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Abstract. Renewable sources are taking center stage in electricity gen-
eration. Due to the intermittent nature of these renewable resources, the
problem of the demand-supply gap arises. To solve this problem, several
techniques have been proposed in the literature in terms of cost (adding
peaker plants), availability of data (Demand Side Management “DSM”),
hardware infrastructure (appliance controlling DSM) and safety (voltage
reduction). However, these solutions are not fair in terms of electricity
distribution. In many cases, although the available supply may not match
the demand in peak hours, however, the total aggregated demand remains
less than the total supply for the whole day. Load shedding (complete
blackout) is a commonly used solution to deal with the demand-supply
gap, which can cause substantial economic losses. To solve the demand-
supply gap problem, we propose a solution called Soft Load Shedding
(SLS), which assigns electricity quota to each household in a fair way.
We measure the fairness of SLS by defining a function for household
satisfaction level. We model the household utilities by parametric func-
tion and formulate the problem of SLS as a social welfare problem. We
also consider revenue generated from the fair allocation as a performance
measure. To evaluate our approach, extensive experiments have been
performed on both synthetic and real-world datasets, and our model is
compared with several baselines to show its effectiveness in terms of fair
allocation and revenue generation.

Keywords: Soft Load Shedding, Fair Allocation, Max Min Fairness, Alpha Fair
Allocation, Demand Response

1 Introduction

Many countries have plans to shift to renewable sources of electricity by 2050 [1,2].
This is mainly due to environmental and cost-related problems with fossil fuel-
based power plants. While renewable sources (such as solar and wind) provide
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an environmentally friendly solution to the energy demand, they also create
challenges in the electricity distribution system. The problems mostly originate
from the variable and stochastic nature of renewable sources, which introduces
the demand-supply gap of electricity [3].

Utility companies use different approaches to handle the demand-supply
gap. The most commonly used method is to use fossil fuel-based peaker plants.
However, these stand-by plants are incredibly costly to operate [4]. Real-Time
Pricing (RTP) is another method to match demand with supply, where the price
of electricity changes in real-time. At peak load hours, the price is high, which
restrain consumers/households from using excessive electricity [5,6]. However,
real-time pricing schemes have a rebound effect when the price falls, which
induces artificial peaks. Demand-side management (DSM) techniques have been
proposed to reduce the total load or at least partially shift it to non-peak hours.
In some DSM techniques, the utility companies must have direct control over
consumers’ appliances. This is not only difficult to practically implement but
also illegal in some countries. Methods like electricity storage [7,8], where the
utility maintains a reservoir of excess energy produced during non-peak hours
for peak time usage, is costly. Electricity curtailment programs [9], that provide
(financial) incentives to consumers to reduce electricity consumption does not
provide any reduction guarantee from the consumers. Varying electricity voltage
[10] also has severe limitations as it affects stability and may lead to failure of
costly appliances. In the worst-case scenario, utility companies have to perform
load shedding (complete blackout) in order to deal with the demand-supply gap.

Electricity loads are broadly of two types, flexible and inflexible. Flexible
loads can be shifted to another time window e.g. some industrial units can
be operated at different hours of the day. Inflexible loads, on the other hand,
are those where the activity can only take place at a specific time. The load
of residential consumers is semi-flexible, i.e. while some appliances are crucial
to be run at a specific time, others can be scheduled at a different time [11].
While exploiting this demand elasticity, we purpose a soft load shedding (SLS)
approach based on allocating a limited quota of electricity to each consumer
during peak hours. Thus, when the total demand exceeds the available supply,
the SLS scheme will allow consumers to use only essential appliances and keep
the total load within the supply limit. This will let consumers play an active role
in managing demand by prioritizing their loads and exercising their maximum
flexibility while retaining control of their appliances.

With Advanced Metering Infrastructure (AMI) that has the capability of
threshold metering, implementation of a SLS scheme is feasible. These smart
meters can be programmed remotely to limit supply within a fixed period to
a certain quota [6,4]. Note that the implementation of SLS requires certain
provisions in customers’ contracts. In this paper, we assume that such provisions
are available and focus only on the data analytics aspects of rolling out such a
scheme.

