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Abstract—Electricity price forecasting is important to the
energy companies in planning and decision making. Gaussian
process (GP) regression is a powerful tool for probabilistic fore-
casts of time series data. In this paper, we employ GP regression
for prediction interval (PI) based forecasting of electricity spot
prices. At each hour of the day, a new parameter set is computed
incorporating most recent available electricity price data. We
compare performance of several kernels. Likelihood ratio (LR)
test statistics are used to measure goodness of the out-of-sample
forecasts. Results show that our scheme outperforms other
schemes in literature. In one case, LR statistics are slightly better
for an existing quantile regression averaging (QRA) based scheme
.But QRA scheme employs 12 other forecasting schemes followed
by performing regression on the forecasts by those 12 schemes.
However, our results significantly better than other individual
forecasting schemes such as ARX/SNARX and averaging schemes
such as SIMPLE/LAD.

Keywords—Prediction interval, electricity price, Gaussian
process regression

I. INTRODUCTION

Liberalization and deregulation of electricity markets has
resulted in competitive and highly volatile electricity prices.
Electricity prices have significant impact on all market partic-
ipants including end consumers as well as electricity retailers.
Due to deregulation of electricity markets, electricity price
forecasting is critically important for optimized operation of
power systems. Forecasting is also important for electricity re-
tailers, particularly, due to the high interest in energy arbitrage
with recent advanced and improved energy storage technolo-
gies. Arbitrage profit can be greatly increased by electricity
price forecasting as knowledge of future electricity prices
enables optimized scheduling of energy storage technologies.
A precise forecasting scheme is helpful in developing a useful
demand response program for efficient operation of power
systems. Forecasting can also help retailers to change their
bidding strategies for maximizing the profit.

Mismatch between supply and demand, intermittent and
variable generation from renewable energy sources such as
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wind and solar, and power plants breakdown result in highly
volatile electricity prices having sudden spikes and jumps.
Therefore, modeling and forecasting of electricity prices are
challenging.

In recent years, research in electricity price forecasting has
gotten a tremendous attention and several forecasting schemes
have been proposed [1]-[3]. Time series modeling is most
widely used approach for forecasting of electricity prices.
Time series based schemes use historic prices and exogenous
variables such as load, time of the day and temperature [3], [4].
Two basic time series models are auto-regressive (AR) models
and auto-regressive-moving-average (ARMA) [5]. Apart from
these two basic models, a number of extension of these models
have also been proposed for forecasting time series data
that include auto-regressive-integrated-moving-average models
(ARIMA) [6], [7] , AR models with exogenous variables
models (ARX) and ARMA model with exogenous ARMAX
[8]. Kristiansen [1] uses AR model for forecasting of elec-
tricity prices in Nord pool power market. The model captures
and tracks seasonal variations from historical price data. In
[9], clustering based methodology has been used to forecast
day-ahead electricity load at household level. Nogales et al.
[10] develop a regression model based on historical price
data and electricity demand data. Their model demonstrates
a reasonable accuracy for forecasting of electricity prices in
California and Spanish power markets. In [11], a weighted
nearest neighbor model is used for forecasting of electricity
prices. Performance of the mentioned price forecasting models
may deteriorate due to unexpected spikes in the prices.

Hybrid models are used to capture different patterns in
the price data and may improve results [12]. Shafie-Khah et
al. [13] propose a hybrid model based on ARIMA, wavelet
transform and neural networks, for forecasting of day-ahead
electricity prices. In [14], the proposed hybrid model is based
on ARIMA, wavelet transform and support vector machine
(SVM). The model is used for forecasting of electricity prices
in the Australian national electricity market and New South
Wales power markets. The hybrid model in [15] is based on
particle swarm optimization and a fuzzy inference system and
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is used for forecasting electricity prices in the Spanish power
market. A comprehensive review of probabilistic electricity
price forecasting can be found in [16].

