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ABSTRACT
Renewable sources are taking center stage in electricity generation.

However, matching supply with demand in a renewable-rich sys-

tem is a di�cult task due to the intermi�ent nature of renewable

resources (wind, solar, etc.). As a result, Demand Response (DR)

programs are an essential part of the modern grid. An e�cient

DR technique is to devise di�erent pricing schemes that encourage

customers to reduce or shi� the electric load.

In this paper, we consider a market model for DR using Block

Rate Pricing (BRP) of two blocks. We use a utility maximization

approach in a competitive market. We show that when customers

are price taking and the utility cost function is quadratic the result-

ing system achieves an equilibrium. Moreover, the equilibrium is

unique and e�cient, which maximizes social welfare. A distributed

algorithm is proposed to �nd the optimal pricing of both blocks

and the load. Both the customers and the utility runs the market.

�e proposed scheme encourages customers to curtail or shi� their

load. Numerical results are presented to validate our technique.

KEYWORDS
Smart grid, Demand Response, Real time pricing, MArket Model,

Block Rate Pricing, Utility maximization, Social Welfare, Distribute

Optimization

ACM Reference format:
Haris Mansoor and Naveed Arshad. 2016. Market Model for Demand

Response under Block Rate Pricing. In Proceedings of ACM Conference,
Washington, DC, USA, July 2017 (Conference’17), 4 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Many countries have plans to shi� to renewable sources of electric-

ity by 2050 [6, 12]. �is is mainly due the environmental and cost

related problems with the fossil fuel based power plants. While

renewable sources (such as solar and wind) provide an environment

friendly solution to the energy demand, they also create challenges

in the electricity distribution system. �e problems mostly origi-

nate from the variable and stochastic nature of renewable sources

which produces a mismatch between the demand and supply of

electricity [9].
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With the current penetration level of renewable resources, util-

ities use di�erent approaches to handle the demand and supply

gap. Most commonly used methods include fossil fuel based peaker

power plants [15] and Demand side management (DSM) techniques

such as Demand Response (DR), spinning reserve, electricity stor-

age [10, 13] and electricity curtailment [1].

Electricity storage methods and peaker power plants are very

costly to operate, while electricity curtailment has negative impact

on the life style of customers. DR programs are the most e�ective

way to match demand with supply. Based on the techniques used to

encourage customers to reduce or shi� their load, DR programs are

broadly divided into two categories [15]. (1) Price based programs

use di�erent pricing schemes (2) Incentive based programs use

�nancial or other bene�t to enroll customers in the DR programs.

�e price based DR programs consist of

(1) Flat Pricing: Fixed price per unit of electricity

(2) Block Rate Pricing (BRP): Flat price but changes under dif-
ferent usage (blocks) of electricity

(3) Time of Use Pricing (TOU): Flat price during di�erent time

periods of the day

(4) Critical Peak Pricing (CPP): Price is not �at and can changes

under di�erent system conditions

(5) Real Time Pricing (RTP): Price changes in each time inter-

vals

In this paper, we use BRP as a DR program to motivate customers

to reduce or shi� their load. In BRP there is a threshold of electricity,

the price per unit increases or decreases as electricity consumption

increases beyond the threshold (blocks). �is can discourage or

encourage customers to use less or more electricity [4]. We consider

a situation in which the power supply is �exible and there are two

blocks of BRP. �e consumers maximize their net utility over the

whole day. It is proved that under BRP and quadratic cost function

the system achieve equilibrium that maximizes social welfare. A

distributed algorithm is proposed to �nd the equilibrium. �e

implementation of proposed distributed algorithm requires twoway

communication between the utility company and the customers.

Such kind of communication is possible with Advanced Metering

Infrastructure (AMI).

�e paper is organized as follow. Literature review is presented

in section 2. In section 3 utility maximization problem is formu-

lated under BRP. Distributed algorithm and numerical results are

presented in section 4. Conclusions are drawn in section 5.

