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A B S T R A C T

Lithium-ion batteries are a key storage technology for electric vehicles and renewable energy applications.
However, the complex degrading behaviour of batteries impacts their capacity and lifetime. Thus, battery
capacity loss prediction is crucial for ensuring the longevity, safety, and reliable operation of the battery.
This research proposes a smart feature selection (SFS) strategy-based machine learning framework for battery
calendar and cyclic loss prediction. The presented methodology selects input parameters from the battery data
of the current time step as well as the previous time step which are then utilized for model training and
testing. Results demonstrate that the proposed SFS method in combination with the ML algorithms enhances
the prediction accuracy and reduces the mean absolute error for all the machine learning algorithms applied
in this study. The proposed SFS method is capable of excavating the useful features, therefore offering good
generalization ability and accurate prediction results for capacity loss of the lithium-ion battery under real EV
usage conditions. Furthermore, the results also depict that the performance accuracy of ML methods for battery
calendar and cyclic loss prediction improves when combined with the SFS method. Greater improvement in
prediction accuracy of battery capacity loss is observed for Gaussian Process Regression (GPR), random forest
(RF), and XGBoost methods when applied in combination with the proposed SFS. This is the first-known
feature selection-based ML application that is utilized to independently perform battery calendar and cyclic
loss prognosis.
1. Introduction

The transition of personal transportation from internal combustion
engine (ICE) vehicles to electric vehicles (EVs) is a vital step in achiev-
ing lower carbon emissions from the transportation sector [1]. EVs and
renewable energy systems are widely promoted as clean alternatives
to conventional vehicles and power generation and as promising so-
lutions to effectively reduce GHG emissions and other environmental
problems [2]. The rapid development of the EV and renewable en-
ergy industry as a clean alternative to fossil-fuel-based vehicles and
power generation sources has increased the demand for energy storage
technologies [3]. Among the available energy storage technologies,
lithium-ion (Li-ion) batteries have detached as one of the solutions,
which can meet the requirements imposed by both power grids and
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transportation sectors [4,5]. In recent years, a significant interest in
battery-related applications has arisen globally due to reducing fuel
consumption, mitigating dependence on imported oil, and decreasing
greenhouse gas emissions [6].

Over the last few decades, battery technology has made significant
progress in the area of energy storage and plays a key role in EVs and
renewable energy systems [7]. The advancements in Li-ion batteries
(LIBs) have attracted considerable attention due to their high energy
density, low maintenance, and optimal performance [8]. Meanwhile,
the reliability and safety assessment of LIBs has become an important
issue, in particular for future EV performance [9]. The energy provision
and consumption in LIB-related applications are highly dependent on
the health condition of batteries and one main limitation of LIBs resides
in battery ageing [10].
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LIBs are increasing in popularity, and there is an increased need
to study and model their capacity degradation. The classical problem
associated with the EV battery is that it undergoes a sophisticated
degradation process during EV operations [11]. Battery degradation
gradually happens over time under specific driving conditions and
affects EV power consumption due to battery ageing. LIBs undergo
operation periods that are substantially shorter than the idle intervals
and have different stresses of C-rate, depth-of-discharge (DOD), tem-
perature, and state-of-charge (SoC) [12,13]. LIBs undergo a process to
store and provide electrical energy which can last over different time
scales. This stationary and transient operation of the LIB causes calen-
dar and cyclic loss, respectively [14]. Battery degradation takes place
in every condition, but in different proportions as usage and external
conditions interact to provoke degradation. When a defined degrada-
tion level is reached, the battery reaches its end-of-life (EOL) and has
to be replaced. To address these difficulties, precise battery degradation
models capable of accurately predicting the performance and lifetime
of LIBs need to develop [15]. Battery lifetime models are used to predict
the long-term degradation behaviour of LIB performance metrics such
as capacity and internal resistance [16].

Generally, the phenomena of battery degradation can be classified
into two categories: the calendar loss, which refers to the irreversible
loss of battery capacity during storage, and the cyclic loss, which occurs
due to battery charge and discharge cycles [17]. Cyclic ageing is one
of the two main aspects used to model the battery degradation of a
LIB. Battery cyclic loss is mainly dictated by the number of battery
charging and discharging cycles and is defined as the loss in capacity
of the battery when it undergoes a charging or discharging process.
This is a direct consequence of the utilization mode, the temperature
conditions, and the current use of the battery. Consequently, many
factors are involved with cyclic ageing. In particular, the prediction
of cyclic loss requires a large variety of activities concentrated on the
analysis of cyclic loss behaviours of LIBs. In addition, calendar ageing
is the other critical aspect used for battery degradation modelling of
a LIB. However, unlike cyclic ageing, it comprises all ageing processes
that lead to battery degradation independent of the charge–discharge
cycle. Calendar prediction requires a substantial heterogeneous strategy
concentrated on the analysis of the calendar loss behaviour of LIBs.

A comprehensive understanding of the battery ageing mechanisms
and the ability to accurately predict the cyclic and calendar loss is
crucial for battery degradation modelling. An accurate capacity loss
prediction and battery degradation model allow for early detection of a
battery’s inadequate performance which facilitates timely maintenance
of battery systems. To accurately model battery degradation and predict
capacity loss, there is a need for effective techniques and methods to
predict cyclic and calendar loss. There are many factors that affect
the battery cyclic and calendar loss, which makes their prediction
convoluted. Therefore, it is extremely significant to select a suitable
prediction method and devise an accurate model. Among the data-
driven techniques, ML is becoming more popular for predicting battery
degradation trends due to the greater availability of battery data and
improved computing [18,19]. ML methods have recently gained an
appreciable research focus due to their finer data integrity, and have
shown considerable promise in battery lifetime studies. ML methods
can independently realize the relationship between battery capacity
loss and external parameters, and establish a prediction model of the
battery capacity loss. Various ML models are employed depending on
the data quality, inputs and outputs, test conditions, battery types, and
stated accuracy for battery calendar and cyclic loss prediction [20].

