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Abstract—The share of energy consumption in the 

transportation sector is projected to increase at an annual 

average rate of 1.4% up to 2040. This is primarily due to a 

transition towards electric vehicles (EVs) from internal 

combustion engine- based modes of transportation. Batteries are 

the most crucial component in EVs, constituting a significant 

share of the price of the vehicle. With usage, batteries degrade, 

thereby, limiting their ability to store energy which adversely 

impacts the driving range offered by EVs. Therefore, the need is to 

study the deterioration of batteries in electric means of 

transportation. We have created data-driven models to monitor 

battery health, predict the deterioration in batteries and give 

insights to the EV owners to make better decisions. The dataset 

used in this study is published by Sandia National Labs (SNL). 

It is a result of experiments performed on NMC cells. We present 

a comparison of three models - multiple linear regression, support 

vector regression, and artificial neural network for battery health 

monitoring with mean average percentage error (MAPE) of 1.99, 

0.74, and 0.72 respectively. 

Keywords—Electric Vehicles, Battery degradation, Green Energy, 

State of Health, NMC cell, data-driven models, Artificial neural 

network (ANN). 

I. INTRODUCTION 

With increasing population and expanding economies 
around the globe, the energy consumption in transport sector 
is expected to increase rapidly. The US Energy Information 
Administration quotes that the transport sector consumes al- 
most 25% of the energy in the world [1]. This bulk usage of 
energy is primarily through internal combustion engines (ICEs), 
using gasoline as a fuel, which is linked to climatic adversities 
and severe health issues. Subsequently, we have electric cars 
whose sales have soared in 2020 and reached 3 million units, 
which is 40% more than the sales in 2019. It is expected that, 
by the year 2030 the number of electric cars on roads will be 
300 million which will account for almost 60% of all car sales  

[2]. This boost in sales of EVs will yield several advantages 
with the foremost being utilization of environment- friendly 
and renewable sources of energy such as solar and wind to 
cater the needs of transportation segment instead of 
emission-prone hydrocarbons. The operational cost of EVs 
is also quite low in comparison to ICE-based vehicles and 
this cost differential is expected to increase with rising fuel 
prices [3]. 

However, one advantage of ICE vehicles over EVs is 
convenient storage and reliable provisioning of gasoline. 
Fossil fuels are easier to store in a vehicle’s fuel tank while 
the energy storage in batteries of EVs is not only costly but 
also has a higher charging time compared with gasoline 
refueling and this storage capacity degrades over time [4]. 
The degradation is due to chemical changes in the 
battery chemistry and operating temperatures which requires 
a battery thermal management system [5], [6]. Batteries 
work as a result of an electro-chemical reaction which 
sends power to terminals. The chemical reaction slows down 
in cold weather. Batteries also deteriorate faster at higher 
charging or discharging rates but with non-linear trends. 
Additionally, the use of fast DC chargers accelerates the 
process of battery degradation [7]. As the battery 
deteriorates, the cells in the battery experience reduction in 
energy storage capacity. The capacity of the cells to store 
energy is called State of Health (SOH). It is a 
measurement of its health and performance as compared 
to a fresh battery. It is hugely affected by 
charge/discharge rate, number of cycles, and temperature. 
Generally, a battery is considered towards the end of its life if 
it is unable to conserve 80% of its total energy capacity [8]. It 
is very important to monitor and interpret the safe usage of 
batteries so that their life can be prolonged. 
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This study provides a comparison of various machine 
learning models to predict battery SOH using cycle index, 
temperature, and charge/discharge rate. The data is a collection 
of experiments performed on NMC based 18650 cells [9]. The 
upcoming section II explains an overview of previous work 
done while section III gives details of the methodologies used. 
The underlying experiments are present in section IV in the 
form of a case study followed by discussion of results in V. The 
paper concludes with a summary in section VI. 