2 RELATEDWORK
A large number of related literature exists on DR and di�erent

market models for the power system. In this section, we discuss

the work that is related to our approach.
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In [5] two market models for demand matching and demand

shaping are presented. �e equilibrium of these models is studied

under competitive and oligopolistic situations and distributed algo-

rithms are presented for their solution. Similarly, in [16] a demand

response solution based on utility maximization using TOU pricing

is derived. �e e�ect of TOU pricing in power system with plug-in

hybrid electric vehicle is studied in [14] and it is concluded that

TOU price is an e�ective method to reduce the peak demand. An

extensive study of di�erent pricing methods on residential users

is presented in [11]. �e data suggests the CPP along with auto-

matic curtailment is a good DR technique. However, it can cause

serious hardships for consumers. A real time pricing model under

many distributed generation units is proposed in [7]. A distributed

algorithm is also presented that can solve the problem. �e e�ect

of BRP on residential customers in chine is studied in [8] and some

interesting �ndings are reported. �e BRP will substantially im-

prove the equity and e�ciency of residential customers. Secondly

the BRP the electricity consumption of residential customers will

be reduced, which results in the reduction of carbon emission.

3 PROBLEM FORMULATION
Consider a power system with a set N of users/customers and a

set T of time slots in a day. �ese customers are served by one

power company. For each customer i ∈ N and t ∈ T there is

a power consumption denoted by xti . Moreover, each customer

has a minimum and maximum power consumption in a day. �e

minimum power consumption corresponds to basic requirements

over the whole day and maximum power consumption corresponds

to all equipment running the whole day.

T∑
t=1

xti ≥ Dmin
i , i ∈ N (1)

T∑
t=1

xti ≤ Dmax
i , i ∈ N (2)

We consider BRP with two blocks, the pricing of �rst and the sec-

ond block is represented by P tl and P tl respectively. For every time

t there is a prede�ned threshold bt . When electricity consumption

is increased beyond the threshold bt the electricity price increases

or decreases step wise.

P t =

{
P tl if 0 ≤ xti ≤ bt

P tu if bt ≤ xti
(3)

A�er consuming xti power each user obtains a utilityU (xti ), which
represents the level of satisfaction of a user as a function of power.

�e utility function should be non-decreasing and concave such

that zero utility corresponds to zeros power consumption [5]. We

can write xti into two parts such that one is equal to and less than

bt and the other is greater than or equal to bt .

xti = min(xti ,b
t ) +max(xti ,b

t ) − bt (4)

�e power company incurs a cost C(D, t) for providing D demand

at time t . �e cost function is ideal to model time dependent power

production such as renewable energy resources. We assume that

the cost function is quadratic in D.

�e goal of power company is to maximize its net revenue.

Which is pro�t minus cost.�e pro�t and cost for a single time

slot t are given below.

Pro f it = P tl ∗
∑
i ∈N

min(xti ,b
t ) + P tu ∗

∑
i ∈N
(max(xti ,b

t ) − bt ) (5)

Cost = C
( ∑
i ∈N

min(xti ,b
t ) +

∑
i ∈N
(max(xti ,b

t ) − bt ), t
)

(6)

We can replace min and max functions with dummy variables by

adding additional constraints [3].

min(xti ,b
t ) = yti

subject to: yti ≤ xti ; y
t
i ≤ bt

(7)

max(xti ,b
t ) = zti

subject to: zti ≥ xti ; z
t
i ≥ bt

(8)

By using the above variables we can write xti as

xti = y
t
i + z

t
i − b

t
; i ∈ N , t ∈ T (9)

Using yti and z
t
i the above net revenue problem becomes.

Maximize:

yti ≤x ti
yti ≤bt
zti ≥x ti
zti ≥bt
x ti ≥0

x ti =y
t
i +z

t
i −bt

∑
t ∈T

(
P tl

∑
i ∈N

yti + P
t
u

∑
i ∈N
(zti − b

t ) −C(
∑
i ∈N
(yti + z

t
i − b

t ), t)
)

(10)

By taking partial derivatives the solution of above problem becomes.

