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ABSTRACT

The need for a high ramping energy resource for frequency regula-
tion is increasing due to the high penetration of intermittent and
variable renewable energy sources, such as wind and solar, in the
electricity grid. Traditionally, special generators have been used
for frequency regulation. These generators can provide high ca-
pacity but have a very slow response time. Battery energy storage
(BES) has gotten tremendous attention due to the advancement
in technology. BES has a very fast response time, which makes
it suitable for frequency regulation. In this paper, we perform an
economic analysis of a distributed energy storage participating in
the PJM and NYISO regulation markets. The distributed storage
consists of many small consumers' installed batteries. A centralized
entity at a microgrid level controls the distributed storage using our
proposed algorithms. The economic analysis is performed from the
perspective of individual storage owners. Our results show that the
five-year net-present-value (NPV) of the consumers' investment is
positive if the utility shares 30% (or above) of the regulation revenue
with the storage owners and keeps the rest of the 70%.
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1 INTRODUCTION

Due to demand/supply mismatch, system frequency deviates from
the required frequency to run the system smoothly. Frequency
regulation refers to the injection or removal of active power in the
grid to bring the system frequency back to normal [14]. A frequency
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regulation resource can provide frequency regulation service by
following Automatic Generation Control (AGC) signal that is sent
by the system operator to the resource on a preset frequency.

Traditionally, special generators have been used for frequency
regulation. Although these traditional generators can provide high
capacity, their response time is slow. With the advancement in
technology, flywheel and BES have been adopted for frequency
regulation. Contrary to the traditional resources, energy storage
resources have a limited energy capacity but their response time
is very fast. In PJM [15], the regulation signal is divided into two
components, RegD signal and RegA signal. RegD and RegA signals
are meant for the energy-limited fast regulation resources and the
traditional high capacity resources, respectively. RegD signal is
a high-pass filtered component of the Area Control Error (ACE)
whereas RegA is a low-pass filtered component of the same ACE.
RegD has a high frequency but is balanced around zero. Therefore,
it is suitable for fast but energy-limited regulation resources such
as BES. On the other hand, RegA has low frequency but requires
high capacity regulation resources and is suitable for traditional
regulation resources.

Frequency regulation requires fast resources on a high priority
basis due to the dependence of the power system stability on the
frequency [12]. The energy storage system (ESS) is highly suit-
able for frequency regulation due to its fast ramp rate compared
to traditional regulation resources. Recently, problems related to
applications of energy storage to the frequency regulation has been
addressed in the literature. These include energy storage control
[4, 6, 7, 11, 16], simulation modeling [6, 7, 21], determining suit-
able type of energy storage system [8, 18] and economic analysis
[11, 22]. Economic feasibility of energy storage participating in the
frequency regulation has been studied in [10, 13, 17, 19, 20]. Energy
storage control schemes have a large impact on the energy storage
lifetime, the benefits of participating in frequency regulation and
capacity allocation.

BES is suitable for frequency regulation due to it’s fast response
time. Previous studies have performed economic analysis for single,
centralized energy storage participating in the frequency regulation.
Aggregating a large number of consumers' batteries can make a
large energy storage that can be used for frequency regulation.
This requires efficient scheduling schemes that efficiently schedule
the AGC signal among a large number of batteries. In this paper,
we propose a centralized battery scheduling scheme and perform
economic analysis from the perspective of the storage owners. Our
results show that battery owners, that utility that centrally controls
the batteries as well as the system operator itself obtain advantage
of this distributed storage. Even if the regulation revenue is shared
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among the utility and the storage owner, the 5-years NPV of the
storage owner's investment is positive. As far as the system operator
is concerned, it obtains a new flexible and scalable fast resource
for frequency regulation. This is a win-win situation for all the
stakeholders.

The rest of the paper is organized as follows. We present the
centralized battery scheduling scheme in section 2. We explain
regulation payment mechanisms for frequency regulation in the
PJM and NYISO regulation markets in section 3. Experimental
results are given in section 4. Finally, the paper is concluded in
section 5.