II. LITERATURE    REVIEW 

Battery storage systems are crucial for all types of electric 
vehicles whether hybrid, plug-in hybrid, or all-electric ones. 
The most used batteries are lithium-ion based as they have high 
energy efficiency, good performance and low self-discharge 
[10]. Others are nickel-metal hydride, lead-acid and super- 
capacitors. These are also energy efficient but vary in terms 
of performance, life cycle, and ease of access. To prolong the 
lifetime of batteries, we study battery deterioration patterns and 
the factors that affect it. Xu et al. [11] assess the battery health 
loss of lithium-ion batteries due to their operating profiles. The 
proposed model is based on battery aging tests and basic 
theories of degradation profiles (like the Arrhenius relationship 
and SEI formation) which are tested in real-world scenarios of 
electric market. 

Safari et al. put forward detailed insight on the reduction of 
LFP cell performance during non-destructive electrochemical 
techniques [12]. The capacity retention impacts aging which 
is in turn affected by temperature, and this is measured in 
this paper where results show that capacity fade increases at 
higher temperatures. Another test was the impedance test which 
measures the ability to deliver the same capacity in a 
defined potential window irrespective of the C-rate used to 
cycle the cell. It was observed that cell impedance is not 
affected within a year of aging but reduces to 60% after a year. 
Under the same temperature, the cells which were under cycled 
lost more capacity and it was concluded that lithium was the 
main source of capacity fade. The same ECS journal published 
interesting research [13] on LiFePO4 cells where experiments 
on electrodes of the cell using X-Ray show reconstruction of 
redox reaction. Similar experiments were performed at low 
and high temperatures on similar cells for capacity recovery, 
electrochemical impedance, and capacity analysis in [14]. But 
another addition was that they disassembled the batteries in 
order to perform material analysis. It was concluded that 
lithium was yet again the reason for battery aging. 

Alan Millner, a renowned scientist in the domain of energy 
systems presents a new model [15] based on crack propagation 
for lithium-ion batteries degradation. Theoretically, lithium- ion 
batteries are modeled with respect to cycling and time via 
diverse procedures. These theories are then characterized to 
develop an equivalent circuit to predict characteristics for any 
temperature, charge/discharge rate, consumed cycles etc. It is 
concluded that battery life can be conserved for PHEV if the 
state of charge and deep cycles are maintained at <60% while 

the temperature is kept lower than 30 degrees. A unique 
inference technique to judge the ‘what-ifs’ of degradation 
modes is put forward in [16] where each electrode’s behavior is 
judged separately. In [17] the writers present a comprehensive 

approach for 18650 cells based on calendar and cycle aging 
tests for an aging model where capacity loss and 
resistance are measured. Fernandez et al. [18] present 
capacity fade and aging models for electric vehicles by 
performing tests on lithium-ion batteries. The model 
proposes battery degradation in terms of temperature and 
depth of discharge. 

Lyu and Gao [19] propose a model for state of health 
estimation based on repetitive experiments. The capacity 
degradation is defined as an increase in ohmic resistance 
of the battery and is called HI. The relationship between HI 
and capacity degradation is termed linear hence a linear state 
space model with an added Kalman filter is proposed which 
gives an average error of 2.12% under variable conditions. 
An estimation of SOC and SOH is proposed in [20] to 
identify parameters for lithium NMC battery of the first 
order RC model. The deterioration of this model is 
determined for different battery aging levels. The SOC and 
SOH results are judged by using a large dataset. Two 
simple theoretical models are proposed in [21] to estimate 
the state of health of lithium-ion batteries. These are the 
battery VO+ model and charge capacity model. Another 
unique idea is presented in [22] where the internal resistance 
in a vehicle is identified to monitor state of health which is 
done by getting signals for the vehicle during normal 
functioning. The internal resistance generates a degradation 
index which is validated using measured data. The results 
are promising with low effort and robust calculations. 

