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ABSTRACT Demand side management (DSM) programs are an integral part of the modern grid. Most
of these DSM programs are designed to work at household and hour level. The optimization problems in
these DSM programs are guided by the forecasted load. An error in the hour ahead load forecasting results
in a suboptimal solution entailing economic cost to both the utility and the customers. Predicting loads at
a fine granularity (e.g., households) is challenging due to a large number of (known or unknown) factors
affecting power consumption. At larger scales (e.g., clusters of consumers), since the inherent stochasticity
and fluctuations are averaged out, the problem becomes substantially easier. Many techniques have been
proposed to predict loads of clusters of consumers in various localities with great accuracy. Also, these
techniques generally utilize sociological and weather information and work better on data from a particular
locality. In this paper, a new technique called Past Vector Similarity (PVS) has been proposed to predict
electricity load one hour ahead at the level of an individual household. The proposed strategy is based on
load information only and does not require calendar, weather or any other attributes. In fact, the idea is to
extract the exact load patterns of individual households corresponding to their routine and socio-economic
values. Consequently, the technique makes use of the recent past vector and generate similar patterns for the
prediction of future load profiles. Furthermore, the ensemble of these similar loads is an efficient prediction
of electricity. PVS has just two parameters due to which it can be applied to the smaller dataset without
overfitting issue.Moreover, due to the parallel nature of PVS, it can be scaled for a large number of customers
without computation burden. The proposed PVS has been assessed empirically for two distinct datasets from
Australia and Sweden. The simulation results demonstrate that the PVS significantly outperforms other state-
of-the-art forecasting methods in terms of accuracy.

INDEX TERMS Short term load forecasting (STLF), household load forecasting, past vector similarity
(PVS), data transformation, hour ahead load forecasting, long short-term memory (LSTM), random forest
(RF).

NOMENCLATURE
ADF Augmented Dickey-Fuller test
AI Artificial Intelligence
AIC Akaike Information Criterion

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Ali Arefifar .

AMI Advanced Metering Infrastructure
ARIMA AutoRegressive Integrated Moving Average
CLSTM Cycle Long Short-Term Memory
CNN Convolution Neural Network
DBSCAN Density Based Spatial Clustering Of

Applications With Noise
DNN Deep Neural Network
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kNN k-Nearest Neighbours
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MRC Multi Resolution Clustering
MSE Mean Square Error
NN Neural Network
NRMSE Normalized Root Mean Square Error
PVS Past Vector Similarity
RBF Radial Basis Function
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SARIMA Seasonal AutoRegressive Integrated Moving

Average
STLF Short Term Load Forecasting
TDCNN Time Dependency Convolution Neural

Network
j Customer Index
T Hour Index
A Training Dataset
B Testing Dataset
d1 Length of Training Dataset
d2 Length of Testing Dataset
k Length of Past Vector in PVS
Lp pth Vector Norm
Linf Infinity Vector Norm
m Averaging Parameter of PVS
n1 Number of Customers in Dataset
n2 Number of Hours in Dataset
PjT Prediction of Tth Hour for jth Customer
q Data Transformation Parameter
R Set of Real Numbers
X Whole Dataset
Xtest jT Feature Vector of Tth Hour for jth Customer for

Testing Dataset
XtrainjT Feature Vector of Tth Hour for jth Customer for

Training Dataset
Ytest jT Label of Tth Hour for jth Customer for Testing

Dataset
YtrainjT Label of Tth Hour for jth Customer for Training

Dataset

I. INTRODUCTION
A fundamental task in power planning is matching electricity
supply with demand. Accurate demand forecasting is crucial
to ensure efficient management in the power sector. Both
overestimating or underestimating the demand entail huge
economic costs. A load forecast error of 1% translates to
several hundred thousand dollars per GWh [1].Long Term
Load Forecasting is needed for power system infrastructure
planning. However, operational decisions for smart grids have
to be made within a short time and require Short Term
Load Forecasting (STLF) of a few hours to days [2]. Most
of the renewable energy resources are highly variable and

intermittent in nature. Therefore, to effectively integrate these
resources in the grid, an hour ahead load forecasts and at finer
scales for one or a few households are required. Accurate
fine-scale load forecasts thus result in optimal resource allo-
cations and local energy generation, thereby reducing costs
associated with transmission and distribution [3], [4]. Short-
term load forecasting at household level is also pivotal for
design of demand side management programs (DSM) such
as demand response programs (DR) [5], peak shaving [6]–[8],
dynamic pricing [9], [10] and soft load-shedding [11], [12].
Most of these DSM programs are designed to work at each
hour. The optimization problems in these DSM programs are
guided by the data from household level hourly load forecast-
ing. An error in the hour ahead load forecasting results in a
suboptimal solution entailing economic cost to both the utility
and the customers.

There has been significant progress towards short-term
load forecasting using statistical and machine learning tech-
niques [13]. However, Reducing the error of load forecasting
at the household level is still an open problem [14]. The
household level forecast is also more challenging due to the
interplay of many different factors. Most of these factors are
unknown or very complex to quantify and evaluate such as
demographics of occupants and their daily routine [13]. There
is also inherent stochasticity in an individual load consump-
tion pattern. Since machine learning techniques depend upon
the information available due to this reason a lot of machine
learning techniques do not perform well on this problem.
Some studies use both past year’s load data and results of
sociological surveys [15], [16]. Such information, is not read-
ily available, thus limiting the applicability of the method
to a particular locality. Recently, deep learning techniques
are producing prominent results on this problem [17]–[19].
However, a major limitation of deep learning techniques is the
availability of a large amount of data to train the model. To
overcome these challenges some studies have used clustering
and household aggregation for short-term load forecast [20].
Aggregating the loads smooth out the inherent variability
as shown in Figure 1, which makes forecasting relatively
simpler [13], [21]. However, these methods do not work at
the finer spatial granularity of the household level.