The objective of this paper is to explore usefulness of
using GP regression for short term interval forecasting of
electricity prices. We have compared performance of different
covariance functions excluding ARD (Automatic Relevance
Determination) based covariance functions due to a large
number of hyperparameters and high computation time. We
have chosen predictor variables same as chosen in [3], [4].
We have also used same dataset of electricity prices for
accurately comparing results with these schemes. This paper
makes two main contributions. First, the paper proposes GP
regression based forecasting model for electricity prices which
outperforms other individual and averaging based forecasting
schemes. The second contribution is to compare performance
of non-ARD based covariance functions.

The paper is organized as follows. In section II, we describe
proposed GP regression based model, predictor variables and
calibration details. Section III provides details about the
dataset, experimental results and comparison with existing
schemes in literature. Finally, section IV concludes this paper.

II. PROPOSED METHOD
A. Gaussian Process Regression

In this section, we give a brief overview of the fundamentals
of GP regression. An interested reader is referred to the text
[17] for detailed description. Intuitively, one can think of a GP
as a distribution over functions. A GP is a collection of random
variables, any finite number of which have a joint Gaussian
distribution [17]. A GP f (x) can be specified completely by
a mean function m (x) and a covariance function (or kernel)
k (x1,x2) and is written as in eq. 1.

f(x) ~GP(m(x),k(x1,%2)), M

where dimension of x,x; and xg2 is equal to the number of
predictors d.

Suppose we have n,. training examples (X, y) and n; testing
examples (X', y’), where X (X') is the matrix of dimension
n-(n¢) X d and y(y') is the column vector of length n,.(n;).
In GP regression, dependent variable y is assumed to be the
value of the GP at x and is denoted by f (x). By denoting y
and y’ by f(X) and f(X') respectively, joint distribution of
f(X) and f(X’) is jointly Gaussian as shown in eq. 2.

[JJ: (())8] N ([:f(())((/))}’ [f((;?’,))% :<(>)§’§’)>D'

Given X, X’ and f(X) and assuming Gaussian prior on
f, conditional distribution of f (X’) is jointly Gaussian with
mean

m =m (X') +k (X', X)k (X, X)" (f(X)=m (X)) 3)
and covariance matrix

C=k(X"X)—kX" X)X, X) " "k(X,X). &

TABLE 1
KERNEL FUNCTIONS STUDIED IN THE PROPOSED SCHEME

Kernel Name Kernel Function

Exponential KEXF(r) = 0% exp (—7)

Squared exponential kSQEXP(r) = o2 exp (—L>

Matern32 EM32(p) = 2 (14 @) exp (_ \/l§r>
Matern52 EM52(p) = o2 (1 + @ + %) exp (_ \/lgr)

Rational quadtric

kRQ(r) = o2 (1 + %)ﬂl

In our case, dimension of X’ is one (n; = 1), therefore m
and C reduce to scalars. Prediction about 3’ is made using
the conditional distribution of f(X’) and is described in the
subsection II-C.

B. Covariance Functions

Covariance function & (X, X’) specifies similarity between
it’s inputs and is used as a measure of covariance between
f(X) and f(X’). A covariance function is usually a function
of the distance r = (x1 — x2)” (X1 — X2) between its inputs.
Covariance functions have a set of parameters 6. For example,
covariance functions studied in the present paper have two
parameters, character length scale /[ and the signal standard
deviation o. Character length scale controls sensitivity of
the covariance function with respect to the distance between
the inputs. Smaller value of [ means covariance function is
sensitive to small distance between the inputs. Whereas larger
value of [ makes covariance function insensitive to small
distance. The signal standard deviation is the overall scaling of
the covariance value. Covariance functions which use separate
characteristic length scale for each of the predictors are called
ARD (Automatic Relevance Determination) kernels. In this
study, we did not use ARD type kernels due to large number of
parameters. Covariance functions used in this study are shown
in table L.