There are different processes linked to ML algorithms, which include
data pre-processing, feature selection, model training, and testing [21].
The improvement in the outcomes of these processes considerably
enhances the prediction capability. In particular, the accuracy of the
capacity loss prediction is greatly affected by the feature selection
of the battery data [22]. The model accuracy depends on the cor-
2

relation between the feature data and the output label greater the
correlation, the higher the accuracy of the cyclic and calendar loss
prediction model. Nevertheless, different ML-based methods which
typically include the aspects of data collection, data pre-processing,
feature selection, and training/testing have been thoroughly studied for
LIBs with their main objective to predict the battery capacity, health
indicators, and lifetime [23,24]. For example, Zhang et al. [25] used
a neural network (NN) to forecast battery lifetime using discharge
capacity, terminal voltage, discharge current, and internal resistance.
Yang et al. [26] utilized a gradient boosting regression tree (GBRT)
model to predict battery life by considering voltage, capacity, and
temperature characteristics. Li et al. [22] predicted the battery health
by selecting the features from incremental capacity curves and ap-
plying a Gaussian process regression (GPR) model. Shu et al. [27]
extracted characteristics from voltage curves and predicted battery
health using a support vector machine (SVM) model. Xu et al. [28]
proposed an online extreme ML method which is used to predict the
capacity of LIBs. Zhao et al. [29] used two features of equal charging
and discharging voltage difference time interval, and established their
relationship model with capacity using support vector regression to
evaluate online capacity. Ma et al. [30] applied NN that integrated
a convolutional neural network (CNN) and long short-term memory
(LSTM) to predict capacity loss. Guo et al. [31] selected 14 features,
including charging time, temperature and voltage curve slope, as the
feature vectors of battery degradation in the charging process of LIB,
and predicted remaining capacity by the relevance vector machine
(RVM). Li et al. [32] predicted the battery capacity using NN and
the battery charging time, discharging time, and discharge capacity as
characteristic features. Yang et al. [33] identified four features from
constant-current charging curves and predicted the battery SOH using
an enhanced GPR model. Wu et al. [34] applied a feed-forward neural
network (FFNN) to predict the current battery cycle number after
sampling the battery terminal voltages during the charging process.
In these studies, the capacity loss is modelled using different feature
selection techniques to predict battery health, and capacity to failure
threshold, which is then used to predict remaining useful life (RUL).
The literature discusses different methods for feature selection which
are used in combination with ML algorithms. The existing approaches
have shown satisfactory performance in predicting battery lifetime.
However, due to the limitations and variations in battery datasets,
the feature selection methods must be robust as extracting meaningful
information from the raw data is extremely necessary.

Our proposed study aims to contribute in terms of devising and
evaluating a smart feature selection (SFS) method which is utilized
in the ML algorithms to predict battery cyclic and calendar loss. The
study analyses the relationship between capacity loss and input fea-
tures using cyclic and calendar loss prediction and introduces the SFS
method that has enhanced the generalization ability and improved the
predictive performance of the ML algorithms to accurately predict total
capacity loss. A case study has been undertaken for the validation
of the framework, in which features are extracted based on battery
degradation data using the SFS method which selects features to reflect
the battery ageing dynamics from different perspectives. Multiple indi-
cators for battery capacity loss prediction are selected and various ML
techniques have been extensively applied to predict cyclic and calendar
loss. This leads to effectively predicting the battery capacity loss and
demonstrates the effectiveness of the proposed framework. To manage
feature irrelevancy and redundancy, SFS generates an optimal feature
subset. The selected feature subset is then fed to eight representative
ML algorithms involving linear regression, ridge regression, LASSO
regression, elastic net, GPR, SVM, random forest (RF), and XGBoost.
Comparative tests are carried out to demonstrate the efficiency of the
proposed framework. The results suggest that the proposed strategy
improves the predictive ability of ML models.
In summary, the contributions of this research work are as follows:
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Fig. 1. Architecture of the ML-based framework for battery capacity loss prediction.
• A smart feature selection framework is developed which is uti-
lized in combination with the ML algorithms to predict battery
cyclic and calendar loss. The framework analyses the relationship
between capacity loss and input features using the cyclic and
calendar loss prediction and introduces a smart feature selec-
tion method which enhanced the generalization ability of the
model and improved the predictive capability of ML algorithms
to accurately predict battery capacity loss. The framework has
been implemented with various types of ML models to verify the
proposed framework by testing on battery data.

• The developed SFS-based ML framework for battery capacity loss
prediction is evaluated and validated through a case study of a
ten-year U.S-based EV battery dataset which includes features to
reflect the battery ageing dynamics from different perspectives.
Multiple indicators for battery capacity loss prediction are ex-
tracted and various ML techniques have been extensively applied
to predict cyclic and calendar loss, which eventually leads to
effectively predicting the battery capacity loss and demonstrates
the effectiveness of the developed framework.

The paper is organized as follows: In Section 2, the methodology
of the proposed SFS method and eight ML models is introduced and
a comprehensive framework and application of SFS in combination
with ML models for battery capacity loss prediction are presented. In
Section 3, the description and specification of the experimental dataset
under consideration and its subsequent pre-processing are discussed. In
Section 4, the experimental results of battery cyclic and calendar pre-
diction are demonstrated. In Section 5, the conclusion of the research
study is presented.

2. Proposed methodology

2.1. Problem description

ML techniques are often used to train the complex non-linear de-
grading behaviour of LIBs based on historical data, and they do not
necessitate a thorough grasp of the battery’s internal activity [35]. The
commonly used ML methods include neural networks (NNs) [36], Sup-
port vector machines (SVMs) [37], Relevance vector machine (RVM)
[38], and Gaussian process regression (GPR) [22]. ML methods rely
on input feature selection in the battery data to predict the battery
cyclic and calendar loss. Typically, the problem lies in analysing the
3

relationship between the battery input features, and the battery cyclic
and calendar loss, which is critical to establishing an accurate capacity
loss prediction model. In other words, the performance of cyclic and
calendar loss prediction leads to accurate capacity loss prediction, and
it mainly depends on the choice of input feature extraction. Due to
the limited types of battery data, it is particularly important to extract
useful information from the battery data, which is related to battery
capacity loss. From a practical point of view, and while considering
the difficulty involved in extracting useful features, the efficacy of
battery capacity loss prediction is enhanced if the method to extract
the features is made efficient and robust. The overall framework of the
battery cyclic and calendar loss prediction and the subsequent battery
capacity loss prediction using the smart feature selection method is
illustrated in Fig. 1. The first step comprises the data pre-processing, in
which the raw battery data undergoes the process of data conversion
and data cleaning. The proposed smart feature selection method is then
integrated to extract the mapping relationship between the selected
features and the practical cyclic and calendar loss label and to predict
the cyclic and calendar loss trend of the battery. The next step involves
the processed data is split into training and testing parts for training and
testing of the model, respectively. Various ML methods are applied to
estimate prediction accuracy.

The main idea of the proposed research is to present a smart and
improved feature selection strategy for the extraction of the actual
characteristic features for battery cyclic and calendar loss prediction.
The accurate prediction of battery cyclic and calendar loss subse-
quently leads to predicting the battery capacity and battery degradation
modelling.