In this study, we propose a novel approach for the hour
ahead electricity forecasting at a household level called Past
Vectors Similarity (PVS). PVS is based on two assumptions.
The first assumption is that the electricity load itself gives
information about user patterns such as the number and
demographics of occupants, their daily schedules, and socio-
economic data. This assumption is based on the observation
that a house with a different number of occupants and daily
routine has a different load pattern. Thus, the past load (past
vector) of an hour is an effective feature vector. The second
assumption states that if the past of a load is similar to another
load, then the future will also be similar. This assumption is
analogous to Markov property [22]. In this way, the feature
vector of every hour is created as a past vector. To predict
the load of an hour, its past vector is compared with all past
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FIGURE 1. (a) The hourly load of three randomly selected houses for a single day (Thursday 1st January 2004) in Sweden
Dataset. (b) Total combined hourly load of all customers for a single day (Thursday 1st January 2004).

vectors to evaluate similar vectors. Since these vectors are
similar to each other, they are representing a unique routine
of the customer. According to Markov property, the customer
routine in a future hour will also be similar. Thus the next hour
values of similar past vectors are a potential forecast of the
hourly household load. Averaging as an ensemble measure of
similar vectors is considered as the final forecast. The averag-
ing operation is important as it removes the stochastic nature
of daily routine and demographics, and gives a robust predic-
tion. A graphical example involving the averaging operation
of the proposed technique is shown in Figure 2. The grey lines
are representing similar past vectors, while the blue line is the
original vector. The blue dot is the hour ahead original load,
whereas the red dot is the ensemble average predicted load.

There are many advantages of our proposed PVS tech-
nique. PVS consists of two parameters, which assist in its
application to a relatively less amount of data without overfit-
ting. Other deep learning techniques, require a large amount
of data to learn [18]. PVS does not require weather, socio-
logical or other data and works with just load consumption
data. Due to the parallel nature of PVS, it can be scaled better
for large number of houses. The performance evaluation of
the proposed technique is carried out by using two widely
available benchmark datasets, which comprise of hourly con-
sumption data from households in Eskilstuna, Sweden [23]
and New South Wales, Australia [13]. Three error measures
mean absolute percentage error (MAPE), mean absolute error
(MAE), and root mean square error (RMSE) are used to
validate our proposed technique. The results demonstrate that
PVS substantially outperforms other techniques. To the best
of our knowledge, this technique has not been used earlier in
the literature for the prediction of load demand of individual
household customers.

The rest of the paper is organized in five different sections
as: The related work is presented in Section II. In Section III,
the methodology of the proposed PVS technique for the hour
ahead STLF at the household level is presented. Section IV

describes the datasets and experimental setup in detail.
Experimental results are reported in Section V followed by
the conclusion in Section VI.

II. RELATED WORK
The existing work in the domain of STLF can be divided into
three categories namely (i) STLF at system/subsystem level
in which aggregated load of all households at city/country
level is forecasted, (ii) STLF for the cluster of customers
in which customers are intelligently divided into clus-
ters/communities and load for those clusters is forecasted,
and (iii) STLF for individual customers in which load is
forecasted separately for each customer.

A. STLF AT SYSTEM/SUBSYSTEM LEVEL
Short term load forecasting at a system or subsystem level is
well explored in the literature. In [24], a radial basis function
(RBF) neural network (NN) is proposed for STLF for house-
holds, which are grouped based on location, nature, and size
of loads. In [25], k-nearest neighbors (KNN) based algorithm
is used to forecast day-ahead loads of groups of consumers.
Another framework using wavelet transform and Bayesian
neural network for STLF at the system level is proposed
in [26]. A time-series method using intra-day and intra-week
seasonal cycles is proposed in [27] for forecasting country
loads few minutes ahead. In [28], stochastic characteristics
of electric consumption in France are utilized to predict short
term aggregated load. A kernel-based support vector regres-
sion (SVR) combination model for the STLF at the system
level is proposed in [29]. Several authors proposed hybrid
methods involving data preprocessing along with effective
use of classification/regression algorithms for STLF at sys-
tem level [30], [31]. As we have explained earlier aggregation
causes the load to smooth out at system level Figure 1, making
forecasting easier. These methodologies are not applicable at
the household level due to the highly stochastic nature of the
household load.
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FIGURE 2. PVS example with past vectors, original and predicted load.