C. Rolling Window based Calibration and PI Forecasting

Suppose, historical hourly price data { pﬁ k =
1,2,..,N; h = 1,2,...,24 } for past N days are used to
forecast the price at hour i of (N + 1), day, where p} rep-
resents hourly spot price at hour h of k;, day. For forecasting
of price at hour h (h =1,2,3,...,24) of the (N + 1), day,
{ pfl' : k=1,2,3,...,N } are used to calibrate GP regression
model. The trained model is used to compute forecast price
ﬁfl\”‘l. Similarly, for each hour h (h = 1,2,3,...,24) of the
(N + 2)y, day, {pf : k =2,3,4,..,N + 1} are used to
calibrate GP model which is then used to compute forecast
price ﬁhN +2_and so on. The idea of using separate parameter
set for each of the forecast is inspired from the work of Weron
and Misiorek [4] who compared performance of 12 time series
based models for price forecasting. We have selected the same
predictor variables which are selected in [4] due to their good
correlation with the output variable. Predictor variables are
describe below.
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e pi_o4: Price at 24 hour lag; the price at same hour
yesterday

e pi_16s: Price at 168 hour lag; the price at same hour a
week ago

e mp;: Minimum of yesterday 24 hour prices

o 2;: Temperature

o D: Categorical variable representing day of the week

Each of the predictor variables except categorical variables
are normalized in the range 0.01 to 1.0, log transformed and
standardized to have mean zero and variance one before GP
regression calibration. Forecasting is made in the transformed
domain and forecast values are inverse transformed. Suppose
Witn O1n are mean and variance of the conditional normal
distribution obtained using GP regression from eqs. 3 and 4
in the log domain and suppose m and s are respectively the
mean and the standard deviation used to standardize the data.
First, we apply inverse operation of standardization on sy,
and oy, using the mean m and the standard deviation s. We
denote resulting mean and standard deviation by p;, and oy,
respectively. Next, we obtain mean u, and variance o, of
the normal distribution using eqs. 5 and 6 respectively which
transform mean and variance of a normal distribution to mean
and variance of a lognormal distribution [18].

2
Iin

fin = el T &)

2
UrZL _ €2Hln+20'ln

_ 62Mzn+ofn ) (6)

We obtain final ¢ and standard deviation o by re-scaling
tn, and o, in the original range. Lower bound (L) and upper
bound U of the PI with confidence level 1—a can be computed
using eq. 7.

[L,U] = p =% 2490, @)

where area under the standard normal curve to the left of 2, /7
is 5.
D. Likelihood Ratio Test for Coverage of Interval Forecast

We use likelihood ratio (LR) tests [19] for evaluat-
ing goodness of the interval forecast. In this subsection
we give a brief overview of the LR framework for test-
ing the coverage of interval forecasts. The reader may
find complete detail of LR framework in [19]. Suppose
{(Lt, Up): t=1,2,3,...,T} is an out-of-sample interval
forecast of the sequence {z;: t=1,2,3,...,T} with cover-
age probability 6, where L; and U, are the lower and upper
limits of the interval forecast, respectively. The indicator vari-

able I; for the interval forecast {(L;, U;) : t=1,2,3,...,T}
is defined in eq. 8 as [19]
. 1, if Tt € [Lt, Ut}
I = {o, if 2, & [Ly, Uy ®)

A general criteria for testing the efficiency of an interval
forecast is that the expected value of the indicator variable is
equal to 6 [19], i.e. E(I;) = 6. Furthermore, Christoffersen
[19] proves that testing of the hypothesis that E(I;) = 6
is equivalent to testing of the hypothesis that the indicator

variables I; are independent Bernoulli random variables with
parameter 6. Therefore, the testing correctness of the interval
forecast reduces to testing that I; have Bernoulli distributions.