There are significant data analytics challenges for rolling out the SLS mech-
anism. Firstly, it requires knowledge of household demands and the available
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supply at a given time. Several predictive data analytics and forecasting methods
have been proposed for these problems [12,13,14,15]. Secondly, with the increasing
number of households, obtaining an optimal solution becomes computationally
infeasible. One way to deal with this problem is to cluster the consumers based on
their demands and use the aggregated demand of a set of households rather than
the individual household. Another way is to aggregate the demand of a day (24
hours) or week and assign the quota to cluster of household for the whole day or
week rather than an individual hour. To cluster the households and aggregate the
daily/weekly load, several techniques have been proposed in literature [16,12,13].
In this paper, since the number of consumers is small for each dataset, we are
not clustering the consumers.

The goal of SLS is to assign a quota of electricity to each household fairly and
efficiently. Thus, SLS is a resource allocation problem. Any such a scheme must
allocate all available supply (maximum efficiency) and maintain a steady revenue
to the supplier [17]. A significant aspect of the resource allocation problem is to
distribute electricity among households in such a way so that each household
gets a fair amount of electricity [18]. We have modeled the households’ utilities
by a parametric function (α-fair) and formulated SLS problem as a social welfare
maximization problem. Our parametric solution encompasses many well-known
fairness notions as its special cases. We have also studied the effect of α on revenue
generation considering block rate pricing. The parameter α can be tuned to find
the optimal trade-off between fairness and generated revenue. We performed
experiments on several datasets to extensively evaluate our method. We compare
our results with several baselines and show that our model is effective in terms
of increasing consumers satisfaction level as well as increasing the revenue for
the utility companies at the same time. Note that throughout the paper, we are
using the “consumer” and “household” word interchangeably.

The rest of the paper is organized as follows. We review some related work
on demand-side management and fair allocation in Section 2. In Section 3, we
formulate the problem of SLS. We describe our approach towards solving the
SLS problem in Section 4. In Section 5, we describe experimental setup and
dataset description while results and their comparisons are given in Section 6.
The paper is finally concluded in Section 7.

2 Related Work

The problem of fair allocation of resources is deeply explored in different literatures
related to computer sciences, communication systems, economics, game theory
and social sciences [19,20,21]. The mathematical foundation of α fair utility
functions is formulated in [18] in which a general form of fairness measure is
presented, which is derived from five axioms (continuity, homogeneity, asymptotic
saturation, irrelevance of partition, and monotonicity). A study for the allocation
of rate and charging for a communication network has been carried out in [22].
In this study, optimization problem is proposed supposing elastic traffic. The
equilibrium and fairness criteria of problem are also explored. An online version
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of fair allocation of food for charity purpose is formulated in [23]. The idea to
use computation to increase both fairness and efficiency is presented in [24]. The
problem of fair allocation, pareto optimality and efficiency are also well explained
in [25] with respect to communication networks.

Although there is a vast amount of literature on topic related to resource
allocation and fairness in different fields, but there is no solid work in this
field related to fair and effective electricity allocation. The problem of soft
load shedding is proposed in [11]. However, the solution provided is based on
qualitative reasoning, and no mathematical justification is provided. The notion
of fairness is also not mentioned in the paper. Mansoor et al. in [26] studies a
market model for Demand-Response (DR) using block rate pricing and propose
a distributed algorithm to find the optimal pricing for each block and the load.
However, in their proposed method, both customers and the utility have to
actively participate, which can make the system difficult to implement in real
world scenario. Chandan et al. in [27] purposed a (DR) program controlled from
utility that maximizes user convenience. However, this approach is possible with
deep understanding of customers appliances usage pattern. Such kind of data is
not available for all customers at utility scale. Our method, however, only require
load data of consumers. In [28] a direct load control method that is capable to
enforce several user defined low power states is presented. It directly controls the
appliances of the house to manage the load. This method is only applicable if
all appliances have the remote control capability. Secondly, implementing this
technique on utility scale involves control of multi-million devices, which brings
huge cost. Similarly, a queuing based energy management system for residential
consumers is proposed by [29], which also require direct load control from the
utility companies. However, as explained earlier it very costly to control these
devices for million of customers.

