTs less than 25 ms. For low RTTs (e.g., <2 ms)
the average queue length for BMCC, MLCP and VCP rises to
about 5∼25% BDP, because the AI rate becomes large relative
to the BDP. Conversely, for large RTTs, RCP results in a loss
rate of up to 15% due to its aggressive rate allocation.

c) Varying Number of Long-lived Flows: The number
of long-lived flows is now varied from 1 to 1000. Figure
6(c) shows that while BMCC, MLCP, VCP, XCP and RCP
again maintain high utilization (≥90%), SACK, CUBIC, and
CTCP achieve less than 90% utilization when there are fewer
than 40 flows. For most protocols, the average queue length
remains below than 10% (Figure 7(c)). It is higher for XCP
(∼10%−40%) and in some cases for MLCP (up to ∼20%).
Note that the loss rate for SACK, CUBIC, and CTCP becomes
more than 5% for 1000 flows as shown in Figure 8(c).

d) Pareto-Distributed Traffic: To study how BMCC han-
dles typical bursty traffic, we generate short-lived flows with
Pareto distributed lengths (shape=1.4) which arrive as a Pois-
son process, as studied in [6]. We vary the average file size
from 30 kB to 3000 kB on bottleneck capacities of 10 Mbps
and 100 Mbps and measure the average file completion time
(AFCT). Figure 9 shows the AFCT normalized by the smallest
AFCT, as a function of the average file size. On a 10 Mbps
link, BMCC outperforms all schemes across a range of file
sizes. This is noteworthy, since RCP was designed to optimize
this performance measure. VCP, SACK, MLCP, CTCP, and
CUBIC stretch the AFCT by factors of approximately 3.5, 2.5,
2, 1.8, and 1.5 over BMCC, respectively. On a 100 Mbps link,
RCP performs best when the file size is 30 kB and 300 kB.
XCP outperforms other schemes when the average file size is
3 MB. Note that BMCC is the second best performing scheme
in all cases. For an average file size of 30 kB, VCP, XCP and
MLCP stretch the AFCT by factors of about 2.7, 2.4 and 2.3.

VCP results in the highest AFCT because of chooses a
conservative MI factor, due to its 2-bit feedback. BMCC
obtains load factor estimates of up to 16-bit resolution which
allows larger MI factors in low-load. With SACK’s slow start
algorithm, flows use a fixed MI factor of two. In high load,
this is too aggressive, and leads to larger average queue length
and higher loss rate, which increases the AFCT. CUBIC and
CTCP’s use of delay-based congestion adaptation improves
convergence speed, which improves their AFCT relative to
SACK. XCP results in a large AFCT for smaller file sizes
because newly arriving flows apply AIMD. RCP gives higher
rates to new flows which helps short flows to finish quickly.

e) RTT Fairness: We now investigate the fairness of
BMCC flows with different round trip times. We consider
a single 60 Mbps bottleneck link with 20 long-lived flows
in each direction. Forward flow j ∈ {1, . . . , 20} has RTT
Tj = 40 + 4jδms, where δ varies between 1 ms and 5 ms.



(a) Cl = 10Mbps (b) Cl = 100Mbps

Fig. 9. Normalized AFCT as a function of the average file size for bottleneck
capacities of 10 Mbps and 100 Mbps. The arrows indicate the scheme with the
best AFCT whereas the arrow labels show the actual AFCT. The normalized
AFCT is defined as the ratio of the AFCT of a scheme and the smallest AFCT
across all schemes.
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2/(N
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2), where xi is the
throughput of flow i and i ∈ {1, .., N}] as a function of δ.

When δ is 1 ms, RTTs are in the range [40 ms, 116 ms]. When
δ is 5 ms, the RTTs are in the range [40 ms, 420 ms]. Observe
that BMCC, MLCP, VCP, XCP, RCP, and CTCP achieve a
Jain fairness index of at least 0.9 across a large range of RTT
variations (see Figure 10). With CUBIC, the fairness varies
in [0.7, 0.9], however, SACK becomes very unfair as δ is
increased.

f) Varying Bottleneck Buffer Size: Since all the protocols
considered have oscillatory window dynamics, the buffer size
affects performance greatly. Figures 6(d), 7(d), and 8(d) show
the performance as the buffer varies between 0 and 100% of
the BDP. For buffers at least 5% of the BDP, BMCC and RCP
maintain more than 95% bottleneck utilization, small queues,
and negligible loss. To achieve this utilization, XCP requires
more than 70% of BDP, while SACK, CUBIC, and CTCP
only achieve 80% utilization even with 100% BDP buffers,
due to reverse traffic. When the buffer size is less than 2%,
link utilization degrades for all protocols, because even short-
term packet bursts cannot be smoothed.