Unconditional LR test is to test the hypothesis E(I;) = 0
against the alternative E'(I;) # 0. The likelihood under the
null and alternative hypotheses are

L(0)=0m(1— @) ©)

and

L(a)=a"(1—a)™ (10)

respectively, where ng and n; are the number of zeros and
number of ones in the indicator variable sequence and o =
"L Finally, the hypothesis can be tested using the standard

no+ i : . ..
likelihood ratio test using the test statistic

L(#
LRynconditional = —2 IOg (LE()Z)))

an

which has a x2(1) distribution.

Although, unconditional coverage test tests the coverage of
the interval forecast but it does not test whether the zeros
and ones come together in a dependent manner. Conditional
coverage test collectively tests the dependency of zeros and
ones as well as the coverage of the interval forecast. In
this case the null hypothesis of the unconditional coverage
test is tested against the alternative that the sequence is
dependent. Conditional coverage test can also be tested using
the likelihood ratio test using the test statistic

L
LR onditional = —2 IOg <@> (1 2)

L(I)
which has a x? distribution with 2 degrees of freedom and
L(II) is defined as

L(IT) = mpptmpft (1 — mo1) "0 (1 — 1) ™20 (13)

where 7;; = Prob (I; = j|I;—1 = 4) and n,; is the number of
consecutive pairs 7j in the indicator variable sequence.

We compute conditional and unconditional LR statistics for
each of the hour h (= 1,2,3,...,24) separately and calculate
the number of hours for which the null hypotheses are rejected
for unconditional and conditional coverage tests.

ITI. RESULTS

Proposed GP process regression is implemented on Win-
dows 10 using MATLAB R2017a. We use day-ahead hourly
locational marginal prices (LMP) of electricity for JCPL zone
of the PIM interconnection for the period Dec 24, 2010 to Jan
14, 2012. Electricity prices and temperature data are shown
in the figure 1. As shown in the figure, Dec 24, 2010 to
Sep 22, 2011 (N = 273 days) is the calibration period for
forecasting prices on Sep 23, 2011. Similarly, for forecasting
of prices on Sep 24, 2011, the calibration window is shifted
to Dec 25, 2010 to Sep 23, 2011 and so on. We calculated
predication intervals (PI) and compared nominal coverage to
the true coverage. Coverage and other statistical properties of
the PIs width for the forecast period by our scheme and the
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TABLE II
UNCONDITIONAL COVERAGE OF 50% AND 90% PIS OF THE EXISTING SCHEMES (TOP FIVE ROWS) AND THE PROPOSED SCHEME (BOTTOM FIVE ROWS)

Nominal Coverage: 50% Nominal Coverage: 90%
Coverage Mean Median Std Dev  IQR | Coverage Mean Median  Std Dev IQR
ARX 69.74 8.63 8.66 3.33 5.25 96.13 21.28 21.34 8.29 13.02
SNARX 56.51 6.09 5.94 2.64 4.21 94.23 20.73 20.64 8.78 15.28
SIMPLE 58.63 6.32 5.89 2.89 5.77 94.44 25.73 23.22 15.74 25.86
LAD 56.36 6.73 5.79 3.66 6.93 93.64 26.20 21.87 17.21 26.33
QRA 53.55 6.4 5.62 3.78 5.19 92.07 21.10 19.51 12.09 18.51
EXP 48.21 7.07 5.82 4.66 4.76 88.12 17.25 14.2 11.36 11.62
SQEXP 48.79 6.77 5.53 4.44 4.40 87.83 16.52 13.49 10.82 10.73
M32 48.83 6.81 5.54 4.50 4.49 88.08 16.60 13.51 10.97 10.96
M52 48.94 6.78 5.53 4.47 4.45 87.97 16.54 13.48 10.89 10.86
RQ 48.79 6.79 5.60 4.47 4.52 87.72 16.55 13.66 10.89 11.01
500 T _ _‘ deviation of the PI width is minimum for SNARX scheme
= Calibration period Forecast period . . ..
S 400 with proposed scheme having smaller standard deviation from
& 300 i ARX, SIMPLE, LAD and QRA schemes. In case of 90%,
8 000 i exponential, Matern32 and Matern 52 kernels have closest PI
% 100 | coverage with the nominal coverage. The mean/median of the
& PI widths for all the kernels used in the proposed scheme