An efficient DR system is proposed in [30], in which the authors propose a
solution to match the demand with supply while trying to avoid complete blackout
for majority of households and maximizing the satisfaction level of consumers.
An algorithm for fair load shedding scheme is proposed in [31], in which authors
divide the customers into groups so that the total electricity shortfall is equal
to the total demand of each group. Then one group is selected to perform load
shedding. However, their method performs complete blackout for a certain group,
which can cause discomfort for the consumers.

Although a few SLS schemes have been proposed in the literature, however,
no discussion regarding the fair allocation and revenue generation in the SLS
schemes is discussed. We formulate the problem of SLS as a social welfare
optimization problem. We introduced a parametric notion of fairness to the
solution and studied the revenue generated under different allocations.

3 Problem Formulation

In this section we describe the requirements for SLS problem. Consider a set of
N users where each user can be an individual customer or a household. These
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households are served by one power company. The total electricity supply available
to the company is S. For every household i ∈ N , there is a maximum power
demand denoted by di. Moreover, the sum of available demands is greater than
the supply.

N∑
i=1

di ≥ S (1)

To solve the problem of SLS, the power company has to assign each household
an allocation of electricity xi. Moreover, the allocation problem should clear the
market i.e the aggregated allocations is equal to the supply.

0 ≤ xi ≤ di, i ∈ N (2)

N∑
i=1

xi = S (3)

In this paper, we have considered a general notion of fairness called α-fair.
An allocation x∗i is α fair if for any other allocation xi, we obtained the following
inequality from [22]

N∑
i=1

xi − x∗αi
x∗αi

≤ 0 (4)

where α ∈ [0,∞]. Different values of alpha produce different fairness measures
with varying efficiency [32]. When α = 0 the efficiency (throughput) of the
solution is maximum, and it favors larger allocations. When α = 1, the fairness
measure becomes the most popular proportional fair [33]. Proportional fair
solution favors smaller allocations but less emphatically. As we increase α the
fairness measure shifts favors from larger allocations to smaller one. An important
characteristic of α-fairness is that as we increase α the total throughput (

∑N
i=1 xi)

decreases. However, in SLS problem the efficiency is always maximum due to
market clearance constraint (

∑N
i=1 xi = S).

4 SLS Problem

We take an optimization approach towards the SLS problem. To formulate
the SLS optimization problem, we associate a utility function Ui(xi) to ith

consumer for xi consumption of electricity. The utility function measures the
importance/satisfaction of the household as a function of the consumed elec-
tricity. We assume that the utility Ui(xi) is an increasing, strictly concave and
continuously differentiable, function of xi over xi ≥ 0 [22]. Assume further that
the utilities are additive , so that the total utility of all consumers is following:

N∑
i=1

Ui(xi) (5)
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To find optimal electricity quota for each consumer, the utility company has
to solve the following social welfare optimization problem.

maximize:

N∑
i=1

Ui(xi)

subject to:
N∑
i=1

xi = S

xi ≥ 0, i ∈ N

xi ≤ di, i ∈ N

(6)

The SLS problem from Equation (6) is a convex optimization problem. The
objective function is the sum of concave functions and is concave. The feasible
region is an intersection of linear equality and inequalities, which is a convex set.
First, we prove that solving the SLS problem is equivalent to maximizing the net
utility of each household. Since the problem is convex, there is a unique solution,
which can be found using the Lagrangian method.

L(x, λ) =

N∑
i=1

Ui(xi) + λ(S −
N∑
i=1

xi) (7)

Where λ is the Lagrange multiplier. By taking partial derivative with respect
to xi,

∂L

∂xi
= U ′(xi)− λ, i ∈ N (8)

Where λ can be interpreted as per unit electricity price. If every household is
charged price λ, and is allowed to freely change the electricity units (demand),
then each household wants to solve the following net utility maximization problem.

maximize: Ui(xi)− λxi

subject to:
xi ≥ 0, i ∈ N

xi ≤ di, i ∈ N

(9)

Theorem 1. There exists a price variable λ, such that the solution vector of
optimization problem in Equation (9) also solves the optimization problem for
Equation (6).
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Proof. Since the problem in Equation (9) is convex, its solution can be found by
taking derivative, which is given below.