2.2. Smart feature selection (SFS) strategy

The smart feature selection (SFS) approach is proposed to accu-
rately predict the cyclic and calendar loss of LIBs which is evaluated
in combination with the ML algorithms. The conventional and most
commonly used feature selection approach selects the input features
of the current time set and applies ML methods considering these
features. On the contrary, the proposed SFS feature method comprises
the selection of all input features of the previous and the current time
step. In addition, the SFS method also takes into consideration the
previous time step output label as an input feature for model training,
as illustrated in Fig. 2, and Fig. 3. The ML algorithms are subsequently
applied considering those selected features.
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Fig. 2. SFS framework for battery cyclic loss feature selection.
Fig. 3. SFS framework for battery calendar loss feature selection.
In this study, SFS is applied as a feature selection technique for
different ML methods to predict the battery cyclic and calendar loss.
The SFS method selects the cyclic and calendar loss features of previous
and current time steps along with the previous time step’s estimated
cyclic loss and calendar loss output labels to devise the ML-based
prediction framework. The current time step′s cyclic loss and calendar
loss outputs are taken as an input feature to the ML model to predict
the future cyclic and calendar loss values. This can limit the effect of
the accumulated error, as the model is trained on both the features and
recursive inputs. Predictions are made over a period of time by recur-
sively feeding the model outputs from earlier time steps in as inputs for
later time steps. The SFS method evaluates the current and previous
4

time step features information to reflect the cyclic and calendar loss
prediction better and resolve the problem of error accumulation by
reducing the prediction error using the output labels of the previous
time step. The SFS method is a direct approach which aims to avoid
error accumulation by creating a separate model for each potential
time horizon. The SFS method is integrated to extract the mapping
relationship between the selected features and the cyclic/calendar loss,
which leads to the prediction of the battery capacity loss.

2.2.1. SFS for battery cyclic loss
The feature selection-based framework of the SFS method for bat-

tery cyclic loss is given in Fig. 2. It is mathematically represented as:
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𝐶𝑐𝑦𝑐(𝑡) = {(𝐶𝑌𝑡, 𝑡)|𝐶𝑌𝑡 ∈ R, 𝑡 ∈ N ∧ 𝑡 ≤ 𝑛} (1)

where 𝐶𝑌𝑡 is the cyclic loss output that represents the battery cyclic loss
value at the time index value 𝑡. Here 𝑡 is represented as 𝑡 = 1, 2,… , 𝑛
and 𝑛 represents the total number of time steps considered for the
evaluation. For every cyclic loss value, 𝐶𝑌𝑡, there are associated input
features which are represented as 𝑓𝑡𝑘. In the set notation form, the
feature set is represented as:

𝐹𝑐𝑦𝑐(𝑡𝑘) = {(𝑓𝑡𝑘, 𝑡, 𝑘)|𝑓𝑡𝑘 ∈ R𝑛×𝑚, 𝑡 ∈ N, 𝑘 ∈ N ∧ 𝑡 ≤ 𝑛, 𝑘 ≤ 𝑚} (2)

Similarly, for future cyclic loss value 𝐶𝑌𝑡+1, there are associated
input features which are represented as 𝑓(𝑡+1)𝑘. where 𝑘 shows the
feature index which is represented as 𝑘 = 1, 2,… , 𝑚 and 𝑚 denotes the
total number of input features for each cyclic loss output value. In the
set notation form, the input feature set corresponding to cyclic loss is
represented as:

𝐹𝑐𝑦𝑐(𝑡+1)𝑘 = {𝑓(𝑡+1)𝑘|𝑓(𝑡+1)𝑘 ∈ R𝑛×𝑚} (3)

The feature sets of cyclic loss values are characterized as 𝑓1𝑘 →

𝐶𝑌1, 𝑓2𝑘 → 𝐶𝑌2,… , 𝑓𝑛𝑘 → 𝐶𝑌𝑛. According to the SFS method, the input
feature set which is used for the prediction of the future time step’s
cyclic loss 𝐶𝑌𝑡+1, is denoted by 𝐹𝑐𝑦𝑐[𝑐(𝑡+1)] and is given as a function of
𝑓𝑡𝑘, 𝑓(𝑡+1)𝑘 and 𝐶𝑐𝑦𝑐(𝑡):

𝐹𝑐𝑦𝑐[𝐶𝑌 (𝑡+1)] = 𝑓 (𝑓𝑡𝑘, 𝑓(𝑡+1)𝑘, 𝐶𝑐𝑦𝑐(𝑡)) (4)

where 𝑓𝑡𝑘, and 𝑓(𝑡+1)𝑘 are the 𝑛 × 𝑚 input feature vector sets which
correspond to the present time step’s cyclic loss 𝐶𝑌𝑡, and future time
step’s cyclic loss 𝐶𝑌𝑡+1, respectively. The SFS-based input feature set
𝐹𝑐𝑦𝑐[𝐶𝑌 (𝑡+1)] is used to predict the future time step’s cyclic loss 𝐶𝑌𝑡+1.

2.2.2. SFS for battery calendar loss
The framework of the proposed feature selection method for battery

calendar loss is given in Fig. 3, in which 𝐶𝐿𝑡 is considered as the
calendar loss output that represents the battery calendar loss value at
the time index value 𝑡. Here 𝑡 is represented as 𝑡 = 1, 2,… , 𝑛 and 𝑛
epresents the total number of time steps considered for the evaluation.
t is mathematically represented as:

𝑐𝑎𝑙(𝑡) = {(𝐶𝐿𝑡, 𝑡)|𝐶𝐿𝑡 ∈ R, 𝑡 ∈ N ∧ 𝑡 ≤ 𝑛} (5)

For every calendar loss value, 𝐶𝐿𝑡, there are associated input fea-
ures which are represented as 𝑔𝑡𝑘. In the set notation form, the feature
et is represented as:

𝑡𝑘 = {(𝑔𝑡𝑘, 𝑡, 𝑘)|𝑔𝑡𝑘 ∈ R𝑛×𝑚, 𝑡 ∈ N, 𝑘 ∈ N ∧ 𝑡 ≤ 𝑛, 𝑘 ≤ 𝑚} (6)

For future calendar loss value 𝐶𝐿𝑡+1, there are associated input
eatures which are represented as 𝑔(𝑡+1)𝑘. In the set notation form, the

input feature set corresponding to calendar loss is represented as:

𝐺𝑐𝑎𝑙(𝑡+1)𝑘 = {𝑔(𝑡+1)𝑘|𝑔(𝑡+1)𝑘 ∈ R𝑛×𝑚} (7)

here 𝑘 shows the feature index which is represented as 𝑘 = 1, 2,… , 𝑚
nd 𝑚 denotes the total number of input features for each calendar loss
utput value. The feature sets of calendar loss values are characterized
s 𝑓1𝑘 → 𝐶𝐿1, 𝑓2𝑘 → 𝐶𝐿2,… , 𝑓𝑛𝑘 → 𝐶𝐿𝑛. According to the proposed
eature selection method, the input feature set used to predict the future
ime step’s calendar loss 𝐶𝐿𝑡+1, is denoted by 𝐺𝑐𝑎𝑙[𝐶(𝑡+1)] and is given
s a function of 𝑔𝑡𝑘, 𝑔(𝑡+1)𝑘 and 𝐶𝑐𝑎𝑙(𝑡):