B. STLF FOR CLUSTER OF CUSTOMERS
A wide variety of methods utilize the increasingly available
AMI data from individual consumers to enhance STLF at the
system level. The general idea is to cluster similar consumers
into groups, to predict the total loads of each group, and
aggregate the predictions to obtain the total load forecast.
For cluster loads predictionmachine learning techniques such
as Random Forest (RF), Neural Networks (NN) and deep
learning are used. Clustering is accomplished based on sim-
ilarities in the load profiles (consumers’ AMI readings) [32]
and consumers demographic information [20]. Practice the-
ory of human behavior is incorporated for improved cluster-
ing [33], resulting in accuracy boost for day-ahead system
level load forecast. A deep neural network (DNN) based
model for STLF at the individual, as well as subsystem
level, is proposed in [34], which learns complicated relations
between weather variables, dates, and previous consump-
tions for individual customers. A hybrid approach consists of
convolutional neural network (CNN) and k-means clustering
algorithm is proposed in [35], which is used to forecast hourly
load of clusters of customers. In another study, two deep
learningmethods, time-dependency convolutional neural net-
work (TD-CNN), and cycle-based long short-term memory
(C-LSTM) network are proposed to improve the forecasting
performance of short-term load forecasting [36]. Li et al.
in [37] evaluated amulti-resolution clustering (MRC)method
to forecast half hourly load of the cluster of customers. The
relationship between group/cluster size and forecast accuracy
is studied in [38] using two forecasting methods namely Holt-
Winters and Seasonal Naive. A major drawback of Deep
learning methods is that they require a large amount of data
to learn.

C. STLF FOR INDIVIDUAL CUSTOMERS
STLF at individual consumers level is significantly more
challenging due to high volatility and variability in load
profiles [39]. Methods for STLF at the household level can

be divided into time series based or artificial intelligence-
based methods. Time series based methods are classical
techniques that mostly originates due to statistical problem
formulation. Most of the classical methods treat data as
a stationary time series. These simplistic assumptions are
unable to capture the complex nonlinear behavior between
electricity consumption and periodic routines of household
residents [15]. Andreas et al. in [40] used the autoregres-
sive integrated moving average (ARIMA), neural networks
(NN), and exponential smothering for the household fore-
cast. They showed that these methods hardly beat persis-
tent forecasts in terms of mean absolute percentage error
(MAPE). Mahmoud et al. in [41] utilized the Kalman filter
and reported MAPE. Many statistical methods like linear
regression, stochastic and time series based methods are also
given in [27], [28], [42]–[45].

Recently artificial intelligence (AI) based methods are
dominating short-term load forecasting. This domination is
due to their less mathematical complexity and better results.
In [18], pooling based deep recurrent neural network (RNN)
are used to predict household load. Pooling based Recur-
rent neural network shows better results as compared to the
autoregressive integrated moving average (ARIMA), support
vector regression(SVR), and simple RNN. The error metrics
used are the root mean square error (RMSE), normalized
root mean square error (NRMSE), and mean absolute error
(MAE). Mean absolute percentage error (MAPE) which is a
more suitable error metric for household level load forecast
is not given. Similarly, in [17] Weicong et al. used LSTM
along with density-based spiral clustering of application with
noise (DBSCAN) for household load forecast. This technique
shows better results in terms of mean absolute percentage
error (MAPE). Elena Mocanu in [46] used a factored con-
ditional restricted Boltzmann machine for load forecasting
of residential homes and showed improvement as compared
to simple support vector machine (SVM) and neural network
(NN). Clustering household load basedmethods are proposed
in [20], [47]. These methods try to predict hourly aggregated
load for each cluster rather than each household separately.
This makes their techniques achieve better results. However,
our goal is to predict individual household level hourly load
with minimum possible error.

III. PROPOSED METHODOLOGY
In this section, the methodology of the proposed technique is
presented, i.e., PVS for STLF at household level. PVS takes
as input the loadmatrixwith rows and columns corresponding
to n1 hours and n2 consumers, respectively, i.e., X ∈ Rn1×n2 .
The entry X (T , j) is the electricity consumption of consumer
j at hour T . PVS performs the following steps:
• It first preprocesses the data to improve its statistical
properties.

• It then represents features of each timestamp by the load
values of the past hours.

• Lastly, to predict a load, the past vector is compared to
find similar past vectors.
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FIGURE 3. Households loads histograms of Australia dataset for
houshold number 25 (a) before data transformation and (b) after data
transformation.

The final forecast is an ensemble (average) forecast of the
future load of similar past vectors. Each step of the method-
ology is discussed in detail as follow:

A. DATA PREPROCESSING
The load values at household level in X , comprise of very
low magnitude values. Hence, there is a significant skewness
in the data. This causes a huge problem in the load prediction.
Since predicting zero or closer to zero loads is a complex task.
Thus, the standard qth root transformation is performed X as
a preprocessing step i.e. every value X (T , j) is replaced with
X (T , j)

1
q . The skewness effect of transformation is depicted

in Figures 3 and 4 which show the load histogram of the
household 79 and 25 of the Sweden and Australia dataset
respectively. Figures 3a and 4a are the load histograms before
transformation whereas Figures 3b and 4b are the load his-
tograms after the transformation. It is observed that a large
number of values are very close to 0 before transformation
and the transformed data is more normally distributed. We
apply the corresponding reverse transformation after fore-
casting the load and report our predictions and their errors
in the original units and scales.