Moving a step ahead, Kaur et al. apply deep learning 
models [23] to estimate the capacity for lithium-ion 
batteries in EVs. It is concluded that long short-term memory 
(LSTM) performs best among feed-forward neural network 
(FNN), LSTM, and convolutional neural network (CNN) 
with an average RMSE of 0.0426 as compared to 0.0447 of 
FNN and 0.0527 of CNN. He et al. [4] propose another SOH 
estimation method using LSTM with Bayesian optimization 
with a maximum relative error of 0.2%. Preger et al. [24] 
present insights on 18650 NMC, NCA and LFP cells 
belonging to the same dataset to assess the effect of 
temperature, discharge current and depth of discharge which 
impact battery degradation. To this end, this paper presents 
novel research in the field of machine learning specifically 
on SNL data. The paper by Preger et al. only gives an 
analysis of the factors on battery degradation as compared to 
our paper which presents SOH estimation models with high 
accuracy. This research has been successful in achieving 
state-of-the-art accuracy by applying data refinement 
techniques, followed by data training using three different 
machine learning models. 

III. METHODOLOGY 

The deterioration of the health of lithium-ion batteries is 
predictable because it is affected by various external factors. 
When considering external factors, the impact of 
temperature and usage pattern impact the health of batteries 
[25]. The prediction of SOH of a battery using machine 
learning models is proposed in the following sections. We 
use three distinct models: multiple linear regression (MLR), 
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. 

support vector machine (SVM), and artificial neural network 
(ANN). 

A. Multiple Linear Regression (MLR) 

Using multiple variables to predict a numerical outcome 
depending on a linear model is called Multiple Linear 
Regression (MLR). The variable to be predicted is referred 
to as the dependent variable, and the variables to predict 
the value of dependent variables is known as independent 
or explanatory variables [26]. MLR is a basic model used to 
capture only linear relations between variables and will be used 
as a baseline model to judge the performance of the other 
two models. 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖
𝑛
𝑖=1 𝑋𝑖+ ∈    (1) 

In equation 见上方, Y is the response variable, 𝑋𝑖  is for 

predictors, n is the number of predictor variables, 𝛽  is the 
coefficient interpreted as the average effect on Y of one unit 
increase in X, holding all other predictors fixed. ∈ is the error 

term. 

B. Support Vector Regression (SVR) 

SVR is a supervised learning algorithm for predicting 
numerical values and is a variant of Support Vector Machine. 
Its basic concept is to find the best fit non-linear curve with 
minimal error. It works by locating a hyperplane in an N- 
dimensional space to distinguish between data points, where 
N is the number of features [27]. SVR requires the tweaking of 
gamma and cost hyperparameters, which regulate the model’s 
complexity. It allows non-linear modeling which helps the 
handling of complex data patterns. 

C. Artificial Neural Network (ANN) 

Lastly, ANN is used which is a computational learning 
algorithm, based on a network of functions to manipulate the 
data and translate it into desired output [28], [29]. ANN can 
have several hidden layers with various neurons in each layer.  
The number of layers, number of neurons, activation functions, 
and learning rates for each attribute are adjusted to obtain the 
best possible combination between overfitting and underfitting. 
Adding too many layers or neurons to create a complex model 
does not guarantee better results on unseen data [30]. Initially, 
each node in an ANN is assigned a numerical weight at random, 
which is then tweaked by backpropagation [31], [32]. 

D. Evaluation Method 

There are several metrics for evaluating the performance of 
such models. Mean Error (ME), Mean Absolute Error (MAE), 
and Mean Absolute Percentage Error (MAPE) are the most 
commonly used error measures. ME calculates the average 
difference between actual and predicted values. It is prone 
to negating overestimation and underestimation. As a result, it 
may produce a deceptive sign of improved model performance. 
MAE addresses this issue by taking the absolute value of 
estimations into consideration. However, it does not show the 
severity of that inaccuracy in relation to the actual value [33]. 
MAPE addresses the above-mentioned shortcomings and is 
thus viewed as a better metric for evaluation of the three models 
employed in this study. The formula for calculating MAPE is 
shown in equation below [34]. 

 𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝐴𝑡− 𝑃𝑡

𝐴𝑡
|𝑛

𝑡=1                              (2) 

where n is the number of test samples, A represents the 
actual value and P is the value predicted by the model. 

IV. CASE STUDY 

The data set used in this study is derived from results 
published by Sandia National Labs (SNL) in 
“Degradation of Commercial Lithium Cells as a Function of 
Chemistry and Cycling Conditions” [9]. The experiments 
were performed on NMC based 18650 Li-Ion cells that 
deteriorated to 80% of the original capacity. The whole aging 
tests examined the impact of temperature and discharge 
current on the battery health of these cells while the charge 
rate remained constant throughout the experiment. 

Several experiments were performed with 
charge/discharge rate and temperature as variables. 
Following factors are recorded in each experiment- 
minimum and maximum current, minimum and maximum 
voltage, maximum charge, discharge capacity, and energy 
against the total time consumed for each cycle. Charge 
energy is the dependent variable, and it is filtered for the 
maximum and minimum value at 80% SOH to focus on the 
first life [35] of the cells. The values are derived from the 
manufacturer data sheet [36]. Out of all the attributes 
presented in the SNL data set, the following are selected: 

• Charge Energy (measured in Watt Hours, Wh) 
• Cycle Index (number of cycles of charging) 
• Discharge Rate (measured in coulombs, C) 
• Temperature (measured in Celsius, °C) 

 
The histogram of the dependent variable i.e., charge 

energy is visualized by the bar plot in figure 1. The 
maximum energy that a cell can retain is 10.92 Wh. 
This figure shows that the charge energy during 
experiments is usually between 8.7 and 11Wh which is 
evident from the left skewness of the histogram. 
 

 
 

Fig. 1. Histogram of Charge Energy 

Figure 2 shows the distribution of charge energy 
relative to the three independent variables i.e., temperature, 
discharge rate, and cycle index. The charge energy for 
15 °C shows that it is relatively lower than the other two 
temperature variations recorded in the dataset. The boxplots 
for discharge rate however show a non-linear relation. As 
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the discharge rate increases the charge energy also increases, 
but there is a drop after 2 °C. 

 

 

Fig. 2. Charge Energy Distribution 

In figure 3 the decrease in charge energy with the increase in 
consumed cycles of a battery pack is shown. The trend, how- 
ever, is dependent on the temperature and is more prominent 
at lower temperatures. 

 
Fig. 3. Charge Energy Against Cycle Index 

The mathematical representation of MLR used is shown 
below. Here Charge Energy is the response variable, 𝛽𝑖  is the 

co-efficient for Temperature which can have 3 possible values 

depending on the temperature, while 𝛽𝑗  denotes the 

coefficient for Discharge Rate which can have 4 possible 

values. 𝛽3  is constant as Cycle Index is a numerical variable. 

𝐶ℎ𝑎𝑟𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 =  𝛽𝑜 +  𝛽𝑖  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 +  𝛽𝑗  𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑅𝑎𝑡𝑒

+  𝛽3 𝐶𝑦𝑐𝑙𝑒 𝐼𝑛𝑑𝑒𝑥                                               (3) 

Table I shows the values of β coefficients for their respective 
variables. A change of 1 unit in a particular variable result 
in a change of charge energy by the value denoted by the β 
coefficient. The β coefficient of temperature at 25◦C (1.52) 
denotes that if there is a 25◦C change in temperature, the charge 
energy would increase by 1.52Wh on average, whereas the 
intercept value represents that a fresh cell at 0◦C will have 

charge energy of 8.70 Wh. In figure 5, the prediction of 
trained data by MLR can be seen in the first scatter plot. 