𝑐𝑎𝑙[𝐶(𝑡+1)] = 𝑓 (𝑔𝑡𝑘, 𝑔(𝑡+1)𝑘, 𝐶𝑐𝑎𝑙(𝑡)) (8)

here 𝑓𝑡𝑘, and 𝑓(𝑡+1)𝑘 are the 𝑛 × 𝑚 input feature vector sets which
orresponds to the calendar loss 𝐶𝐿𝑡 and 𝐶𝐿𝑡+1, respectively. The
elected input feature set 𝐺𝑐𝑎𝑙[𝑐(𝑡+1)] for the prediction of the future time
tep’s calendar loss 𝐶𝐿𝑡+1 is represented as the function of 𝑓𝑡𝑘, 𝑓(𝑡+1)𝑘,
5

nd 𝐶𝑐𝑎𝑙(𝑡).
.3. Machine learning algorithms with SFS method

ML techniques can be used to train the complex non-linear degra-
ation behaviour of LIBs gathered from historical data, and they do
ot necessitate a thorough understanding of the battery’s internal ac-
ivity. ML employs a general fitting function with optimum parameters
ailored to predict battery capacity loss and degradation behaviour. In
his study, the SFS approach is used in combination with ML models
o build an accurate battery cyclic and calendar loss prediction model.
ight representative ML models, including the Linear Regression (𝐿𝑅),
idge Regression (𝑅𝑅), Lasso Regression (𝐿𝑆𝑅), Support Vector Re-
ression (𝑆𝑉 𝑅), Gaussian Process Regression (𝐺𝑃𝑅), Random Forest
𝑅𝐹 ), ElasticNet, and XGBoost are investigated for the performance
valuation of the SFS strategy, and their application to battery cyclic
nd calendar loss prediction. The structure and framework of these
ethods are given as follows:

.3.1. Linear regression (LR)
LR is a mathematical model that describes the relationship between

xplanatory feature variables and a target variable. LR aims to make
redictions about the target variable based on the known feature
ariables according to the following equation: [39]:

= 𝑟.𝑥 + 𝑐 (9)

here 𝑦 is the target variable, 𝑥 is the vector set of input feature vari-
bles, ℎ is the vector of fitting parameters, and 𝑐 is the y-intercept term.
o predict the battery capacity loss using SFS, the model considers 𝑚
umber of features of the current time step as well as 𝑚 number of
eatures of the previous time step, along with the previous step’s target
ariable, which makes a total of 2𝑚 + 1 input features for the model
valuation. Assuming that the total number of selected input features
𝑚+ 1, is represented by ℎ that is: ℎ = 2𝑚+ 1. The model of LR with ℎ
umber of feature variables, and 𝑛 observations is as follows:

𝑖+1 = 𝑓𝑜 + 𝐶𝑖 + 𝑐1𝑓𝑖1 + 𝑐2𝑓𝑖2⋯ + 𝑐𝑚𝑓𝑖𝑚 + 𝑐𝑚+1𝑓(𝑖+1)1

+ 𝑐𝑚+2𝑓(𝑖+1)2⋯ + 𝑐2𝑚𝑓(𝑖+1)𝑚 + 𝑒𝑖 (10)

here 𝑖 = 1, 2, . . .𝑛, 𝐶𝑖+1 is the target variable, 𝑓𝑜 is the y-intercept
erm, [𝑐1, 𝑐2, . . . , 𝑐2𝑚] are the regression coefficients, [𝑓𝑖1, 𝑓𝑖2,. . . , 𝑓(𝑖+1)1,
. .𝑓(𝑖+1)𝑚] are the input feature variables which are selected through
FS method. 𝑒𝑖 is the error term which is used to account for the
ifference between the actual value and the prediction. LR modelling
s fast and simple, but when the number of features is large and the
umber of samples is small, it decreases the generalization performance
f the model, resulting in the over-fitting [40].

.3.2. Lasso regression (LSR)
Regularization lowers overfitting by penalizing parameter size dur-

ng parameter prediction. To solve the over-fitting problem, a reg-
larization term of the 𝐿1 norm to the main function is added. If
he parameter penalization is the 𝐿1-norm, the parameters are not
nly converged towards zero but are set to zero and thus employed
s a feature selection approach. The method is known as the least
bsolute shrinkage and selection operator (LASSO) method. The LASSO
egression estimates the coefficients by minimizing the following [41]:

�̂�𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{
𝑛
∑

𝑖=1
(𝑦𝑖 −

ℎ
∑

𝑗=1
𝑥𝑖𝑗𝛽𝑗 )2 + 𝜆

ℎ
∑

𝑗=1
|𝛽𝑗 |} (11)

here 𝜆 is a penalization parameter that controls the degree of reg-
larization. 𝑦𝑖 represents the predicted cyclic or calendar loss target
ariable, [𝑥𝑖1, 𝑥𝑖2,. . . , 𝑥𝑖𝑗 , . . .𝑥𝑖ℎ] represents the SFS based feature set,
nd 𝛽 =(𝛽1, . . . , 𝛽ℎ) is a ℎ-dimensional row vector of parameters to be
dentified where ℎ = 2𝑚 + 1 represents the number of the SFS based
eatures. It can be seen from Eq. (11) that the goal is to find the 𝛽
hat minimizes 𝛽𝑙𝑎𝑠𝑠𝑜, so when the 𝜆 is large, the more the size of the
arameters is penalized, thereby, forcing more of the parameters to be
ero.
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2.3.3. Ridge regression
Ridge regression is the regularized form of LR, and adds a regular-

ization term of the 𝐿2 norm to the main function, as given in Eq. (12).
idge regression shrinks the regression coefficients by imposing a 𝐿2
enalty. The penalty is added to the least-squared algorithm, which is
qual to the square of the coefficient. The ridge coefficients minimize
he penalized residual sum of squares (SSE) as given in the following
quation [42,43]:

�̂�𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{
𝑛
∑

𝑖=1
(𝑦𝑖 −

ℎ
∑

𝑗=1
𝑥𝑖𝑗𝛽𝑗 )2 + 𝜆

ℎ
∑

𝑗=1
𝛽2𝑗 } (12)

here 𝜆 is a regularization parameter of the added penalty that controls
he shrinkage of regression coefficients. 𝑦𝑖 represents the predicted
attery capacity loss target variable, [𝑥𝑖1, 𝑥𝑖2,. . . , 𝑥𝑖𝑗 , . . .𝑥𝑖ℎ] represents
he SFS based feature set, and 𝛽 =(𝛽1, . . . , 𝛽ℎ) is a ℎ-dimensional row
ector of parameters to be identified. Ridge regression deliberately
ntroduces bias into the prediction of 𝛽 to reduce the variability in the
attery cyclic and calendar loss prediction.