P tl =
∂C(∑i ∈N (yti + z

t
i − b

t ), t)
∂(∑i ∈N yti )

; t ∈ T (11)

P tu =
∂C(∑i ∈N (yti + z

t
i − b

t ), t)
∂(∑i ∈N zti )

; t ∈ T (12)

3.1 Utility Maximization
In this section we consider a competitive market where customers

take the price communicated by power company. For real time

block rate pricing P tl and P tu the customer i allocates its energy

usage to maximize its aggregated net utility,along with constraints

(1) and (2).

Maximize:

x ti ≥0

∑
t ∈T

(
U (xti ) − P

t
l min(xti ,b

t ) + P tu (max(xti ,b
t ) − bt )

)
Subject to:

T∑
t=1

xti ≥ Dmin
i

T∑
t=1

xti ≤ Dmax
i

(13)
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Using the (7), (8) and (9) the above problem can be transformed into

Maximize:

yti ≤x ti
yti ≤bt
zti ≥x ti
zti ≥bt
x ti ≥0

x ti =y
t
i +z

t
i −bt

∑
t ∈T

(
U (yti + z

t
i − b

t ) − P tl y
t
i − P

t
u (zti − b

t )
)

Subject to:

T∑
t=1
(yti + z

t
i − b

t ) ≥ Dmin
i

T∑
t=1
(yti + z

t
i − b

t ) ≤ Dmax
i

(14)

�e above model captures both the real time block rate pricing

and demand shi�ing. �e sum over the t enforce the demand

shi�ing. �e solution of above problem is the equilibrium of the

competitive market problem (14). We can �nd the equilibrium using

the Lagrange dual function by using Lagrange multipliers λ1i ≥ 0

and λ2i ≥ 0 for constraints in (14) . �e optimal yti and z
t
i are given

below by following KKT conditions [3].

∂U (yti + z
t
i − b

t , t)
∂yti

− P tl − λ
1

i + λ
2

i = 0; i ∈ N , t ∈ T

∂U (yti + z
t
i − b

t , t)
∂zti

− P tu − λ1i + λ
2

i = 0; i ∈ N , t ∈ T

λ1i (
T∑
t=1
(yti + z

t
i − b

t ) − Dmax
i = 0); i ∈ N

λ2i (D
min
i −

T∑
t=1
(yti + z

t
i − b

t ) = 0); i ∈ N

(15)

A competitive equilibrium for demand response system is a system

of equations that simultaneously solves (11), (12) and (15). �e equi-

librium consists of variables {yti , z
t
i , P

t
l , P

t
u } that solves equations

(11), (12) and (15) simultaneously.

Theorem 3.1. �ere is a unique equilibrium for a competitive
demand response system under block rate pricing. Moreover, the
equilibrium maximizes the social welfare.

Maximize:
yti ≤x ti
yti ≤bt
zti ≥x ti
zti ≥bt
x ti ≥0

x ti =y
t
i +z

t
i −bt

∑
t ∈T

( ∑
i ∈N

U (yti + z
t
i − b

t ) −C(
∑
i ∈N
(yti + z

t
i − b

t ), t)
)

Subject to:
T∑
t=1
(yti + z

t
i − b

t ) ≥ Dmin
i , i ∈ N

T∑
t=1
(yti + z

t
i − b

t ) ≤ Dmax
i , i ∈ N

(16)

Proof. We have assumed that our cost function is quadratic,

under this assumption

∂C(∑i∈N (yti +zti −bt ))
∂(∑i∈N yti )

=
∂C(∑i∈N (yti +zti −bt ))

∂yti
.

Using this fact if we put 11 and 12 into 15, we get the equilib-

rium condition for the social welfare problem 16. Moreover the

equilibrium is unique since the problem 16 is strictly convex.

∂U (yti + z
t
i − b

t )
∂yti

−
∂C(∑i ∈N (yti + z

t
i − b

t ))
∂yti

− λ1i + λ
2

i = 0;

∂U (yti + z
t
i − b

t )
∂zti

−
∂C(∑i ∈N (yti + z

t
i − b

t ))
∂zti

− λ1i + λ
2

i = 0;

λ1i (
T∑
t=1
(yti + z

t
i − b

t ) − Dmax
i = 0); i ∈ N

λ2i (D
min
i −

T∑
t=1
(yti + z

t
i − b

t ) = 0); i ∈ N

(17)

�

4 DISTRIBUTED ALGORITHM AND
NUMERICAL RESULTS

In this section we �rst propose a distributed algorithm to �nd

the equilibrium and then we present the results that show the

convergence of algorithm to optimal pricing and customers demand.