May 1, 2011 Sep 23, 2011 Jan 14,2012

Hours (Dec24, 2010 - Jan 14, 2012)
100 T ‘

0
Dec 24, 2010

80
60
40

Temperature (F)

20

L | L
May 1, 2011 Sep 23, 2011 Jan 14, 2012
Hours (Dec24, 2010 - Jan 14, 2012)

0
Dec 24, 2010

Fig. 1. Hourly electricity prices and temperature

TABLE III
NUMBER OF HOURS FOR WHICH NULL HYPOTHESIS IS REJECTED IN THE
EXISTING SCHEMES (TOP FIVE ROWS) AND THE PROPOSED SCHEME
(BOTTOM FIVE ROWS)

Unconditional Coverage Conditional Coverage

50% PI 90% PI 50% PI 90% PI
o 1% 5% [ 1% 5% | 1% 5% | 1% 5%
ARX 20 21 14 17 20 20 24 16
SNARX 5 10 8 13 4 9 8 12
SIMPLE 8 11 13 13 7 10 14 16
LAD 9 11 11 12 9 13 11 14
QRA 2 6 2 3 2 3 3 5
EXP 6 8 4 5 6 10 3 5
SQEXP 6 10 3 6 8 12 6 7
M32 5 10 2 7 5 11 5 6
M52 6 10 2 6 5 11 5 7
RQ 3 8 2 7 4 9 5 8

schemes in [3], [4] are shown in the table II. PI coverage by
the proposed scheme is closer to the true coverage for all the
five kernels in case of 50% nominal coverage. Out of these
five kernels, Matern52 (M52) has a coverage closest to the
true coverage with Matern32 (M32) and squared exponential
(SQEXP) respectively being the second and third kernels.
Mean and Median of the PI widths are approximately the same
with ARX having maximum mean/median PI width. Standard
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are smallest than mean/median of all other five schemes in
literature.

Next, we apply LR test [19] to test the goodness of the
PIs. These tests have also been applied for the schemes in
[4] and for comparison we have adopted the same test. We
compute two LR statistics for each of the unconditional and
conditional coverage. LR for unconditional and conditional
coverage are distributed as x?(1) and x?(2), respectively. We
apply LR test for each of the 24 hours separately. Table III
shows the number of hours for which the PI is rejected by the
LR test at @« = 1% and o = 5% level of significance. In all
cases, ARX and QRA schemes have maximum and minimum
number of hours for which PI is rejected, respectively. For all
other schemes, our proposed scheme have minimum number
of rejected PIs roughly having equal performances.

IV. CONCLUSION

In this paper, we have investigated GP regression for short
term interval based forecasting of spot electricity prices and
compared performance of five kernels. Results indicate EXP
and RQ kernels outperform the other three kernels and have
roughly comparable performance. Comparing with existing
schemes in literature, proposed scheme outperforms all other
schemes except QRA whose results are slightly better than
ours. However, the results of nominal coverage and true
coverage suggest that proposed scheme outperforms all other
schemes including QRA. Slight better performance of QRA
scheme is owing to the fact that it is an averaging scheme and
employs 12 other time series based forecasting schemes in
making final forecast. Nonetheless, performance of proposed
scheme is comparable to QRA scheme even if proposed
scheme is an individual forecasting scheme. Proposed scheme
highly outperforms the individual schemes ARX/SNARX,
and the averaging schemes SIMPLE/LAD. Comparing higher
number of parameters and calibration of 12 models for a
single forecast in case of QRA and a forecast with a single
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model with a comparable performance also favors proposed
scheme over QRA. In the future, we aim to employ proposed
scheme in QRA and other averaging schemes to investigate
the performance gain.
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