.3.4. Elastic-Net regression
Elastic-Net regression is a regularized LR model that integrates

oth 𝐿1-norm and 𝐿2-norm regularization, known as Lasso and Ridge
egression, respectively [44]. The elastic net takes the following form:

�̂�𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{
𝑛
∑

𝑖=1
(𝑦𝑖 −

ℎ
∑

𝑗=1
𝑥𝑖𝑗𝛽𝑗 )2 + 𝜆(𝛼

ℎ
∑

𝑗=1
|𝛽𝑗 | + (1 − 𝛼)

ℎ
∑

𝑗=1
|𝛽2𝑗 )} (13)

where the argmin function aims to find the value of 𝛽 that minimizes
the argument. The first term inside the square bracket is a form of
least squares, 𝑦𝑖 is an n-dimensional predicted battery cyclic/calendar
loss, [𝑥𝑖1, 𝑥𝑖2,. . . , 𝑥𝑖𝑗 , . . .𝑥𝑖ℎ] is an 𝑛 × ℎ matrix of features, and 𝛽
=(𝛽1, . . . , 𝛽ℎ), is an ℎ ×1 vector of model coefficients. The second term
is the regularization term, which contains two non-negative hyper-
parameters 𝜆, and 𝑎𝑙𝑝ℎ𝑎, of the Elastic-Net model. 𝜆 is a regularization
parameter, and 𝛼 is a scalar between 0 to 1, which regulates the relative
importance of the L1 and L2 norm penalties. For LASSO regression,
specific feature coefficients are set to zero, whereas ridge regression
shrinks feature weights closer to zero. For a value of 𝛼 between 0 and
1, the elastic net combines both selection and shrinkage.

2.3.5. Gaussian process regression (GPR)
GPR is an effective technique for dealing with complicated battery

degradation modelling problems due to its non-parametric nature,
which allows for greater ability in capturing complex nonlinear rela-
tionships and quantifying the uncertainty in predictions [10]. GPR can
predict the battery cyclic and calendar loss by using an appropriate
combination of Gaussian processes (𝐺𝑃 ) to model their behaviour,
which is denoted as:

𝑓 (𝑥) ∼ 𝑁(𝑚(𝑥), 𝑘(𝑥𝑖, 𝑥𝑗 )) (14)

where 𝑚(𝑥) and 𝑘(𝑥𝑖, 𝑥𝑗 ) are the mean and covariance functions respec-
tively, denoted by:

𝑚(𝑥) = 𝐸(𝑓 (𝑥)) (15)

𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝐸[(𝑓 (𝑥𝑖) − 𝑚(𝑥𝑖))(𝑓 (𝑥𝑗 ) − 𝑚(𝑥𝑗 ))] (16)

The GP 𝑓 (𝑥) is derived by extending the multivariate Gaussian
distribution to infinite dimensions and combining the mean function
𝑚(𝑥) and the covariance function 𝑘(𝑥𝑖, 𝑥𝑗). Because the GP is flexible
enough to model the genuine mean, the mean function is commonly
defined as 𝑚(𝑥) = 0. The most common choice of co-variance function
is the squared exponential kernel which is given as follows [45]:

𝑘𝑖𝑗 = 𝜃2𝑓 𝑒𝑥𝑝

(

− 1
2
‖𝑥𝑖 − 𝑥𝑗‖2

)

(17)
6

2𝜃𝑙
where the covariance function parameters 𝜃2𝑓 and 𝜃2𝑙 , are two hyper-
parameters to be tuned in the GPR, which control the y-scaling and
x-scaling, respectively [33]. The GPR method delivers the training
probability distribution of possible battery cyclic and calendar loss
prediction, which is expressed through the following function [46]:

𝑦 ∼ 𝑁(0, 𝐾(𝑥𝑖, 𝑥𝑗 ) + 𝜃2𝑛𝐼𝑛) (18)

where 𝑦 is a vector of predicted battery cyclic and calendar losses,
𝑥 denotes the input features, 𝐾(𝑥𝑖, 𝑥𝑗 ) = (𝑘𝑖𝑗 )𝑛×𝑛 is an n-dimensional
symmetric positive definite matrix, 𝐼𝑛 is an n-dimensional unit matrix,
and 𝜃2𝑛𝐼𝑛 is the noise covariance matrix. GPR is further used for the
prediction of testing samples by computing the posterior distribution of
𝑦 through Bayesian theory. The mean value of the posterior distribution
of 𝑦 is the predicted battery cyclic and calendar loss.

2.3.6. Support vector regression (SVR)
Battery health and capacity loss prediction problems are primarily

classified as regression problems, and when support vector machine
(𝑆𝑉𝑀) is used for regression tasks such as battery cyclic and calendar
loss prediction, it is referred to as support vector regression (SVR). SVR
is suitable for prediction tasks because of its ability to describe the
nonlinear correlation of input and output data. Kernels are commonly
employed in SVM to aid in the evaluation of nonlinear issues with low
feature space by changing them into linear problems with high feature
space as formulated in Eqs. (19), and (20) [47].

𝑦 = 𝜔𝑛𝜙(𝑥) + 𝑏 (19)

𝑦 =
𝑁
∑

𝑛=1
𝜔𝑛𝐾(𝑥𝑖, 𝑥𝑗 ) + 𝜀 (20)

where 𝑦 is the predicted battery cyclic and calendar loss, and 𝜔𝑛 are
the weights of the model connecting feature space to output. 𝑥, 𝑏,
nd 𝐾(𝑥𝑖, 𝑥𝑗 ) denote input features, intercept, and kernel function,
espectively. The purpose of SVR is to develop a 𝑒𝑝𝑠𝑖𝑙𝑜𝑛-insensitive
rror function in which the maximum deviation of predicted battery
yclic and calendar loss 𝑦 in the training data is less than a preset
hreshold 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 while maintaining the function’s smoothness to the
reatest extent possible.

.3.7. Random forest regression
Random forest (RF) regression is an ensemble learning method that

ntegrates and averages decisions from numerous decision tree (DT)
ultiple decision trees (DT) models [48]. The RF training approach

or battery cyclic and calendar loss prediction is to build 𝑁 distinct
ecision trees, with each tree in RF being developed with a randomized
ubset of predictors. With the addition of such randomness, RF can
xpand the diversity of trees and capture more patterns in the data.
F regression can be expressed as follows [49]:

(𝑥) = 1
𝑁𝑡𝑟𝑒𝑒

𝑁𝑡𝑟𝑒𝑒
∑

𝑖=1
𝑓𝑖(𝑥) (21)

where 𝑌 (𝑥) is the RF model, 𝑁𝑡𝑟𝑒𝑒 is the number of decision trees, and
𝑓𝑖(𝑥) is the 𝑖𝑡ℎ DT model. 𝑓𝑖(𝑥) is built by randomly sampling a training
data subset for each decision tree. The battery cyclic and calendar loss
is predicted using RF by averaging the predictions of 𝑁𝑡𝑟𝑒𝑒 trees in
the forest. The predicted accuracy can be increased by averaging the
multiple DT models on the appropriate sub-samples of the dataset.