B. PAST VECTOR SIMILARITY
In this section, the proposed PVS technique is discussed in
detail. The prepossessed data is first divided into training

FIGURE 4. Households loads histograms of Sweden dataset for
household number 79 (a) and (b).

data A of d1 hours and testing data B of d2 hours, such that
d1 + d2 = n1. The training and testing data is converted into
feature vectors. The feature vector of each timestamp of each
consumer consists of the following two parts:
(i) Future electricity load part, which is the load of the next

timestamp.
(ii) A past electricity load part called the past vector.
The past vector is a k-length vector which contains load
consumption for the k previous hours. The past feature vector
of Tth comprised of [T T −1 T −2 · · · T − k] load. A feature
vector is the load of [T T−1 T−2 · · · T−k], where [T+1] is
the label or future value to be predicted, and k is the parameter
of the PVS model.

Xtrainj(T ) = A[T T − 1 · · · T − k, j] T ∈ d1, j ∈ n1 (1)

Ytrainj(T ) = A[T + 1, j] T ∈ d1, j ∈ n1 (2)

Xtest j(T ) = B[T T − 1 · · · T − k, j] T ∈ d2, j ∈ n1 (3)

Ytest j(T ) = B[T + 1, j] T ∈ d2, j ∈ n1 (4)

Hence, there are roughly d1 and d2 total vectors for
training and testing set respectively for each customer.
All vectors of the training set of a customer are col-
lected and are called the pool of training past vec-
tors {(Xtrainj1,Ytrain

j
1), . . . , (Xtrain

j
d1

,Ytrainjd1 )}. Similarly,
all vectors of the testing set of a customer are col-
lected and are termed as the pool of testing past vectors
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FIGURE 5. Flow diagram of PVS technique.

{(Xtest j1,Ytest
j
1), . . . , (Xtest

j
d1

,Ytest jd1 )}. The whole process
is shown in Figure 5.

Now, consider a distance metric ‖ ·‖ on Rk . For a test point
Xtest jT , let
{(Xtrainj1,Ytrain

j
1), . . . , (Xtrain

j
d1

,Ytrainjd1 )} be a reorder-
ing of the training data such that

‖Xtrainj1 − Xtest
j
T ‖ ≤ · · · ≤ ‖Xtrain

j
d1
− Xtest jT ‖ (5)

To predict the load of a time stamp Tth, its past vector is
considered and its similarity is computed with the pool of
training past vectors, i.e., equation 5. Themmost similar past
vectors are now taken into account, each one of these vector
has a similar past in terms of electricity load and their future
value is a potential forecast for load. An average forecast is
taken into account for the m most similar vectors.

PjT =
1
m

m∑
i=1

Ytrainji T ∈ d2, j ∈ n1 (6)

An example of the past vector for k = 3 is shown
in Figure 5. The highlighted first values are the load to be
predicted (labels), whereas the remaining vector is the past
load vector. The red highlighted load values are known for the
training data. For testing data, the green highlighted values
are the loads to be predicted. The process is shown for a single
household. It is to be noted here that for a different customer
its own load profile is used to create the pool of past vectors.
The data is transformed before the whole process and inverse
transformed before the final prediction.

To compute the similarity between vectors, different sim-
ilarity measures are used and their errors are reported. The
value of K and m are the parameters of the model which are
tuned on the training set. The PVS model is simple enough
to optimize these parameters on the training set without over-
fitting issue. Due to the distributed nature of the algorithm,
it can be easily parallelized for any number of customers
and implemented on a simple computer without memory
overflow issues.

The complete process is shown in Algorithm 1. The algo-
rithm works in a distributed way predicting one hour load of

a single customer at a time. First, the data transformation is
performed to reduce skewness, and then the past vectors are
created from the dataset. The first 12 months (8760 hours) of
past vectors are converted into training vector pool and the
next 6 months (4380 hours) to the testing vector pool. Each
vector is taken from the testing pool and its similarity with
the all vectors in the training vector pool is found using the
euclidean norm. The mean of m most similar hours is used
as a prediction, while the inverse transform is performed to
produce the final prediction. The process is repeated for each
customer for each hour in the testing pool.

IV. DATASETS AND EXPERIMENTS
In this section, datasets and the experimental setup is
described, which is used to validate the PVS technique. The
error measures and other STLF techniques are also presented,
which are further used for comparison purpose.

A. DATASET AND PERFORMANCE MEASURES
Statistics of these datasets are given in Table 1. The measure
of central tendency is shown by the mean load. Australian
dataset has 33 customers with the mean load of 0.79 kWh,
whereas Sweden dataset has 194 customers with the mean
load of 2.52 kWh. This mean is the average of all hours
overall customers. The measure of dispersion is represented
by the standard deviation. Sweden dataset is more disperse
than the Australian dataset. The skewness represents the sym-
metry of distribution around the mean. As we can observe the
Australian dataset is more skewed than Sweden dataset. The
measure of tailedness is shown by kurtosis, which gives infor-
mation about the outliers in the distribution. The Australian
dataset has a larger kurtosis as compared to Sweden dataset
Table 1.
The average weekday and weekend load of both datasets

is shown in Figure 7. This curve is computed by taking
the average of all weekdays of all customers for the whole
dataset and similarly weekends for all customers of both
datasets. We can observe a change in the pattern of electricity
consumption. During the weekend the load curve is delayed
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Algorithm 1 Past Vector Similarity
Input: Training matrix A, Testing matrix B
Output: Predicted load Matrix P

1 A = A
1
q // training data transformation

2 B = B
1
q // testing data transformation

3 P = [ ]
4 for i ∈ 1:n // n = number of customers
5 do
6 Data_Pooltrain = [ ]
7 Data_Pooltest = [ ]
8 y = [ ]
9 counter = 1
10 for j ∈ k + 1:d1 // k = 3 (Sweden),4