2 DISTRIBUTED STORAGE AND THE
BATTERIES SCHEDULING ALGORITHMS

The proposed distributed storage consists of N households (HH)
each of which has installed an ESS of a given capacity. Each of the
ESSs is connected with a microgrid level central controller. The
controller can centrally control the charging and the discharging
of each of the ESSs.

2.1 Energy Storage System Model

We use the energy storage model that has already been used in
previous studies [1-3, 9, 23]. Energy storage is characterized by the
following parameters

e Power Rating (kW/MW): Maximum charge and discharge
power of the ESS.

e Energy Capacity (kWh/MWh): Total energy that can be
stored in the energy storage.

o Efficiency: This is the ratio of the total energy discharged
from ESS to the total energy input to the system.

Let C, P¢, P; and y be the energy capacity, maximum charging
power, maximum discharging power and round trip efficiency of
the energy storage, respectively. Let P be the charge power (> 0) or
discharge power (< 0) applied from time ¢ to time  + At. Then the
state of charge SOC!*A! at time t + At can be calculated in eq. 1 as

SOCt  XBXP - p o
SOCt+At — { C (1)

soct + AP p <.

In general, there is a loss of power both of the times during charging
and discharging. Therefore a battery has both of the charging and
discharging efficiencies. In simulations, we can use a round trip
efficiency applied during charging or discharging. For convenience,
we apply efficiency during charging only.

2.2 Batteries Scheduling Algorithm

Suppose a total charge or discharge energy x7*’ is to be distributed
among N batteries. We need to find x; = {x; :i=1,23,.., N} such
that Zg L xb = xI"®’ where x! is the charge/discharge energy for
i;p, household’s battery during time ¢ given net charge/discharge
energy xfet, battery capacities C = {C; : i = 1,2,3, ..., N}, battery
maximum powers P = {P; : i = 1, 2,3, ..., N}, current state-of-charge
(SOCQ) of the batteries SOC = {SOC; : i = 1,2,3, ..., N}, batteries ef-
ficiencies T' = {y; : i =1,2,3,.., N} and SOC_LIMIT. Where P is
array of charge (discharge) powers if x;’et >0 (x;“” < 0). Similarly,
SOC_LIMIT is the maximum(minimum) limit on the SOC of the
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batteries if x7¢* > 0 (x** < 0). Algorithms 1 and 2 find x; given
states and parameters of the batteries.

Algorithm 1: Distribute Energy for Charging.

(1) Sort SOC in ascending order.

(2) Find minimum k such that the total energy required for
charging first k batteries in sorted order up to SOCy. is
greater than or equal to x"¢’ (where x7¢* > 0).

(3) Set charge energy x]’.(> 0) for j;p (j = 1,2,3, ..., k—1) battery
in sorted order equal to the energy required to increase SOC
of that battery up to SOCy

(4) Compute remaining energy x:emummg = xjel - Zﬁ:ll x]'..

TEMAIng iy first k batteries, in sorted order, propor-

(5) Divide x,
tional to their respective energy capacities and add it to their
respective energies xJ’. (j=123,..,k — 1) computed in step
3.

Algorithm 2: Distribute Energy for Discharging.

(1) Sort SOC in descending order.

(2) Find minimum k such that the total energy required for
discharging first k batteries in sorted order up to SOCy. is
less than or equal to x7¢! (where x’*! < 0)..

(3) Set discharge energy xj’.(< 0) for j;; (j =1,2,3,...k — 1) bat-
tery in sorted order equal to the energy required to decrease
SOC of that battery up to SOCy

(4) Compute remaining energy x:emammg = xpel - Zf;ll x]'..
(5) Divide x;emammg in first k batteries, in sorted order, propor-

tional to their respective energy capacities and subtract it
from their respective energies xJ’. (j=123,...k—1) com-
puted in step 3.