2.3.8. Extreme gradient boosting regression (XGBoost)
Extreme gradient boosting (XGBoost) is a tree-based ensemble model

that uses the boosting statistical approach. It is an implementation of
gradient-boosted decision trees designed for speed and performance
and is known for its excellent performance [50]. XGBoost generates a
tree by combining split characteristics and aggregating multiple ‘weak’

trees to form a single ‘strong’ tree with greater stability. During the
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XGBoost training process, a new simple tree is built in each step
to compensate for prior simple trees’ prediction residuals, therefore
minimizing the loss function [51]. In addition, the prediction result of
each tree is reduced by a learning rate factor to prevent over-fitting.
The XGBoost algorithm uses advanced regularization techniques to
suppress weights, prevent over-fitting, and enhance its performance in
real-world scenarios. XGBoost aggregates the results of each decision
tree along the way to calculate the final result. Finally, the cyclic
and calendar loss output of the XGBoost is formed by aggregating
predictions from 𝑡 base trees using a weighted sum. It is clear that the
rror minimization performance of XGBoost is high enough and even
ith a little amount of data, the algorithm predicts with high accuracy.

.4. Performance evaluation

The prediction accuracy of the aforementioned ML algorithms with
he SFS technique can be evaluated by comparing the actual cyclic and
alendar loss values from the data values with the expected ones. Mean
bsolute error (𝑀𝐴𝐸) IS the metric applied in this work for evaluating
he quality of ML methods with SFS method-based predictions. MAE
verages the absolute differences between the tested and predicted
alues and is defined by Eq. (22). All the errors have the same weight
n MAE, and it is evident that the smaller the MAE values, the more
ccurate the prediction result.

𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (22)

where 𝑛 represents the number of observations, 𝑦𝑖 represents the real
yclic and calendar loss values and 𝑦𝑖 represents the predicted cyclic
nd calendar loss values.

. Experimental data and analysis

.1. Dataset description

In this study, a real-world dataset related to the lithium–manganese
xide (LMO) graphite-based EV battery and its battery usage has been
onsidered and investigated [6]. LMO- graphite battery is extensively
sed in EVs such as the Nissan Leaf and the Chevrolet Volt. In the
ataset under consideration, an EV battery pack which includes 192
ells with an initial capacity of 24.15 kWh is considered and the aver-
ge voltage of each battery cell is 3.7 V, operating between 3.4 V and
.1 V. The dataset consists of ten years of EV battery degradation data
or the LMO–graphite battery, incorporating both cycle and calendar
oss of an EV battery in each U.S. state. The dataset comprises param-
ters that are related to EV battery usage and capacity degradation in
ach U.S. state under different driving patterns and temperatures. For
he current study, the data of five U.S. states which includes California
CA), Arizona (AZ), Alaska (AL), Arkansas (AR), and Alabama (AL) is
onsidered for evaluation from the dataset under consideration. The
ataset contains the battery cyclic loss and calendar loss percentage
f the EV under the average driving conditions for each of the five
.S. states of ten years as illustrated in Figs. 4 and 5. The dataset
lso includes a monthly–hourly timescale of ambient temperature and
eparated travel demands for local and highway driving conditions. In
ddition, the driving factors in the dataset consist of the annual charg-
ng/discharging cycle number, which is dependent on the yearly travel
emand and the driving range of the EV, variations in discharging rates
elative to the power outputs required from the battery pack under
ifferent driving speeds of the EV, and the varying temperatures to
hich the battery is exposed all year round.

In order to precisely calculate the battery capacity loss in each state
f the US, a comprehensive battery capacity loss model is used. The
ycling capacity loss takes place during the EV charge–discharge cycles,
hich can be calculated by the following equation:

𝐿𝑐𝑦𝑐 =
∑𝐶
𝑚−1 𝐼(𝑡𝑚 − 𝑡𝑚+1) (23)
7

𝐼 × 𝑡1 s
where 𝐶 is the charge–discharge cycle numbers of EV battery required
in one year to meet the travel demand, 𝐼 is the average charging current
density, and 𝑡𝑚 is the time needed to get the EV battery fully charged
in 𝑚th cycle. The annual EV charge–discharge cycles are calculated
using the National Oceanic and Atmospheric Administration (𝑁𝑂𝐴𝐴)
data on the US monthly hourly local temperature distribution. It can
be calculated by the following equation [52]:

𝐶 =
12
∑

𝑛=1

24
∑

ℎ=1
𝐶𝑛,ℎ (24)

where 𝐶𝑛,ℎ is state-level monthly hourly EV charge–discharge cycles,
which is given as:

𝐶𝑛,ℎ =
𝐷𝑛,ℎ

𝑅(𝑇 )
(25)

𝑅(𝑇 ) is the temperature-dependent EV driving range, which repre-
sents different load conditions needed by EV sub-systems and vehicle
internal losses, 𝑇 is the monthly hourly temperature, and 𝐷𝑛,ℎ is the
monthly hourly travel demand [53]. The driving range of EVs is largely
dependent on the EV driving conditions. In this study, the actual testing
data of Nissan Leaf is used [54]. The data is fitted to calculate the
EV driving range under various temperatures which correspond to
the actual driving range data of 2013 and 2014 Nissan Leaf models
collected by FleetCarma [55]. The driving range, 𝑅(𝑇 ) is given by
following equation:

𝑅(𝑇 ) = −1.182×10−4×𝑇 4+3.754×10−5×𝑇 3+0.087×𝑇 2+2.838×𝑇+111.542

(26)

The calendar capacity loss takes place during battery energy storage
and is mainly caused by battery self-discharge and side reactions. The
battery calendar capacity loss follows Arrhenius-form kinetics [56], and
an empirical expression based on the experimental data is formulated
as:

𝐶𝐿𝑐𝑎𝑙 = 14876 × 𝑒𝑥𝑝(
𝐸𝑎
𝑅𝑇

)𝜓𝑑 (𝑡ℎ)0.5 (27)

here 𝐶𝐿𝑐𝑎𝑙 is the percentage of calendar capacity loss, 𝐸𝑎 is the
ctivation energy i.e. 𝐸𝑎= 24.5kJ, 𝑅 is the gas constant, 𝜓𝑑 is the time
djustment function, 𝑡ℎ stands for hour.

.2. Data pre-processing and feature selection

The data under consideration has been pre-processed by converting,
ormalizing, and combining the selection of feature values of previous
nd current time intervals, which corresponds to each target value of
attery cyclic and calendar loss value. The data has been processed
or datasets given a time length of ten years. The SFS method extracts
yclic and calendar loss indicators from the dataset. Yearly features
ith one value of each feature per year are selected. The mean of the

espective feature value fills in missing values. Based on the quantita-
ive correlation analysis, cyclic and calendar loss indicators that have a
trong relationship with the practical battery cyclic and calendar loss,
espectively, are adopted as the feature inputs to the model.

The features considered for the study include local and highway
istance travelled, charging and discharging efficiency, internal resis-
ance, energy consumption, temperature, and cyclic/calendar loss. Each
f these features has a significant impact on battery performance and
egradation, and the inclusion of these features improves the accuracy
f battery degradation prediction. For instance, the local and highway
istance travelled feature provides information about battery usage pat-
erns, which is critical to predicting battery degradation. The charging
nd discharging efficiency feature is essential in assessing the battery’s
ealth, as it indicates the battery’s ability to convert stored energy into
sable energy. The internal resistance feature is an important indicator
f battery health and degradation, as it can be used to estimate the

tate of health of the battery. The temperature feature is crucial to
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Fig. 4. EV Battery calendar loss percentage of five U.S states, California (CA), Arizona (AZ), Alaska (AL), Arkansas (AR), and Alabama (AL).
Fig. 5. EV Battery cyclic loss percentage of five U.S states, California (CA), Arizona (AZ), Alaska (AL), Arkansas (AR), and Alabama (AL).
predicting battery degradation, as temperature fluctuations can have
a significant impact on battery performance and lifespan. Overall, the
selected features represent the most relevant and informative data
points for accurately predicting battery degradation in LIBs used in EVs.