B. Multiple Bottleneck Topology

Many protocol issues are only apparent in multi-link topolo-
gies. We now consider a linear topology with ten bottleneck
links, where 30 long-lived flows traverse all links and each
links is also used by five cross long-lived flows. The capacities
of the links follow a stair-case pattern with link i ∈ {0, . . . , 9}
having capacity (155 − 10i)Mbps. Figure 6(e) shows that
BMCC, MLCP, and RCP all achieve at least 94% utilization,
and SACK, CUBIC, CTCP, and VCP vary between 85%–95%.
While XCP achieves at least 83% utilization on average, its
utilization is lower on some links (i < 9) as a side effect
of its “bandwidth shuffling” used to obtain fairness [37] All

Fig. 11. Comparison of TN , the average throughput achieved by cross flows,
normalized by the throughput of forward flows. The number above the bars
represents TA, the average throughput of forward flows in Mbps.

protocols maintain low average queue length (<3% BDP) and
experience low loss (<0.25%) as shown in Figure 7(e) and
8(e).

Per-Flow Throughput: Figure 11 shows the average through-
put achieved by cross flows, normalized by the average
throughput of forward flows. Under XCP and RCP, which aim
for max-min fairness, forward and cross flows achieve similar
throughput. The remaining protocols give higher throughput
to the flows with fewer hops, more in line with goals such
as proportional fairness [15]. Of these remaining protocols,
BMCC is the closest to max-min fair to forward flows, since
ADPM signals the highest level of congestion of any link on
a flow’s path.

C. Comparison with UNO and MPCP
UNO [24] and MPCP [25], which were developed simulta-

neously with BMCC, address a similar problem to BMCC but
differ from it in the following ways. UNO uses a variant of [22]
to control a MI-AI-MD algorithm, but limits itself to 3-bit
resolution. This causes it to use a constant MD factor, which
does not allow it to both respond quickly to congestion and
also avoid large oscillations during AI-MD. MPCP and DCP-
EW [38] use a more complex, though more fragile, signaling
method; MPCP achieves 4-bit resolution after observing only
two packets, but requires per-flow state in the routers, and uses
both ECN bits in a way incompatible with the standard [12],
both of which make deployment infeasible. BMCC avoids
these issues by using the simple, precise and robust ADPM
marking scheme, allowing MI-AI-MD window updates in
which both the MI and MD factors adapt to the load factor.

We now compare the performance of BMCC with published
results for UNO [24] and MPCP [25]. Figure 12(a) shows the
bottleneck utilization 15 s after the start of a single BMCC
or UNO flow over a path with RTT 200 ms using data from
Figure 4 of [24]. BMCC achieves up to 30% higher utilization
than UNO, because its higher feedback resolution allows it to
use more aggressive MI. Figure 12(b) shows that BMCC and
MPCP give similar bottleneck utilization on a 10 Mbps link
with RTT 400 ms, using data from Figure 3 of [25]. However,
MPCP remains less easily deployed.

VI. INCREMENTAL DEPLOYMENT

There are many challenges in deploying new congestion
control mechanisms [39]. One of those is how to signal
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Fig. 12. Comparison of BMCC with UNO and MPCP.

congestion. Many protocols that use explicit feedback from
the network require additional fields, either in an IP option,
a TCP option [40] or modified header [1], or a “shim layer”
[6]. This makes the universal deployment of such protocols
challenging because many routers are configured to drop
packets containing IP options [41], and IP payloads may be
encrypted. BMCC is suited to deployment in the Internet
because its signalling is compatible with the existing IP header.