3 PAYMENT MECHANISMS AND THE
REGULATION MARKETS

We use regulation signal data and price data from NYISO and PJM
ancillary service markets. All RTOs/ISOs make payments to the
regulation resources according to FERC Order 755. Under FERC
Order 755 [5], the regulation resources should be compensated
with respect to the capacity (MW) that the resources bid in the
market and the regulation mileage (AMW). Suppose energy storage
regulation resource bids capacity P, ,,. during a given time interval,
i.e. the maximum power that the energy storage can provide in
both regulation-up and regulation-down is equal to P%,,,. The
regulation payment for the time interval is calculated according to
the regulation resource capacity P, ,, (MW), regulation mileage or
movement M; (A MW/MW) and regulation resource performance
Mt
o Mileage (M): It is the sum of the absolute differences be-
tween the regulation signals and quantify the work done
by the regulation resource over the time period. Suppose

Pli 1 k=1,23,.., n} is the regulation resource output over
a time interval [¢, t + At]. The mileage M; for the time inter-
val is defined as

2r_i 1P = Pr_q]
M, = Skt kTl

()

Pmax
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® Performance Score n;: Performance score lies between 0 and
1 and is calculated based on delay, correlation and precision.
The delay is the time taken by the regulation resource in
responding to the regulation signal, correlation is calculated
using statistical correlation between the output of the reg-
ulation resource and the regulation control signal and the
precision quantifies the error between the regulation control
signal and the regulation resource output. A single perfor-
mance score is calculated by averaging delay, correlation
and precision scores.

A regulation resource bids in the regulation market by offering a
capacity price and a mileage price. Regulation resources whose bids
are accepted are credited according to the market capacity clearing
price (CCP) Rc and market performance clearing price (PCP) Rys. A
regulation resource has to maintain a minimum performance score
to be eligible to bid into the regulation market. Regulation credit R;
for the regulation resource during time period ¢ can be calculated
using the following generic formula:

Rt = Phax (RE +nMiRY,) . 3)

max

Although eq. 3 can be used to calculate credits in NYISO real-time
regulation market, but PJM uses a mileage ratio instead of mileage
M in the credit calculation. PJM day-ahead regulation market offers
two types of regulation signals to the regulation resources, namely,
RegA and RegD signals. RegA and RegD signals are obtained by
applying low pass filter and high pass filter to the ACE, respectively.
Energy storage has high rampability and can quickly adjust its
power output according to the regulation signal. But energy stor-
age is limited by its energy capacity and therefore cannot respond
to the regulation up or regulation down signals if the storage has
reached its maximum or minimum energy capacity level, respec-
tively. On the other hand, traditional regulation resources are slow
in changing their power outputs. Therefore, PJM divides its ACE
into RegA and RegD. RegD is energy neutral regulation signal hav-
ing zero mean and is meant for fast but energy-limited resources
such as energy storage. RegA signal which is low-pass filtered ACE
is meant for traditional regulation resources. RegD signal changes
very quickly and relatively has higher mileage than the RegA signal.
Mileage ratio f;, defined in eq. 4, is the ratio of the signal mileage
(RegA or RegD for which regulation resource has made a bid) to the
RegA signal mileage

RegA”*
M

B+ is equal to one for the RegA signal and is greater than one for
RegD signal. Therefore, fast regulation resources providing regula-
tion for RegD signal are paid higher than the traditional regulation
resources providing regulation for RegA signal. Eq. 5 for calculat-
ing regulation credits in the PJM regulation market is obtained by
replacing M; with B in the eq. 3 as follows:

Ry = Pﬁnax (Ré' + UﬂtR]tv[) . (5)

The distribution of CCP and PCP in NYISO and PJM regulation
markets for the year 2018-2019 is shown in figure 1. It appears
that PJM performance prices are much higher than the NYISO
performance prices. But, it is obvious from eqs. 3 and 5 that NYISO
uses mileage in its performance credit calculation whereas PJM
uses mileage ratio. Mileage ratio is relatively a smaller number than

Bt 4
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the mileage itself therefore the higher PJM performance prices are
accounted for by using mileage ratio.
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Figure 1: Regulation Prices Distribution in PJM and NYISO