U ′(xi) = λ, i ∈ N (10)

This is same as equilibrium condition of Equation (6) as shown in Equation (8)

We define Uα(xi) as a general class of utility functions whose solution is α-fair
allocation of electricity. The general form of alpha fair utility function is given in
Equation (11).

Uα(xi) =


x1−αi

1− α
α ≥ 0, α 6= 1

log(xi) α = 1
(11)

If we put α = 0 in Equation (11), the objective function is equivalent to max-
imizing the throughput (efficiency) of the problem. Throughput fairness gives
priority to larger allocations. If we use α = 1 the resulting allocation vector is
called proportionally fair. Proportional fair electricity allocation is achieved by
maximizing the sum of logarithms of received electricity

∑N
i=1 log(xi). A system

is called proportional fair if we cannot provide any customer with a larger fraction
of electricity without reducing the proportion to those that are receiving a smaller
fraction of electricity. Proportional fair gives priority to smaller allocations but
less emphatically. Between α = 0 to α =∞ different fairness criterias originate.
As we increase α the allocation priority moves from larger to smaller allocations.

It is a well know fact that larger α means more fair solution. However, for
a system with single supply, proportional fair (α = 1) is same as max-min fair
(α =∞) [22]. Generally, as we increase α, the fairness of solution increases but

the total efficiency/throughput (
∑N
i=1 xi) decreases [32]. However, in the problem

of SLS, the efficiency (throughput) always remain the same (maximum) due to
the market clearance constraint (sum of allocation always equal to the supply)

i.e.
∑N
i=1 xi = S.

Recall that SLS is performed on the flexible loads that can be shifted to some
other time (hour). In a scenario where there are not enough flexibility loads
available with the majority of the consumers that can be disabled in the critical
moment, the available supply will be equally divided among all consumers.

5 Experimental Setup

In this section, we first discuss dataset statistics for both real-world and synthetic
datasets and give our performance metrics. Then we discuss the baseline methods,
which we are using for the comparison with our proposed approach.

5.1 Dataset Description and Performance Measure

For synthetic datasets, we generate data using Binomial and Uniform distributions
with 100 values (households) for each distribution. Increasing the number of
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households has no significant difference in terms of performance (not in terms
of runtime), that is why we consider 100 values only (so that results can be
computed fast).

For real world datasets, we use hourly consumption data from Australia [3],
Sweden [34], and Ireland [35]. For each dataset, one day is randomly selected and
load of 24 hours are aggregated for that day. The statistics of all datasets after
removing consumers with missing values are given in Table 1. The aggregated
load values of all households for randomly selected day of real world datasets are
given in Figure 1.

Dataset No. of Consumers No. of Hours Duration

Australia 34 26304 1-July-2010 to 30-Jun-2013

Sweden 582 17544 1-Jan-2004 to 31-Dec-2005

Ireland 707 12865 14-Jul-2009 to 31-Dec-2010

Table 1: Statistics of real world datasets
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Fig. 1: Aggregated Load of a randomly selected day (24 hours)

For experiments, we tried different values of alpha α ∈ [0, 10000]. The available
supply is varied from 60% to 95% of the total demand. All experiments are
performed in Matlab using cvx toolbox on core i3 system with 4GB memory.

We consider two metrics to measure the performance of our approach, (i)
Consumer Satisfaction Level (maximizing the utility) and (ii) Revenue generation.
Both metrics are described as follow:

Consumer Satisfaction Level: To measure the satisfaction level of households,
we use utility function described in [30]. We divide the satisfaction level of
households into 5 levels. Depending on the percentage of allocation with respect
to their demand, households will be placed in one of the 5 levels. The utility
function is given in Equation (12).
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U(Umax, thU , thL) =



Umax for L5

thU for L4
thU+thL

2 for L3

thL for L2

0 for L1

(12)

In Equation (12), Umax is the state where the household has highest satisfaction
level “L5” (i.e. household is getting allocation of electricity that is between 76%
to 100% of its demand), while L0 means complete blackout (i.e. zero allocation).
L1 to L4 are considered as restricted power states. The upper threshold thU and
lower threshold thL contains 75% and 25% allocation respectively with respect
to the demand of consumers. Our goal is to remove as much households from
state L1 as possible and shift them to any of the upper states. In ideal scenario,
all households should be placed in L5 provided that the shortfall constraint is
satisfied.