However, for any new transport protocol to be incrementally
deployable on the Internet, it should also be able to (a) run
over existing infrastructure, which does not necessarily provide
the feedback expected by the protocol; and (b) co-exist with
existing protocols, such as SACK, CUBIC, and CTCP, without
leading to starvation or causing one protocol or the other
to achieve unfairly low throughput. We now describe some
modifications to BMCC that could address these issues.

As a stop-gap to address the former issue, we propose
that BMCC revert to SACK-like window adjustment when the
heuristics of [42] indicate that the bottleneck is not BMCC-
enabled, as done by high-speed TCP variants [2], [5] when a
path has a low BDP. While this is clearly suboptimal, it may be
useful for migration towards more efficient congestion control.

When the bottleneck is BMCC-enabled, BMCC flows can
get starved by TCP traffic because algorithms such as TCP
SACK seek to fill router buffers. This leads to a high load
factor, causing BMCC sources to back-off frequently. To
address this, an alternative would be to replace the use of
the (11)2 mark to indicate load factor f > u, by its use
to signal standard AQM (such as RED/ECN) marking. The
sender would be modified to back off only when a (11)2 mark
is echoed by the receiver but, to retain the benefits of the high
resolution congestion estimate, the amount by which a BMCC
sender backs off would be given by the high resolution load
factor estimate [42]. This allows fairness between BMCC and
TCP on small BDP paths, and on high BDP paths, allows
BMCC flows to achieve higher throughput without causing
starvation of TCP.

Figure 13 illustrates this behavior for the case of a BMCC-
enabled bottleneck of capacity 45 Mbps that a single BMCC
shares with either a TCP SACK, CUBIC or CTCP flow, each
with RTT, T = 100 ms. Observe that BMCC maintains a
larger average congestion window than all other protocols, as
needed to give an incentive for its adoption, without starving
them. On higher BDP paths, BMCC flows an achieve higher
throughput. We show that the degree of unfairness caused by
BMCC when it co-exists with TCP is comparable to the degree
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Fig. 13. BMCC and {SACK, CUBIC, CTCP} flows sharing a bottleneck link
of capacity 45 Mbps with a modified BMCC router, with RTT T = 100ms.

of unfairness introduced by TCP’s own RTT-unfairness. For
instance, TCP SACK flows achieve bandwidth allocations that
are proportional to 1/RTT z , where 1 ≤ z ≤ 2 [13].

To compare the degree of unfairness when BMCC and TCP
flows co-exist with the case when TCP flows with different
RTTs compete at a bottleneck, we measure the gain, G, in the
throughput of a more aggressive flow in these scenarios. To
achieve this, we consider the following cases: In the first case,
called BASELINE, we run two TCP flows each with RTT
T . In the second case, called MIX , we run two experiments:
(a) one TCP flow with RTT T competes with another TCP
flow with a 10 ms RTT and (b) one BMCC flow competes
with one TCP flow, each with RTT T . The gain is then

G =
T (B)MIX

T (B)BASELINE
(23)

where T (B)i is the throughput achieved in case i ∈
{MIX,BASELINE}. Figure 14 plots the throughput
gained by a more aggressive flow as a function of T . Note
that a TCP flow with a 10 ms RTT and a BMCC flow are the
more aggressive flows in (a) and (b), respectively. Observe
that the unfairness in case (a) is always larger than in case
(b) with all versions of TCP. This indicates that, in the cases
considered, BMCC flows are no more unfair to TCP flows than
are short RTT TCP flows to the longer ones. Note that since
CUBIC and CTCP employ more aggressive control laws, the
throughput gain by BMCC flows is less than the throughput
gain over SACK flows.

VII. CONCLUSION

This paper has demonstrated that simple MI-AI-MD can
achieve a substantial improvement over the current state of
the art in congestion control, if the MI and MD factors adapt
to moderately accurate estimates of the current load on the
network. Moreover, such accuracy can be achieved for a wide
range of network conditions by aggregating feedback from a
single bit per packet. This is in contrast to earlier proposals
such as REM, in which the dynamic range of congestion
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signals limits the flows to a narrow range of bit rates. In
particular, the algorithm BMCC has been presented, which
outperforms XCP and, in some cases, RCP in terms of average
flow completion times for typical Internet flow sizes.

Incremental deployment is a standard challenge for new
congestion control protocols. The marking required by BMCC
does not interfere with existing traffic, but starvation of either
BMCC or competing SACK flows is possible. A variant of
BMCC has been proposed which achieves a better level of
fairness than the original presented in [43].