(Australia). d1 = number of
training hours

11 do
12 Data_Pooltrain(j) = A[j-1, j-2· · · j-k]

// create training past vectors
13 y(counter) = A[j]
14 counter ++

15 for j ∈ 1:d2 // d2 = number of testing
hours

16 do
17 Data_Pooltest (j) = B[j-1, j-2 · · · j-k]

// create testing past vectors

18 Sim = [ ]
19 for j ∈ 1:d2 do
20 for w ∈ 1:d1 − k do
21 g = Data_Pooltest (j)
22 h = Data_Pooltrain(w)
23 Sim(j) = SIMILARITY(g, h) // Finding

similarity
24 [index val] = SORT(Sim(j))

// descending order
25 P(i, j) = MEAN(y[index[1 : m]])

26 P = Pq // Inverse Transform

TABLE 1. Statistics of datasets: Only the first 12864 hours data is used
for both datasets.

which is because people tend to wake up late during the
weekend. A similar pattern of delay can be observed for both
datasets.

In each dataset, there are customers with missing values.
Since the Sweden dataset has a large number of customers, all
the data points withmissing entries are removed. This leads to
194 customers with nomissing values. Since there are only 34

FIGURE 6. (a) Sweden and (b) Australia; dataset boxplot from
January-2004 to June-2005 and January-2011 to June-2012.

customers in Australia dataset, we just remove one customer
(number 19) with more than 1000 missing entries. For the
remaining customers in Australia dataset, the missing values
are replaced by the mean of the immediate future and past
hour load of that customer.

The reason to select two datasets for performance eval-
uation is to validate the general performance of PVS. The
statistics of a dataset depend upon the weather, demographic
and economic properties of the area. That is why the statistics
of both datasets are quite different. Australia has summer
in December-February, where average temperatures range
between 20 C◦ to 35 C◦. In winter June-August, the average
temperature range is 3 C◦ to 20 C◦. Sweden has summer
in June-August, with an average temperature range between
10 C◦ to 18 C◦. During winter November-March the average
temperature varies from 0 C◦ to −15 C◦. The vast difference
in the statistics of these datasets are helpful in generalizing
the performance of our technique.

The boxplot of both datasets is also shown in Figure 6.
It can be noted that Sweden customers have a much higher
median load in almost everymonth as compared to Australian
customers. The first 12 months are used for training purpose
while the last 6 are used for testing purpose. September shows
the highest median load for Sweden while June shows the
highest median load for the Australia dataset. It is a well-
known fact that predicting smaller loads is a very difficult
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FIGURE 7. (a) Sweden and (b) Australia; average load of weekdays and
weekend for all customers.

task due to high variations. Thus, we can expect a large error
for the Australia dataset as compared to Sweden dataset.

Different studies in the literature report different evaluation
approaches. Three of them are reported to be able to compare
different methods with PVS. The error metrics are Mean
Absolute Error (MAE) [18], Mean Absolute Percentage Error
(MAPE) [17] and Root Mean Square Error (RMSE) [13].
These error metrics are used to depict different aspects of
a technique. MAPE is a relative error measure and is very
sensitive to low load profiles. Since the hourly household load
is quite small in magnitude, MAPE is an ideal error measure
for the STLF task and is quite difficult to minimize. MAE
on the other hand provides an absolute difference measure
of forecasting error. RMSE acts as a standard deviation of
overall prediction error. In other words, it tells you how
concentrated the prediction points are closer to the original
load.

B. EXPERIMENTAL SETUP
In this section, different experiments are performed to show
the effectiveness of the PVS technique. Different similarity
measures are used, related to euclidean and non-euclidean
measures. Since the PVS technique has just three parameters,
these parameters can be learned on the training set without
overfitting issues. As mentioned earlier, the first 12 months
of data is used for training and last 6 months of data for
testing purpose. Python is used as a coding environment, and
experiments are performed on a core i7 system. Except for

parameters search, which is performed on free computation
platform, Google Colab. The details of each experimental
setup are given below.

There are three parameters of the PVS technique (k , m, q),
which are optimized through the search on the training set.
The value of k,m, and q are learned using the search on the
training set. It is assumed that k,m and q are all positive inte-
gers. Of course, q can take a fraction value, but for the sake of
simplicity, it is assumed that q is also a positive integer. The
values of q and k are supposed to be from set {1, 2, 3 . . . 10}
and {1, 2, 3 . . . 20} respectively. Since m can take any value
up to the length of training set d1, to computationally make
search feasible,m from a set of {2, 4, 6 . . . 100} is considered.
For similarity measure, 15 different measures are used. In this
setup, the grid search requires fitting 150000models, which is
computationally infeasible. To make parameter tuning com-
putationally reasonable, one parameter at a time is searched
through. In this way, the size of searchable models reduces
to 95. The parameters tuning to find the optimal k , m and q
for Australia and Sweden datasets is shown in Figure 8 and
9, respectively. First, k = 5, q = 5, Similarity=Euclidean
Norm is selected and different values of m from the set
{2, 4, 6 . . . 100} are tested. This leads to the selection of an
optimal m as shown in Figures 8a and 9a. On the second
stage, optimal m = 24, q = 5, Similarity=Euclidean Norm
is selected and searched for optimal k as shown in Figures 8b
and 9b, which corresponds to Australia and Sweden dataset,
respectively. At the third stage, optimal m = 24, k = 4,
Similarity = Euclidean Norm is fixed and different q values
are tested as shown in Figures 8c and 9c. At the fourth stage
using searched optimal parameters, different similarity mea-
sures are tested which is shown in Figures 8d and 9d for the
correspondingAustralia and Sweden datasets. A singlemodel
is trained for all customers using MAPE on the training set to
tune these parameters. As observed from the Figures 8d and
9d, there is an optimal value for m and k , whereas the error
reduces as we increases q. However, q is not tested beyond
10, since increase in q decreases the rate of improvement as
shown in Figures 8c and 9c.