 

TABLE I．GRADIENT  COEFFICIENTS  FOR MLR 

 

Coefficient Value 

β0 8.70 
Temperature 15◦C 0 
Temperature 25◦C 1.52 

Temperature 35◦C 1.66 
Discharge Rate 0.5C 4.60e−02 
Discharge Rate 1C 0 

Discharge Rate 2C 7.53e−02 
Discharge Rate 3C 7.06e−02 

Cycle Index −1.79e−03 

 
The second model adopted in this study is SVR which 

results in a 7-dimensional hyper-plane depending on 7 
features of the input data. The design model uses epsilon 
regression and radial basis kernel to decipher the non-
linearities of data. The cost and gamma values are 1 and 0.14 
respectively. Figure 5 shows the predicted values of trained 
data by SVR. 

The architecture of the ANN model used in this 
study is shown in figure 4. There are 3 hidden layers with 
2,3,2 neurons respectively to process the input data. The 
weights assigned to each neuron are also shown in figure 4, 
however, this is not significant information as the assigned 
weights are incomprehensible. For this reason, ANNs are 
treated as black box. 

Table II shows the performance of the three models 
using the three-error metrics discussed above. According to 
ME, MLR has the smallest value. However, MAPE shows 
that ANN outperforms both MLR and SVM. This is due 
to the ability of ANN to learn non-linear relationships 
between variables. 

 

 

Fig. 4. ANN Model. 
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Fig. 5. Actual Values vs Predicted Values for Train Data. 

Even though the performance of SVR is not as good as 
that of ANN, it does improve on MLR due to its non-linear 
nature. However, good performance on training data is not a 
rational way to judge the performance of a model. Hence the 
next section will discuss model prediction on test data which 
shows if the model is overfitting or underfitting on unseen 
data. 

TABLE II. ERROR METRICS  FOR  REGRESSION  MODELS  ON  TRAINED  DATA 

 
Error Parameter MLR SVR ANN 

ME -3.74e−14 -1.83e−3 2.60e−6 
MAE 0.18 0.06 0.06 

MAPE 1.93 0.70 0.68 

 

V. RESULTS & DISCUSSION 
Figure 6 shows the predicted values and the actual values 

for each model for test data. The scatter plots show that ANN 
has the most linear output in comparison to other two models. 
MLR deviates from linearity at about 8.5Wh on predicted 
values. However, ANN also shows low variation with respect 
to SVR. This superiority in performance is evident from the 
table III, which shows that MAPE for ANN is 0.72. This is 
less than MLR and SVM which have MAPE of 1.99 and 0.74 
respectively. It shows that ANN neither underfits nor overfits as 
MAPE for the test data is quite close to the train data. 

The models discussed in this paper can be further used to 

create helpful tools for EV drivers to better understand the 

deterioration of their vehicles’ battery as it is the most ex- 

pensive component. With better battery deterioration models, 

drivers can be more cautious of their driving as the models 

will be able to predict the battery deterioration depending on 

the external conditions and the discharge intensity by the 

driver’s driving pattern. Such models can be used for 

optimal battery utilization in electric vehicles. 

The models presented in this study are a starting point for 
future work. Several other factors such as voltage, current, 
and usage patterns need to be discussed to create more robust 

models. Other than machine learning, mathematical 
modeling can also be used to build sophisticated models. 

 

 
Fig. 6. Density Plot of Predicted Values for Test Data. 

TABLE III. ERROR  METRICS FOR  REGRESSION  MODELS 

 

Error Parameter MLR SVR ANN 

ME -9.22e−3 -2.49e−3 -7.85e−4 
MAE 0.18 0.07 0.0.07 

MAPE 1.99 0.74 0.72 

VI. CONCLUSION 

Using temperature, discharge rate, and cycle index, three 
models are designed to predict charge energy. These can be 
used to measure the deterioration of batteries in electric 
vehicles as the transportation sector is one of the highest 
energy consumers. The ANN model has superior 
performance on both train and test data which shows the 
need for a non-linear model and a complex architecture to 
understand the data. The prediction can be improved by 
more sophisticated modeling and better input parameters, 
such as usage behavior data. The models designed in this 
paper are based on experimental data. Real-life data can be 
collected to improve the utility of the trained models. 
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