Many extensions of this work are possible. First, the distinc-
tion between MI and AI modes may be unnecessary given an
accurate estimate of the load factor; better performance may be
possible using an increase rule, such as increasing proportional
to w1−f̂ , that makes a smoother transition from an aggressive
increase proportional to the current estimated capacity to
ensure efficiency, towards a gentle increase independent of the
current rate to ensure fairness.

Second, a more detailed analysis of the effect of the esti-
mation error due to ADPM would provide guidance in setting
its parameters more effectively.

Finally, in common with many schemes in which routers
signal incipient congestion, BMCC assumes routers know the
capacity of each of its links. This need not be the case when
links have a varying capacity, such as wireless links, links
with power saving modes, or shared media such as cable
modem links. In such cases, the load factor could be estimated
based on the fraction of time the link is busy, without explicit
knowledge of the capacity.

VIII. ACKNOWLEDGEMENTS

We thank Fahad Rafique Dogar, Zafar Ayyub Qazi, Craig
Partridge, Daniel Mosse and the anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control for
high bandwidth-delay product networks,” in ACM SIGCOMM, 2002.

[2] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP
variant,” in PFLDNet, 2005.

[3] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, architecture,
algorithms and performance,” in IEEE INFOCOM, 2004.

[4] V. Konda and J. Kaur, “RAPID: Shrinking the congestion-control
timescale.” in IEEE INFOCOM, 2009.

[5] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP ap-
proach for high-speed and long distance networks,” in IEEE INFOCOM,
2006.

[6] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Pro-
cesor sharing flows in the internet,” in IWQoS, 2005.

[7] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore,
“The ERICA switch algorithm for ABR traffic management in ATM
networks,” IEEE/ACM Trans. Netw., vol. 8, no. 1, pp. 87–98, Feb 2000.

[8] A. Falk, D. Katabi, and Y. Pryadkin, “Specification for the explicit
control protocol (XCP),” in draft-falk-xcp-03.txt, 2007.

[9] C.-H. Tai, J. Zhu, and N. Dukkipati, “Making large scale deployment
of RCP practical for real networks,” in IEEE INFOCOM, 2008.

[10] S. H. Gunderson, “IPv6 deployment,” in RIPE 57, 2008.
[11] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–
413, Aug 1993.

[12] K. K. Ramakrishnan and S. Floyd, “The addition of explicit congestion
notification (ECN) to IP,” in IETF RFC 3168, Sep 2001.

[13] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit
is enough,” in ACM SIGCOMM, 2005.

[14] I. A. Qazi and T. Znati, “On the design of load factor based congestion
control protocols for next-generation networks,” Comput. Netw., vol. 55,
pp. 45–60, January 2011.

[15] F. Kelly, “Charging and rate control for elastic traffic,” European Trans.
on Telecommunications, vol. 8, pp. 33–37, 1997.

[16] S. Athuraliya, V. Li, S. Low, and Q. Yin, “REM: Active queue manage-
ment,” IEEE Network, vol. 15, no. 3, pp. 48–53, May 2001.

[17] M. Sharma, D. Katabi, R. Pan, and P. Prabhakar, “A general multiplexed
ECN channel and its use for wireless loss notification,” in IEEE
Globecom, 2004.

[18] M. Adler, J. yi Cai, J. K. Shapiro, and D. Towsley, “Estimation of con-
gestion price using probabilistic packet marking,” in IEEE INFOCOM,
2003.

[19] R. W. Thommes and M. J. Coates, “Deterministic packet marking for
time-varying congestion price estimation,” IEEE/ACM Trans. Netw.,
vol. 14, no. 3, pp. 592–602, June 2006.

[20] L. L. H. Andrew, S. V. Hanly, S. Chan, and T. Cui, “Adaptive determinis-
tic packet marking,” IEEE Comm. Letters, vol. 10, no. 11, pp. 790–792,
Nov. 2006.

[21] L. L. H. Andrew and S. V. Hanly, “The estimation error of adaptive
deterministic packet marking,” in Proc. Allerton Conf. Commun. Contr.
Comput., 2006.