Since the PVS technique is based on finding similarity
between vectors, different similarity measures like L1, L2, L3,
L4, L5, L7, L10, Linf , Average Distance, Mean Character Dif-
ference, Canberra Metric, Coefficient of Divergence, Maha-
lanobis distance, Cosine Similarity, Index of Association
and Pearson Coefficient are tested to compute the similarity
between past vectors. As it approaches towards infinity norm,
the emphasis is shifted towards larger values. As the norm
becomes smaller, the more the vectors become similar. The
effect of these similarity measures on MAPE for Australia
and Sweden is shown in Figures 8 and 9, respectively. There is
no significant effect of any specific similarity measure. As the
value of LP norm is increased, the error is also increased.
This is because increasing p moves emphasis to the single
largest element of the vector while ignoring other elements.
Fortunately, the L2 normwhich is chosen for parameter tuning
performs the best. The tuned parameters are shown in Table 2.
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FIGURE 8. Parameters tuning of Australian dataset (a) Parameter ‘m’ (b) Parameter ‘k’ (c) Parameter ‘q’ (d) Different norms.

FIGURE 9. Parameters tuning of Sweden dataset (a) Parameter ‘m’ (b) Parameter ‘k’ (c) Parameter ‘q’ (d) Different norms.

TABLE 2. Optimal parameters of PVS technique.

C. COMPARISON WITH OTHER STLF TECHNIQUES
To compare the PVS technique with baseline and exist-
ing classification algorithms such as Persistence, ARIMA,
LSTM, and Random forest(RF) algorithms are used. First,
the technical details of these models are described, then the
results are presented. In all of these techniques, a separate
model is learned for each household except for LSTM, as due
several parameters and features used in learning separate
LSTM model results in overfitting and poor performance.
PVS technique does not require a calendar, weather, or any
demographic information. However, since weather and cal-
endar data is easily available, calendar and weather attributes
are used to train LSTM and RF. Demographics or any other
information is not used for training purposes. Definitely,
the accuracy can be improved by using more information.
But such kind of information is not easily available and is
practically difficult to process.

1) PERSISTENCE FORECAST
Persistence forecast is used as a baseline in most of the
forecasting problems. In the persistence forecast, the load
value of the previous hour is used as a forecast for the next
hour. As we can see persistence forecast has no parameters to
learn.

2) AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE
A popular and widely used statistical method for time series
forecasting is the Auto-Regressive Integrated Moving Aver-
age ARIMA which consists of p, q, and d parts. p shows
the Auto-Regressive part of ARIMA which indicates that
the variable of interest depends upon its past values. q part
indicates that the error of forecast depends upon previous time
instances errors, and d indicates the integration part, which is
used to make time-series stationary.

Since each dataset has a large number of households, fitting
individual model on each household is computationally very
expensive. However, each household represents an individual
time series, and a separate model must be learned for each
time series. To solve this problem, ‘auto.arima’ function is
used which takes maximum p, minimum p, maximum q,
minimum q, maximum d , minimum d as parameters and
returns the best ARIMA model fitted according to Akaike
Information Criterion (AIC). Here, the selection of hyper-
parameters of auto.arima is described for Australia and Swe-
den dataset, which makes it possible to fit a different model
on each household.

The first step is to check if the time series is station-
ary or not. This is done by performing Augmented Dickey-
Fuller test (ADF). The null hypothesis of the ADF test is
that the time series is non-stationary. Therefore, if the p-value
is less than the significance level (e.g., 0.05) then the series
is stationary, otherwise, it’s non-stationary. ADF test is per-
formed on all households separately. Since all the p-values
are below 0.05, and d = 0, so the value of p and q is selected,
based on partial autocorrelation (PACF) and auto-correlation
test (ACF), respectively. It is also observed for the ACF test
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that there is seasonality in the timer series after every 24 hour.
Based on the results computed from ACF and PACF tests,
the minimum p = 1, maximum p = 5 is selected. Seasonal
ARIMA (SARIMA) is fitted, which is more suitable due to
capturing seasonal information. SARIMA consists of parts
(p,q,d) and (P,Q,D,S). The value of S is taken as 24 because
of the seasonality effect. Maximum P andmaximumQ values
are taken as 2, and the maximum D value is taken as 0.

3) LONG SHORT-TERM MEMORY
Long Short-term memory (LSTM) is a deep learning archi-
tecture. LSTM is a sequential model, which captures the
temporal correlation between the previous and the current
time step. LSTM contains memory and forgets gates, which
are used to deal with vanishing gradient problem [48]. The
decision made by LSTM at time step T depends upon the
decision made at time step T − 1. Such characteristics of
LSTM are perfect for individual household load forecasting
problem. Since the load at the time, T depends upon the
routine of the household at previous time instances.