PJM RegA and RegD command signals are 2-second resolution
signals between -1 to 1 and a regulation resource calculates power
by multiplying its capacity with the regulation signal. NYISO di-
vides 6-second resolution ACE signal among all the regulation
resources proportional to their respective capacity. Fig. 2 shows
samples of PJM RegA/RegD signals and NYISO ACE. PDFs (Fig. 2
b) and d)) are obtained using a sample of 30 days signal data from
both PJM and NYISO whereas the plot of regulation signals 2 a) and
c)) are obtained using 4 hours and 12 hours of data from PJM (2 a))
and NYISO (2 c)), respectively. NYISO ACE is perfectly symmetric
with zero mean. PJM RegD signal is also symmetric with zero mean
but most of the density is concentrated at -1 and 1. PJM RegA signal
does not seem to have a zero mean and consists of low-frequency
components of the ACE.
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Figure 2: Regulation Signal Data

4 EXPERIMENTAL RESULTS

We created a simulation setup of a distributed energy storage con-
sisting of 1000 small batteries of 1 kW and 2kW with half-hour
energy capacity at maximum power, i.e. 1 kW and 2 kW batteries'
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Table 1: Regulation revenue from PJM and NYISO regulation
markets
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and inverters costs. We calculate NPV for 5 years batteries lifetime
with a 10% discount factor. Suppose x is the total revenue for a
year that the utility obtains using all the 1000 batteries in a given

PJM NYISO regulation market. We calculate revenue x; for the i,, consumer
Total Avg. Daily Total Avg. Daily with a battery of capacity C; as in eq. 6:

Jul 2018 $27857.23 $928.57 | $22813.64 $760.45
Aug2018 | $27480.05  $886.45 | $25441.06  $820.68 wie G 123N ©)
Sep 2018 $33441.59 $1078.76 $30102.75 $971.06 Z?]ﬂ Cj
Oct 2018 $33204.01 $1106.80 | $31648.62 $1054.95
Nov 2018 $25134.32 $810.78 | $39704.51 $1280.79 where C; is the battery's energy capacity. We assume the same
Dec 2018 | $22201.81 $740.06 | $36141.96 $1204.73 yearly revenue for each of the 5 years period for the calculation
Jan 2019 $20579.02 $663.84 | $26439.23 $852.88 of NPV. For example, total yearly regulation revenue in the PJM
Feb 2019 $19750.72 $637.12 | $25740.16 $830.33 regulation market is equal to $289198.16 and suppose 50% is shared
Mar 2019 $18637.96 $665.64 | $21042.49 $751.52 with the consumers. Therefore, a consun;g;rwx(i)th 0.5 kWh/1 kW
Apr 2019 $23116.81 $745.70 | $36111.97 $1164.90 battery obtains a yearly revenue of 05'2:82% = $95.26 and a
May 2019 | $17814.29 $593.81 $23301.15 $776.71 consumer with 1 kWh/2 kW battery obtains a yearly revenue of
Jun 2019 $19980.35 $644.53 $18086.97 $583.45 lxw — $190.51. Costs of 0.5 kWh and 1 kWh batteries are
Total $289198.16 $792.32 | $336574.52 $922.12 0.5%x482+1x518 — T i

energy capacities are 0.5 kWh and 1 kWh, respectively. There are
482 and 518 consumers having 1 kW and 2 kW batteries, respectively.
Table 1 shows monthly regulation revenue that the distributed stor-
age obtains by participating in PJM and NYISO regulation markets
for the year 2018-2019. Fig. 3 shows daily regulation revenue in
both of the regulation markets for the same year. Daily minimum,
mean and maximum revenues for the PJM regulation market are
$300.57, $792.32 and $4019.80 and for NYISO regulation market are
$339.78, $922.12 and $6134.30, respectively.
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Figure 3: Daily regulation revenue in PJM and NYISO regu-
lation markets for the year 2018-2019