Revenue Generation: We consider revenue generation to measure the perfor-
mance of our approach because utility companies want to maximize revenue and
hence profit. Different utility companies use different pricing strategies like (flat
tariff, block rate tariff, time of use tariff, real-time pricing etc.). In this study,
we used block rate tariff because it is the most popular one (in most developing
countries). Under block rate tariff, the revenue generated not only depends on
total throughput but also the distribution of allocation vector. In block rate
tariff, different blocks of energy are charged at different rates. The rate per unit
in each block is fixed. The succeeding block prices could be greater or lower
than previous blocks. Since, in this study, we have considered a limited supply,
increasing block rate pricing is used to discourage prodigious usage of electricity.
A three block rate tariff with the increasing price is shown in Figure 2.

b1 b2

Fig. 2: Block rate tariff. In our experiments, we are using two blocks with thresh-
olds b1 and b2 and fix prices for the blocks that is p1 = 10 and p2 = 20
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The revenue generated from the ith household using block rate tariff with T
blocks is given below

Ri =


p1xi xi ≤ b1
p1b1 + p2(xi − b1) b1 < xi ≤ b2
...

...

p1b1 + p2(b2 − b1) + ...+ pT (xi − bT ) bT < xi

(13)

Where {p1, p2, . . . , pT } is the price associated with {block 1, block 2, . . . , block T}.
The total revenue generated is

∑N
i=1Ri. Since pT > pT−1... > p1, the fairness

measure, which gives larger allocation priority will produce more revenue. However,
revenue is not the only objective we are concerned with as we have explained
earlier that we also want the allocation to be fair. In this situation, there should
be some compromise between revenue maximization and satisfaction of consumers
in term of fairness.

For block rate pricing we are using two blocks with p1 = 10 and p2 = 20.
Since, the revenue generated depends upon the selection of block threshold b, we
tried different values of b from 10 to 90 percentile of upper bound vector di, for
i ∈ N .

5.2 Existing Methods Used for Comparison

There are many simple baseline methods to execute the SLS mechanism. However,
these methods are inefficient, or they result in a very unfair allocation. First,
we considered a simple mechanism of equally dividing the available supply. This
mechanism is called equitable allocation and defined as xi = S

N , i ∈ N . However,
equitable allocation is not an efficient solution because each household has a
variable amount of demand. Allocating equal electricity to each household means
that some households will get more electricity than their demand and vice versa.

Another baseline solution is percentage equitable. In this method, each house-
hold gets an equal fraction of electricity. For example, if there is an 80% deficit of
electricity, then each household will get 20% of their demand. The drawback of
this approach is that there are many households that are already using a minimal
amount of electricity (only for their basic needs). Reducing their electricity de-
mand will result in a very unfair allocation. Hence we are not using this baseline
for comparison in our results.

The second method, which we use as a baseline, is Max-Min fair allocation [36].
The primary objective of this algorithm is to maximize the minimum allocation
for each household. This algorithm favors households that have smaller demand.
The algorithm works as follows: We take the household with the minimum
demand (min(di), for i ∈ N) among the available set of household and give
every household min(di) amount of load. Repeat this process until S = 0. When
S = 0, the quota assigned to each household will be considered as final allocation.
Suppose if in a particular scenario, the available supply is not enough to assign
the min(di) to every household, then the remaining supply is equally divided
among all households.
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6 Results and Comparison

In this section, we show the results in terms of consumer satisfaction and revenue
generation for our proposed approach (see Equation 6 for our proposed approach)
and compare them with the baseline (see Section 5.2 for baseline methods) using
different datasets.