[22] H.-K. Ryu and S. Chong, “Deterministic packet marking for max-min
flow control,” IEEE Comm. Letters, vol. 9, no. 9, pp. 856–858, Sep
2005.

[23] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgement options,” IETF, Tech. Rep. RFC2018, 1996.

[24] N. Vasic, S. Kuntimaddi, and D. Kostic, “One bit is enough: a frame-
work for deploying explicit feedback congestion control protocols,” in
COMSNETS, 2009.

[25] X. Li and H. Yousefi’zadeh, “MPCP: multi packet congestion-control
protocol,” SIGCOMM CCR, vol. 39, no. 5, pp. 5–11, 2009.

[26] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive
virtual queue (AVQ) algorithm for active queue management,” in ACM
SIGCOMM, Aug 2001.

[27] X. D. Wei, “Microscopic behavior of internet congestion control,”
Dissertation (Ph.D.), California Institute of Technology, 2007.

[28] V. Paxson, “End-to-end internet packet dynamics,” in ACM SIGCOMM,
1997.

[29] J. A. Jasleen, J. Aikat, J. Kaur, F. Donelson, and S. K. Jeffay, “Variability
in tcp round-trip times,” in IMC, 2003.

[30] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of TCP-
like congestion control: Asymptotic results,” IEEE/ACM Trans. Netw.,
vol. 14, pp. 616–629, 2006.

[31] W.-T. Tan and A. Zakhor, “Real-time internet video using error resilient
scalable compression and TCP-friendly transport protocol,” in IEEE
Trans. on Multimedia, Jun 1999.

[32] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and X. Zhang,
“Delving into internet streaming media delivery: a quality and resource
utilization perspective,” in IMC ’06: Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement. New York, NY, USA:
ACM, 2006, pp. 217–230.

[33] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks,” ACM Trans. Comput. Syst.,
vol. 8, pp. 158–181, May 1990.

[34] M. Corless and R. Shorten, “Deterministic and stochastic convergence
properties of aimd algorithms with nonlinear back-off functions,” Auto-
matica, 2011.



[35] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot, “The role of pasta
in network measurement,” IEEE/ACM Trans. Netw., vol. 17, no. 4, pp.
1340–1353, Aug. 2009.

[36] S. Ha and I. Rhee, “Hybrid slow start for high-bandwidth and long-
distance networks,” in PFLDnet, 2008.

[37] S. H. Low, L. L. H. Andrew, and B. P. Wydrowski, “Understanding
XCP: Equilibrium and fairness,” in IEEE INFOCOM, 2005.

[38] X. Li and H. Yousefi’zadeh, “DCP-EW: Distributed congestion-control
protocol for encrypted wireless networks,” in IEEE WCNC, 2010.

[39] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe, “Open research
issues in internet congestion control,” in RFC 6077, Feb 2011.

[40] M. Suchara, L. L. H. Andrew, R. Witt, K. Jacobsson, B. P. Wydrowski,
and S. H. Low, “Implementation of provably stable maxnet,” in Proc.
Broadnets, 2008.

[41] R. Fonseca, G. M. Porter, R. H. Katz, S. Shenker, and I. Stoica, “IP
options are not an option,” UC Berkeley, Tech. Rep., December 2005.

[42] I. A. Qazi, L. L. H. Andrew, and T. Znati, “Incremental deployment of
new ECN-compatible congestion control,” in PFLDNeT, 2009.

[43] ——, “Congestion control using efficient explicit feedback,” in IEEE
INFOCOM, 2009.

APPENDIX

Lemma 1: For any 0 ≤ a ≤ b ≤ 1, any integer N , real
number d and collection of real numbers yn,

ad ≥ 1

N

N∑
n=1

ayn implies bd ≥ 1

N

N∑
n=1

byn .

Proof: Since ax is convex in x, for all k ≥ 1 and all x,
we have ax/k + a0(k − 1)/k ≥ ax/k, whence

1

k

N∑
n=1

(ayn(i)−d − 1) ≥
N∑

n=1

(a(yn(i)−d)/k − 1).

Substituting k = log(a)/ log(b) ≥ 1 gives that
N∑

n=1

(ayn(i)−d−1) ≤ 0 implies
N∑

n=1

(byn(i)−d−1) ≤ 0

from which the result follows.
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