Based on the proposed SFS method, a full set of 33 feature param-
eters is generated for the battery cyclic and calendar loss prediction
which includes the previous time interval’s cyclic and calendar loss and
all the input features of the previous and current time interval. The 33
8

features are classified according to their extraction sources and tech-
niques to reflect the battery cyclic and calendar ageing dynamics from
different perspectives as listed in Table 1. The problem under study
is a small-sample-size application with a total experimental dataset of
only a few battery samples. Excessive features may cause prediction
models to overfit. Furthermore, some of the retrieved features may be
redundant, resulting in poor model performance. Given this case, SFS
must be applied to the entire feature collection to generate an optimal
feature subset selection. All these input features are used to predict the
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Table 1
SFS based features for battery cyclic and calendar loss prediction.

Feature type No. Feature description

Distance

F1 Local distance travelled in previous time step
F2 Local distance travelled in current time step
F3 Highway distance travelled in previous time step
F4 Highway distance travelled in current time step
F5 Total distance travelled annually in previous year
F6 Total distance travelled annually in current year

Charging

F7 Internal resistance while charging for previous time step
F8 Internal resistance while charging for current time step
F9 Charging efficiency for previous time step
F10 Charging efficiency for current time step

Discharging

F11 Internal resistance while discharging for previous time step
F12 Internal resistance while discharging for current time step
F13 Discharging efficiency for previous time step
F14 Discharging efficiency for current time step

Energy consumption

F15 Energy Consumption per charge for previous time step
F16 Energy Consumption per charge for previous time step
F17 Energy Consumption considering per travel demand for previous time step
F18 Energy Consumption considering per travel demand for current time step
F19 Energy Consumption considering battery degradation for previous time step
F20 Energy Consumption considering battery degradation for current time step

Temperature F21–F32 Average monthly temperature for month 1 to 12
Cyclic/Calendar loss F33 Cyclic/Calendar loss for previous time step
4
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Table 2
MAE comparison of the ML methods using the conventional and proposed
feature selection for cyclic loss.

ML MAE Percentage

model Conventional
feature selection

SFS improvement
(%)

Linear Re-
gression

0.029 0.023 20.68%

Ridge Re-
gression

0.044 0.038 13.63%

Lasso Re-
gression

0.213 0.193 9.38%

SVR 0.035 0.022 37.14%
GPR 0.027 0.014 48.14%
RF 0.018 0.010 44.44%
ElasticNet 0.213 0.154 27.69%
XGBoost 0.023 0.011 52.17%

Table 3
MAE Comparison of the ML methods using the conventional and proposed
feature selection for calendar loss.

ML MAE Percentage

model Conventional
feature selection

SFS improvement
(%)

Linear Re-
gression

0.059 0.027 54.23%

Ridge Re-
gression

0.054 0.028 48.14%

Lasso Re-
gression

0.239 0.073 69.45%

SVR 0.072 0.048 33.33%
GPR 0.081 0.036 55.55%
RF 0.031 0.016 48.38%
ElasticNet 0.201 0.186 7.46%
XGBoost 0.029 0.008 72.41%

current year’s cyclic and calendar loss which is accounted for as an
output label.

Each feature mentioned in Table 1 has a mechanistic explanation of
its impact on battery degradation, which is given as:

(a) F2, F3, F4, F5, and F6: Distance travelled is a critical factor that
can affect battery degradation. The amount of driving a battery
experiences can result in chemical changes within the battery
that can accelerate its degradation. Therefore, we consider the
9

c

distance travelled in the current and previous time steps to
account for the effect of distance on battery capacity loss [6].

(b) F7 to F14: Charging/Discharging related features, including in-
ternal resistance while charging and discharging can impact
battery degradation. The internal resistance of the battery while
charging and the efficiency of the charging process can lead to
increased heat generation, which can accelerate the chemical
changes within the battery that lead to capacity loss [57].

(c) F15, F16, F17, F18, F19, and F20: Energy consumption per
charge, energy consumption per travel demand, and energy con-
sumption considering battery degradation are all factors that can
impact battery degradation. The energy consumption of the bat-
tery can cause temperature changes that can affect the battery’s
chemical composition and accelerate its degradation [58].

(d) F21-F32: Temperature is a critical factor that can impact battery
degradation. By considering the average temperature, we can
better understand the impact of temperature changes on battery
capacity loss [59]

(e) F33: The cyclic and calendar loss from the previous time step is
also considered as a feature to account for the impact of previous
degradation on the current capacity loss [60]

. Results and discussions

The SFS method is applied to the dataset to obtain an optimal
eature set of 33 features which are selected based on 13 reference
easurements of the cyclic and calendar loss dataset. To evaluate the

ffectiveness and performance of the SFS method, the derived feature
ubset is used with the ML algorithms to predict the battery capacity
oss. The training and testing data are split into the ratio of 80% and
0%, respectively. The training model trains to predict the current
ear battery cyclic and calendar loss using the extracted features while
he testing process validates the performance of the battery cyclic and
alendar loss prediction model. The features obtained from the SFS
ethod are used for battery cyclic and calendar loss prediction with

he ML algorithms like Linear Regression (LR), Ridge Regression (RR),
asso Regression (LSR), Support Vector Regression (SVR), Gaussian
rocess Regression (GPR), Random Forest Regression (RF), ElasticNet
egression, XGBoost.

Table 2 tabulates the average MAE results of battery cyclic loss
or all of the ML methods applied to the testing data by applying the
FS method, while Table 3 demonstrates the average MAE of predicted

alendar loss for all the ML methods by applying the SFS method. To
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Fig. 6. SFS based ML battery cyclic loss prediction in the US states of (a) Alaska (b) Alabama (c) Arkansas (d) Arizona (e) California.
explore the impact of SFS on ML prediction models, the performance
of the SFS method is compared with the conventional feature selection
approach for battery cyclic loss as depicted in Table 2.

Fig. 6(a) to (e) illustrates the SFS-ML-based battery cyclic prediction
results in the U.S. states of Alaska, Alabama, Arkansas, Arizona, and
California, respectively. The prediction results of the SFS-based ML
framework are depicted and compared for the last two years of battery
10
cyclic loss data as the first eight years of battery data is designated
for training, while the last two years of EV battery cyclic loss data is
used for testing. The cyclic loss prediction results of the SFS-based ML
framework are highlighted as the shaded area in Fig. 6.