6.1 Results on Synthetic datasets

Results for synthetic datasets are given in Figure 3, which shows the number of
consumers in each of the 5 categories (L5, L4, L3, L2, L1) for dataset generated
using binomial (above row) and uniform (bottom row) distribution for 100
households and varying the shortfall percentage. We can see that as the shortfall
increases, the overall satisfaction level of consumers decreases. However, in
comparison with the baselines, our proposed approach satisfies a greater number
of consumers. One important behavior to note here is that no approach place
any consumer in the category L1 (complete blackout). This behavior shows that
our approach (along with the baselines) is more effective as compared to the
complete load shedding approaches.
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Fig. 3: Comparison (using stacked bar plot) of our proposed approach using
different values of α (see Equation 6 for our proposed approach) with max-min
fair and equitable allocation using data generated from binomial (top row) and
uniform (bottom row) distribution for 100 households. Figure is best seen in color
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6.2 Runtime Analysis

With the increasing number of households, the runtime of our proposed approach
remains almost linear. Figure 4 shows the time (in seconds) of our approach
with increasing number of households using dataset generated from binomial
distribution (see Section 5.1 for detail regarding datasets).
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Fig. 4: Runtime in seconds for data generated from binomial distribution with
alpha = 2 and shortfall of 20%

6.3 Results on Real-world datasets

The results for real-world datasets, namely Sweden, Australia, and Ireland
are given in Figure 5. We observed similar behavior for real-world datasets as
compared to the synthetic dataset.

To evaluate the behavior of our method on the different types of consumers,
we categorize the consumers into low demand, medium demand, and high demand
consumers. To categorize the consumers, a consumer with highest load (of a
randomly selected day) is taken from each dataset and its load is divided by
3 to get the thresholds for low, medium, and high category. For each category,
we separately computed results (using the load of same randomly selected day
as described above) to see the behavior of our algorithm. Results for different
categories of consumers for Sweden dataset with the shortfall of 20% and 40% are
shown in Figure 6. We can observe that our algorithm is more inclined towards
the low and medium category of consumers. As we move towards high demand
consumers, the algorithm starts to place them in lower categories (i.e. L4). This
behavior is due to the fact that since the demand for high-end consumers is
very large, satisfying their needs while fulfilling the available supply constraint
(
∑N
i=1 xi = S) is very difficult. We conclude that our algorithm favors low demand

consumers more. Since the number of low demand consumers is greater than
the high demand consumers, the algorithm tries to satisfy the majority (low
demand consumers) and hence fulfilling the fairness criteria. Similar behavior is
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Fig. 5: Comparison of our proposed approach with max-min fair and equitable
allocation on Sweden (top row), Australia (middle row), and Ireland (bottom
row) dataset. Figure is best seen in color

observed for other datasets as well. Note that in this paper, we have studied the
allocation problem for residential consumers only. Allocation for other sectors,
such as industrial and commercial areas is beyond the scope of this study.

Figure 7 shows the comparison of the actual load with our proposed approach
and the baselines for all households of Australia dataset on a randomly selected
day (after aggregating the 24 hours of that day). We can see that the allocation
using the alpha fair approach is very close to the original load. The max min
is the second best in terms of allocation, while the equitable give a straight
line, which is the most inefficient approach. Same behavior is observed for other
datasets as well (their results are not shown because of space constraints).

The revenue generated for real world datasets and their comparison with the
baselines are shown in Table 2, 3, and 4. It can be seen that the generated revenue
increases as we increase the supply S. This behavior is obvious as large supply
yields large revenue. As we increase the block rate threshold b from 10th to 90th
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Fig. 6: Comparison of different categories of consumers in Sweden dataset with
shortfall of 20% (top row) and 40% (bottom row). Figure is best seen in color
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Fig. 7: Comparison of Actual load vs. the allocated load using different techniques
for all households of Australia dataset for a randomly selected day. Figure is best
seen in color

percentile, the revenue generated decreases. Since p2 > p1 and as the value of b
increases, more units falls under p1 block which produces less revenue. Also note
that in comparison with the baselines (equitable and max-min), our approach
generates more revenue while also fulfilling the fair distribution criteria. This
high revenue generation highlights the effectiveness of our proposed approach.
Recall that increasing α favors smaller allocations. We can notice this effect as we
increase α, the revenue generated decreases. However, due to single source, the
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α
b = 10th b = 50th b = 90th