4.1 Distributed Algorithm
�e social welfare optimization problem 16 can be solved in a

distributed and iterative way using gradient based algorithm [2].

We assume that the bracket interval bt are already de�ned and

communicated to the users. �e whole procedure repeats for every

time step.

At the start of kth iteration

• �e utility company communicates to each user and re-

ceives the demand data (xt+1i )
k
for the next time slot t + 1.

Using bt+1 and (xt+1i )
k
, the utility company computes

(yt+1i )
k , (zt+1i )

k

• Using (yt+1i )
k , (zt+1i )

k
the utility company computes prices

for both brackets and communicate them to users

(P t+1l )k =
∂C(∑i ∈N ((yt+1i )

k + (zt+1i )
k − bt+1), t)

∂(∑i ∈N (yt+1i )k )
(18)

(P t+1u )k =
∂C(∑i ∈N ((yt+1i )

k + (zt+1i )
k − bt+1), t)

∂(∑i ∈N (zt+1i )k )
(19)

• A�er receiving the price each user i update its demand

using gradient based method [2].

(yt+1i )
k+1 = [(yt+1i )

k+γ (
∂U ((yt+1i )

k + (zt+1i )
k − bt+1

∂(yt+1i )k
)−(P t+1l )k )]si

(20)

(zt+1i )
k+1 = [(zt+1i )

k+γ (
∂U ((yt+1i )

k + (zt+1i )
k − bt+1

∂(zt+1i )k
)−(P t+1u )k )]si

(21)

Where γ > 0 is a constant step size used in gradient methods

[2]. �e set si represents the projection on the constraints given by

1,2, 7, 8 and 9. �is operation can be easily performed by the users
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(a) (b) (c)

Figure 1: E�ect of γ on the convergence of algorithm for β2 > β1 (a) γ = 0.01 (b) γ = 0.1 (c) γ = 0.3

since all these constraints are of same user. Since the problem is

convex, it converges for small γ . �e whole algorithm repeats for

each time step t . Both the power company and users jointly run

the market under BRP.

4.2 Numerical Example
We consider a simple numerical example of two customers(N = 2),

with bt = 25. �w utility function used is given in eq 22, where

wi ∈ [10 − 100] and α = 1. We consider a step wise quadratic cost

function, Where the cost changes a�er providing �rst bt ∗ N units

of electricity. If the cost increases it discourages customers to use

less electricity and P tu > P tl . Similarly, if the cost of production

decreases it encourages customers to use more electricity and P tl >

P tu . �is cost function is more generic since there is a base power

ful�lled by one set of generation units and as the demand increases

the utility runs additional generation units with di�erent cost. �e

cost function is given in eq 23.

U (xti ) =
{
wix

t
i − α(x

t
i )

2
if 0 ≤ xti ≤

wi
α

w2

i
2α if

wi
α ≤ xti

(22)

C(D) =
{
β1D

2
if 0 ≤ D ≤ btN

β2D
2

if D > btN
(23)

Figure 1 shows the e�ect of di�erent γ on the convergence of

algorithm, with β2 > β1. As γ increases the algorithm started to

converge in less iterations. Since β2 > β1 the price of second block

is greater than the price of �rst block (Pu > Pl ).

5 CONCLUSION
In this paper we formulate a DR program under block rate pricing

with two blocks. We consider a competitive market where users

try to maximize their net utility and the power company try to

maximize the net revenue. It is proved that under block rate pricing

and quadratic cost function, the system achieves an equilibrium,

which is unique and e�cient. We propose a distributed algorithm

to compute the equilibrium. �e numerical results demonstrate

that the distributed algorithm can e�ciently compute the pricing

of both blocks.
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