For LSTM, previous studies suggest that the performance
of the network is relatively insensitive to any combina-
tion of some layer and layer size [49]. Previously, LSTM
based household short term load forecasting is proposed by
Weicong et al. in [17]. Therefore, the same architecture is
re-implemented with similar hyper-parameters as described
in [17]. The architecture consists of 2 hidden layers with 20
hidden nodes in each layer. The number of previous time steps
used in the prediction is 6 as given in [17]. In the end, a simple
neural network with a sigmoid activation function is utilized
to ensemble the final prediction.

The features used in LSTM are shown in Table 3. Since
LSTM is sensitive to magnitude, the load consumptionmatrix
and features (temperature, wind speed, and humidity) are
normalized by min-max normalization. Mean Square Error
(MSE) with Adam optimizer [50] is used to carry out train-
ing for 100 epochs. Since LSTM contains a large number
of weights, learning these weights requires a large quantity
of data. We tested a separate LSTM model on individual
households and a single model on all households. Due to less
amount of data, a separate model on individual households
performs poorly as compared to a single model on all house-
holds. Therefore, only the results of a single model on each
dataset are included.

4) RANDOM FORESTS
Random forest is a regression technique that works by com-
bining multiple decision trees. It takes a subset of variables to
build the decision trees. Thesemultiple decision trees are then
used to produce an ensemble output. In the case of regression,
the output is taken as the mean of all trees. Two of the
most important hyper-parameters on which the performance
of random forest depends are the maximum features used
in the individual tree and the total number of trees. Both
of these hyperparameters are tuned using the validation set.
As stated earlier, the train-validation-test split, in this case,

TABLE 3. Input parameters for the classification algorithms.

is 9-3-6 month respectively. It is established that the error
decreases as the number of trees are increased. This can also
be confirmed from Figure 10b, in which mean square error
(MSE) is shown with the number of trees. Due to computa-
tional constraints, 100 number of trees are selected. Maxi-
mum features used in each decision tree are 29. This feature
number is selected using a grid search on the validation set,
as shown in Figure 10a. The error metric used to find this
feature number is MSE. Since the random forest is invariant
to scaling, features of Table 3 are used without scaling. A sep-
arate model is learned for each household in each dataset, and
this model is tuned with its separate hyperparameters.

V. RESULTS AND DISCUSSION
In this section, results of PVS are reported for hourly load
prediction and performance comparison is carried out with
the earlier mentioned STLF methods.
Tables 4 and 5 demonstrate the overall performance mea-

sures of persistence forecast, ARIMA, RF, LSTM and our
proposed PVS technique. The error shown is averaged over
all customers and testing hours of 6 months. As stated earlier,
the hourly household load is quite small in magnitude and
MAPE is a relative measure of error that is sensitive to small
numbers, so even a slight prediction error results in a higher
percentage error. This is the reason higher MAPE is observed
for all techniques. However, both RMSE and MAE are quite
small which shows that the predicted loads are closer to the
actual load.

It is observed that there is a significant difference in the
results of both datasets. From Tables 4 and 5, it is observed
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FIGURE 10. Hyper parameter tuning of Random Forest for a single
customer of Sweden dataset. (a) MSE of the maximum attributes of the
individual trees. (b) MSE of the total number of trees.

TABLE 4. Performance evaluation of different techniques on Sweden
dataset.

that almost all algorithms perform better on Sweden dataset
as compared to Australian dataset. The main reason for this
improvement is the magnitude of the forecasting load. Table 1
shows the average and standard deviation of the load of both
datasets. It is observed that the average load is the largest for
the Sweden dataset, and the minimum MAPE is achieved for
it using our proposed PVS technique as shown in Table 4. This
also points to the widely accepted phenomenon that forecast-
ing larger aggregated loads is substantially easier than smaller

TABLE 5. Performance evaluation of different techniques on Australia
dataset.

FIGURE 11. Boxplot of actual and predicted load for Sweden and
Australia datasets.

individual loads. It is also observed that PVS outperforms
all other STLF techniques. It is to be noted here that PVS is
trained on just household data that, while other algorithms are
trained using additional parameters like weather and calendar
attributes.

ARIMAperformedworst on both datasets, followed byRF,
persistence, and LSTM. LSTM performed better on Sweden
dataset as compared to Australia dataset. The reason behind
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FIGURE 12. Error comparison of individual household for Sweden datasets.

FIGURE 13. Error comparison of individual household for Australia datasets.

this is due to the fact that the average load of Sweden cus-
tomers is higher than Australia, and LSTM requires a massive
amount of data to learn due to the large number of parame-
ters. As Sweden dataset has the large number of customers,
i.e., 194, while the Australia dataset has 34 customers. A large
amount of data is available to train LSTM for Sweden dataset,
so consequently, LSTM performs better for Sweden dataset.
PVS has this advantage too over LSTM, that it can be learned
for smaller datasets for any number of the customer. It can
also be observed in Table 4 that in comparison to LSTM’s
performance on the Sweden dataset, PVS shows improved
performance of 21%, 18% and 31% for MAPE, MAE, and
RMSE, respectively. Similarly, in Table 5, 50%, 20% and
4.6% improvement in performance through PVS technique
is observed as compared to LSTM on Australia dataset for
MAPE, MAE, and RMSE, respectively. In comparison to RF,
PVS presents an improvement on both datasets for MAPE,
MAE, and RMSE of up to 80%, 40%, and 36%, respectively.
A similar improvement of the PVS technique can be seen for
ARIMA and persistence forecast.