S=10%30% 60% 90% S=10%30% 60% 90% S=10%30% 60% 90%

0 3512.8 3280.8 2805.9 1946.4 3395.7 3186.3 2753.6 1914.2 3151.9 2971.3 2582.5 1839.2
0.5 3467.6 3166.3 2563.6 1808 3323.1 3021.8 2419.1 1808 3043.1 2741.8 2410.6 1808
1 3467.6 3166.3 2563.6 1808 3323.1 3021.8 2419.1 1808 3043.1 2741.8 2410.6 1808
10000 3509.6 3232.2 2669.7 1808 3392 3124.2 2586 1808 3147.6 2902.6 2424.9 1808
Equitable 3441.5 3140.1 2537.5 1808 3188 2886.7 2410.6 1808 2862.6 2712 2410.6 1808
Max-Min 3467.6 3166.3 2563.6 1808 3323.1 3021.8 2419.1 1808 3043.1 2741.8 2410.6 1808

Table 2: Revenue generated using Australia dataset with changing value of α,
shortfall, and block threshold b

α
b = 10th b = 50th b = 90th

S=10%30% 60% 90% S=10%30% 60% 90% S=10%30% 60% 90%

0 155920 145280 123990 81626 134180 123980 104020 68307 111120 103640 89662 64696
0.5 155890 145210 123840 81110 133780 123100 101730 64096 107990 97303 85462 64096
1 155890 145210 123840 81110 133780 123100 101730 64096 107990 97303 85462 64096
10000 155900 145230 123870 81169 134070 123530 102460 64207 110840 102040 86001 64096
Equitable 155830 145150 123780 81050 133130 122450 101080 64096 101490 96144 85462 64096
Max-Min 155890 145210 123840 81110 133780 123100 101730 64096 107990 97303 85462 64096

Table 3: Revenue generated using Sweden dataset with changing value of α,
shortfall, and block threshold b

proportional fair (α = 1) is equal to max-min fair (α =∞) [22]. The proportional
fair gives priority to smaller allocation but less emphatically. As we follow block
rate pricing, favoring smaller allocation will not give a high profit. That is why
the revenue generated for α = 1 is less than the revenue for α = 1000 in most
cases. The maximum revenue is generated for α = 0.

α
b = 10th b = 50th b = 90th

S=10%30% 60% 90% S=10%30% 60% 90% S=10%30% 60% 90%

0 77210 71284 60283 40917 75077 69516 59102 40532 67065 62959 54875 39301
0.5 77034 70687 57994 38080 74601 68254 55561 38080 64775 58429 50773 38080
1 77034 70687 57994 38080 74601 68254 55561 38080 64775 58429 50773 38080
10000 77166 70919 58529 38083 75000 68870 56808 38080 66947 61566 51442 38080
Equitable 77025 70679 57985 38080 74430 68084 55390 38080 60293 57120 50773 38080
Max-Min 77034 70687 57994 38080 74601 68254 55561 38080 64775 58429 50773 38080

Table 4: Revenue generated using Ireland dataset with changing value of α,
shortfall, and block threshold b

7 Conclusion and Future Work

In this paper, we propose an alternative to the load shedding scheme called SLS.
We mathematically formulate the problem of SLS as a social welfare optimization
problem. Solving the SLS problem is equivalent to maximizing the net utility
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of each consumer. We introduce a parametric notion of fairness called α-fair,
where α ∈ [0,∞]. As we increase α, smaller demands are given more preference.
When the total supply S is too large or too small, different values of alpha turns
in similar allocations. For single supply unit, proportional fair (α = 1) is equal
to max-min fair (α =∞). We consider block rate pricing to study the effect of
fairness on revenue generation. As we increase α, the generated revenue decreases.
The decision-makers can tune the value of α according to different scenarios of
fairness and revenue generation. We compare our approach with two baselines
and show that our proposed method is better in terms of fair allocation and
revenue generation. As the utility companies have to deal with multi-million
customers, one of the future direction is to compute the closed-form solution
of the problem or at least a parallel solution. Another future direction is to
formulate the SLS problem, which can incorporate the distributed electricity
generations of the smart grid.
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