As all the investment in the batteries is made by the batteries
owners, we calculate NPV from the perspective of storage owners
for the two types of consumers (1 kW and 2 kW). We calculate
consumers NPV for ten cases where each case corresponds to a
percentage of the total revenue that the utility shares with all of
the consumers and keeps the rest of the revenue. We consider
Li-ion batteries cost and lifetime data. Although li-ion batteries
cost has decreased tremendously since the past many years, to be
conservative we assume USD 400/kWh including all the installation
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$200 and $400, respectively. With 5 years lifetime of batteries and
10% discount factor, the NPV for 0.5 kWh and 1 kWh batteries'
owners are $161.10 and $322.19, respectively. Table 2 shows NPV
for both types of consumers in PJM and NYISO regulation markets
for varying sharing percentages.

The NPV for 10% and 20% is negative for batteries of both ca-
pacities. However, the NPV is positive for 30% and above for both
of the PJM and NYISO markets. This means that it is profitable for
the storage owners to participate in the distributed storage when
the sharing percentage is 30% or higher. However, this threshold
is for the current example only and may vary in the other exam-
ples. The objective of the current paper is not to recommend or
device mechanisms for incentivizing the storage owners, but to
show the economic feasibility for the storage owners as well as for
the utility companies that control the distributed storage centrally.
Optimal sharing percentage threshold or incentive mechanisms for
the participating storage owners can be done in a separate work.

5 CONCLUSION

We propose a distributed energy storage scheme and use it for fre-
quency regulation in PJM and NYISO regulation markets. The total
revenue obtained by the utility is shared among all the participating
battery owners. We calculate NPV for different sharing percentages.
Our results show that the NPV from the side of battery storage
owners is positive when the utility shares greater than or equal to
30% of the total revenue with the participating consumers. This is a
win-win situation for the consumers as well as for the utility com-
panies. Apart from financial incentives, the need for large battery
storage is increasing due to the high penetration of variable renew-
able energy sources in the electricity grid. Our proposed model can
aggregate a large number of storages to provide services for the
electricity grid.

In the current experimental example, results show that 30% shar-
ing percentage is profitable for the storage owners. However, this
threshold percentage may vary from market to market or for other
data. Even if this threshold doesn’t change significantly, this is a
minimum borderline and may not be an optimal choice. The storage
owners may not agree to accept small share and decline participat-
ing in the distributed storage. Future research should investigate
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Table 2: Net present value for the
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storage owners

PIM NYISO
Sharing Percentage | NPV 1 kW NPV 2kW  Utility Revenue | NPV 1 kW NPV 2kW  Utility Revenue
10% $-127.78 $-255.56 $260278.35 $-115.95 $-231.90 $302917.07
20% $-55.56 $-111.12 $231358.53 $-31.90 $-63.80 $269259.61
30% $16.66 $33.32 $202438.71 $52.15 $104.30 $235602.16
40% $88.88 $177.75 $173518.90 $136.20 $272.40 $201944.71
50% $161.10 $322.19 $144599.08 $220.25 $440.50 $168287.26
60% $233.32 $466.63 $115679.26 $304.30 $608.60 $134629.81
70% $305.53 $611.07 $86759.45 $388.35 $776.70 $100972.36
80% $377.75 $755.51 $57839.63 $472.40 $944.80 $67314.90
90% $449.97 $899.95 $28919.82 $556.45 $1112.90 $33657.45
100% $522.19 $1044.39 $0.00 $640.50 $1281.00 $0.00

the optimal or near-optimal incentive mechanism for the storage
owners.

In general, the lifetime of a li-ion battery is much higher than 5
years. But a regulation signal deteriorates the batteries cycle lifetime
very quickly compared to normal usage of the battery. Therefore,
we assume a very small lifetime of 5 years for the batteries in
calculating the NPV. Future research may calculate the NPV by
using appropriate cycle aging algorithms that approximate the
batteries cycle lifetime.

Further research may look into other applications of the dis-
tributed storage. These applications may include energy arbitrage,
peak shaving, deferral of system upgrade and participating in the
install capacity market.
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