Since the mean value of error is sensitive to outliers. Recall
that due to many actual loads that are close to 0, there could
be a large number of outliers in the error. To further analyze
the distribution of error, the box plot of actual and predicted
load for different techniques is presented in Figure 11. For
both datasets, the PVS distribution is closest to the original

load. For Sweden household, LSTM slightly under-predicts
the load, while RF and ARIMA show over-prediction. In the
case of the Australia dataset, LSTM, RF, and ARIMA show
overprediction of the load. This can be observed by box plots
above the original level. These boxplots are computed using
all customers on full testing (6 months) data.

The error comparisons of all techniques for the individual
household of Sweden and Australia dataset are presented in
the form of heatmaps, in Figures 12 and 13, respectively. The
heat maps correspond to MAPE, MAE, and RMSE error of
all techniques. There are vertical lines and horizontal patches
in each figure. Each vertical line corresponds to a single
user error and each horizontal patch corresponds to a STLF
technique. Each line is computed by the error of a single user
over the testing period. The dark color in the figures refers to
less error and improved performance. In the case of MAPE
and MAE, PVS performs slightly better than LSTM. The
error is increased as the technique is switched from PVS to
ARIMA. The improvements of MAPE, MAE, and RMSE
measures follow the irregular pattern in terms of results for
different households. In the case of RMSE, no significant
difference between techniques is observed as can be observed
in Figure 12c. The main reason is the square root and aver-
aging operation performed in RMSE, which smooths out
the differences. Moreover, the RMSE is a nonlinear opera-
tor and individual household RMSE does not accumulate to
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FIGURE 14. Monthly MAE and MAPE for all techniques for Sweden dataset.

FIGURE 15. Monthly MAE and MAPE for all techniques for Australia dataset.

overall RMSE. Due to these factors, almost all techniques
produce similar results in terms of RMSE on individual
households.

To analyze seasonal variations of Australian and Sweden
dataset, monthly MAE and MAPE of all techniques for the
respective dataset are given in Figures 14 and 15. The MAE
is calculated over all households for each month. The testing
data has the values for the last six months and their box plot is
shown in Figure 6. Referring to the box plot as we move from
January to June, the median load increases. PVS, LSTM, and
RF show consistent behaviors as their MAE decreases as we
move towards June. These techniques show the highest MAE
in March and February. As discussed earlier that smaller
loads are stochastic and variable in nature which makes them
difficult to predict. ARIMA shows an opposite behavior and
it’s MAE increases towards June, with the highest value in
May. From Figures 11, 14, 15, we infer that the main reason
for this behaviour is due to the overprediction of load. As we
approach June, this over-prediction increases further, causing
very high MAE in April, May, and June.

VI. CONCLUSION AND FUTURE WORK
Short-term load forecasting is an integral part of a reliable
and economical power system. At the household level, short

term load forecasting is pivotal for the design of demand
side management (DSM) programs, such as demand response
(DR), peak shaving, dynamic pricing, and soft load shedding.
Most DSM programs are designed to work at an hourly
level. The optimization problems in these DSM programs
are guided by the data from an hour ahead household load
forecasting. Various statistical and machine learning methods
are used for the problems associated with STLF at the house-
hold level, and most of the techniques require several features
for efficient performance. In this work, we have proposed a
new technique in this domain called ‘Past Vector Similarity’
(PVS), in which the hour ahead load forecasting problem at
the household level is explored. The operational structure of
PVS uses past vector load data to find similar patterns in the
load data, and then report the ensemble of the similar loads
as a prediction. It is discussed throughout the study that there
are many advantages of our proposed PVS technique. PVS
consists of two parameters, which assist in its application to a
relatively less amount of data without overfitting. Other deep
learning techniques require a large amount of data to learn.
PVS does not require weather, sociological or other data and
works with just load consumption data. Due to the parallel
nature of PVS, it can be scaled better for a large number of
houses.
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Along with the proposed PVS technique, different deep
learning techniques used for STLF like ARIMA, LSTM, and
RandomForest are evaluated and tested on the household load
data of Australia and Sweden. Results of these techniques are
then used to validate and compare the results and performance
of the proposed PVS technique with the other techniques.
State-of-the-art persistence forecast, ARIMA, LSTM, and RF
techniques are trained using calendar and weather informa-
tion, while the proposed technique has only analyzed the load
data for prediction. The reported MAPE of the PVS tech-
nique has shown a significant improvement over persistence
forecast, ARIMA, RF, and LSTM techniques, respectively.
We have observed up to 80% improvement over MAPE for
Sweden dataset, while up to 200% improvement in MAPE
for the Australia dataset. A similar improvement is also seen
in terms of MAE and RMSE. To further validate the PVS
technique we have analyzed errors in terms of boxplots,
monthly basis, and heat maps. All the error analysis sup-
port our proposed technique. Although the proposed work
has devised a technique that performs better than the other
state-of-the-art deep learning techniques; however, a potential
future direction is to integrate calendar, weather, and other
information into the PVS model to evaluate its performance.
Another possible direction is to extend the proposed PVS
approach towards a general approach, the applications of
which can be aimed towards any regression problem.
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