MAE evaluation results of ML algorithms for SFS and conventional
feature selection are shown in Fig. 7 while the percentage improvement
in the prediction accuracy of the battery cyclic loss with the utilization
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Fig. 7. Accuracy performance of ML models used with SFS method for predicting cyclic loss.
Fig. 8. Percentage improvement of the SFS method over conventional feature selection for battery cyclic loss prediction.
of the SFS method is represented in Fig. 8. It is observed that the
performance accuracy of ML methods has improved with the SFS ap-
proach, and the highest improvement percentage in prediction accuracy
is stated for XGBoost, and GPR which are 52.17%, and 48.14%, respec-
tively. In addition, by applying SFS, RF and SVR algorithms, there is
a respective performance improvement of 37.14% and 44.44% in the
prediction accuracy. RF and XGBoost methods using features selected
by the SFS method affords the best predictive performance for battery
cyclic loss prediction with the MAE of 0.010, and 0.011, respectively.
For battery cyclic loss prediction using conventional feature selection
and the SFS method, RF, XGBoost, SVR and GPR outperform the other
ML models as they show the lowest MAE. This may be due to the
11
fact that they are simpler than the other ML models and hence more
generalized to the small-sample-size problem. Furthermore, when all
the 33 features obtained using the SFS method are used as input to
the ML algorithms, prediction results depict an improvement which
demonstrates that the SFS method enhances the prediction accuracy
of each ML model.

Fig. 9(a) to (e) depicts the SFS-based ML battery calendar prediction
results in the U.S. states of Alaska, Alabama, Arkansas, Arizona, and
California, respectively. Similar to the battery cyclic prediction results,
the first eight years of battery data are used for training, while the
last two years of EV battery cyclic loss data are used for testing. The
calendar loss prediction results of the SFS-based ML framework are
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Fig. 9. SFS-ML based battery calendar loss prediction in the US states of (a) Alaska (b) Alabama (c) Arkansas (d) Arizona (e) California.
depicted and compared for the last two years of battery calendar loss
data which is highlighted as the shaded area in Fig. 9.

Table 3 tabulates the MAE of the prediction results of battery calen-
dar loss for the ML methods applied to the testing data by incorporating
the SFS method. To explore the impact of SFS on ML prediction models,
the performance of the SFS method is compared with the conventional
feature extraction approach in terms of accuracy and performance for
battery calendar loss prediction. It is observed that the XGBoost, and RF
outperform the other ML models for both conventional feature selection
12
and the proposed SFS method as they show the lower MAE of 0.008,
and 0.016 respectively.

XGBoost showed better accuracy than RF and GPR while predicting
the battery capacity loss with the SFS method. XGBoost is a sequential
model, which means that each subsequent tree is dependent on the
outcome of the last. XGBoost aggregates the results of each decision
tree along the way to calculate the final result and does not aggregate
the results at the end of the process. In addition, when features obtained
from the SFS method are taken as input to the ML algorithms an
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Fig. 10. Accuracy performance of ML models used with SFS method for predicting calendar loss.
improvement in the prediction accuracy is observed indicating that the
SFS enhance the predictive ability of each ML. Table 3 also depicts
that the ElasticNet algorithm showed the least improvement in the
prediction results through the SFS as the calendar loss output values
and corresponding input features selected through the SFS method
do not have a very high correlation, which compels the ElasticNet
algorithm to choose the entirety of input variables and does not shrink
the coefficients. The grouping effect does not take place effectively
in such cases as variables cannot be easily identified using the low
correlation.

The MAE evaluation results of ML algorithms for SFS and conven-
tional feature selection are compared and depicted in Fig. 10 while
the percentage improvement in the prediction accuracy of the battery
calendar loss with the utilization of the SFS method is represented in
Fig. 11. It is observed that the performance accuracy of ML methods for
battery calendar loss prediction has improved with the SFS approach,
and the greater improvement percentage in prediction accuracy is
stated for XGBoost, LASSO regression, GPR and linear regression which
is 72.41%, 69.45%, 55.55%, and 54.23%, respectively. In addition, by
applying SFS, RF and SVR algorithms have shown respective perfor-
mance improvements of 48.38% and 33.33% in prediction accuracy.
Using the SFS method, XGBoost and RF methods depict the best pre-
dictive performance for battery calendar loss prediction with the MAE
of 0.008, and 0.016, respectively. It is also observed that without taking
the past output label as the feature, the error is greater as compared to
when the past output label is taken as an input feature, which leads
to smaller accumulated errors over time. As shown in Tables 2 and
3, compared with the RF and XGBoost, the performance accuracy of
the SVR and the GPR is relatively low. Based on the overall results,
we can statistically conclude that the RF and XGBoost have the best
predictive performance in terms of both battery cyclic and calendar
loss prediction accuracy, as they have the lowest MAE. It is evident
that the performance accuracy of ML methods has improved with the
SFS approach.

5. Conclusion

Accurate prediction of the battery capacity degradation could effec-
tively enhance the safety and reliability of LIBs. ML draws a significant
13
Fig. 11. Percentage improvement of the proposed SFS method over conventional
feature selection for battery calendar loss prediction.

role in battery capacity loss prediction and degradation modelling.
It has the potential to be widely applied in future EVs. Based on
the utilization of the data pre-processing methods and ML algorithms,
this paper presents a smart feature selection (SFS) method to extract
characteristic input parameters for battery cyclic and calendar loss
prediction, which plays an important role in battery capacity loss and
degradation modelling. While devising a battery cyclic and calendar
loss prediction model, appropriate indicators are selected as model
inputs. The characteristic features for calendar and cyclic loss predic-
tion are comprehensively extracted based on the intensive utilization
of the SFS method on the battery datasets by coupling present and
historical features. ML algorithms are applied in combination with
the SFS method on the processed data to predict calendar and cyclic
loss using the extracted features. The model trains on the designated
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training data while the testing process validates the performance of the
prediction model. A case study is performed on a diverse and dynamic
EV dataset in the United States, where 33 features are extracted using
the proposed feature selection method. It is worth mentioning that the
features are extracted based on 13 reference measurements during the
cyclic and calendar loss process mentioned in the dataset. The method-
ology is assessed using eight widely ML algorithms for battery cyclic
and calendar loss prediction. The results depict that the proposed SFS
method has improved the prediction accuracy and reduced the MAE for
all the ML algorithms applied in this study. The highest improvement
in prediction accuracy for the calendar is shown for XGBoost, GPR, and
RF algorithm, which is 52.17%, 48.14%, and 44.44%, respectively. For
calendar loss prediction, a significant improvement of 72.41%, 48.38%,
and 33.33% is also depicted by XGBoost, GPR, and SVR algorithms
when applied in combination with the SFS methods. The results also
show that RF and XGBoost methods when applied with the proposed
SFS method, have shown a higher accuracy for the battery capacity loss
prediction. Our proposed study can be used as a reference for obtaining
battery capacity loss models in practical applications as the features are
obtained for a dynamic real-world EV dataset.
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