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ABSTRACT

In developing countries, majority of the households use overhead
water tanks to have running water in their taps. These water tanks
are exposed to the elements, which usually render the tap wa-
ter uncomfortable to use, given the extreme subtropical weather
conditions. Externally weatherproofing these tanks to maintain
the groundwater temperature is short-lived, and only results in a
marginal (0.5−1 ◦C) improvement in tap water temperature. We
propose Ashray, an IoT-inspired, intelligent system to minimize
the exposure of water to the elements thereby maintaining its tem-
perature close to that of the groundwater. Ashray learns the water
demand patterns of a household and pumps water into the over-
head tank only when necessary. The predictive, machine learning
based, approach of Ashray improves water comfort by up to 8 ◦C
in summers and 3 ◦C in winters, on average. Ashray is retrofitted
into existing infrastructure with a hardware prototyping cost of
$27, whereas it can save up to 16% on water heating costs, through
reduction in natural gas consumption, by leveraging groundwater
temperature. Our proposed system, Ashray, can positively impact
the lives of millions of people in developing countries.
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1 INTRODUCTION

Background. Thermal comfort, i.e., satisfaction with the thermal
environment, is an important factor that determines human produc-
tivity and wellbeing [23, 29, 46]. This is more so as unprecedented
climatic changes are taking place, and we are witnessing ever more
frequent, severe, and deadly, heatwaves and cold spells. Thermal
comfort could mean the difference between life and death for the
most vulnerable population groups, i.e., infants, the elderly and
people with chronic health conditions as observed during recent
heatwaves gripping regions across Europe, Asia, Australia and
the Americas. For instance, the heatwave of 2003, which affected
many European cities, resulted in approximately 70,000 excess
deaths [6, 27, 38]. In France alone, a third of the recorded deaths,
roughly 5000 in just 9 days, were attributed exclusively to heat-
stroke [6, 35]. In addition to causing strokes, heat was also found
to aggravate cardiovascular diseases as well as psychiatric and pul-
monary illnesses [27]. A detailed analysis of the European heat
waves has revealed that people who had air conditioning at their
homes or visited cool places during the heat of the day experienced

better outcomes [6]. Similarly, people who cooled off by taking
extra showers were found to be at a lower risk of death [6].

Except for the oil rich countries in the Middle East and North
Africa, air conditioning is generally the least affordable option in re-
gions where it is most desirable, such as, Sub-Saharan Africa (SSA),
South Asia, and Indonesia for example [31]. Hence, in developing
countries, air conditioning is a rarity, both at homes and in public
spaces. For instance, Pakistan, SSA and many ASEAN1 countries
have the lowest per capita access to air conditioning [39]. This
makes these regions vulnerable to the deadly effects of heat waves,
which are projected to become more frequent in the years to come.
For example, in 2015, a deadly heat wave claimed approximately
3500 lives in India and Pakistan [10]. In the absence of affordable
air conditioning, people frequently splash water on exposed parts
of the body (face, neck, forearms etc.) and take showers to ward off
heat, especially in the pre-monsoon dry season when the maximum
day-time temperature often exceeds 45 ◦C. Thus, maintaining tap
water temperature within human comfort ranges is essential.

While optimal thermal comfort through air conditioning has
been extensively studied [1, 5, 30, 42, 48], water comfort has not
received the same level of attention. This is particularly important
for developing countries, where unlike the US and Europe, water
supply is intermittent and unreliable. Households typically require
large residential cisterns, which act as receptacles for water de-
livered by the public water supply or directly from community
tube-wells. By and large, water is supplied at groundwater tem-
perature due to underground distribution and storage networks.
The residential cisterns are used to replenish rooftop water tanks
that provide running water. These overhead tanks are usually made
of plastics and exposed to the elements, which inevitably impacts
the temperature of the stored water, thereby rendering tap water
uncomfortable and potentially unsafe for use [18].
Problem. In the US and Europe, homes are directly connected
to a continuously pressurized, on-demand, water source provided
by a publicly owned water utility that delivers running water to
each household at near constant groundwater temperature. In these
regions residential cisterns are extremely rare; the water supply
network is reliable enough that the cost of a cistern is generally not
worth the benefit. The remarkably constant ground water tempera-
ture, which approximately equals the annual mean temperature of

1Association of South East Asian Nations comprising of Brunei Darussalam, Cambodia,
Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand and Vietnam.
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Figure 1: Water supply in developing regions. (a) Box and

whisker plot constructed from groundwater temperatures

of 400 cities. The region under study is highlighted in grey.

Water is not delivered at these temperatures in taps. (b)

Household water distribution in developing regions. A large

cistern acts as receptacle for water supply. This water is

pumped into an overhead tank to provide running water.

the locality [36], makes it comfortable to use both in summers and
winters.

On the contrary, developing countries in the east, such as China,
India, Bangladesh, Pakistan, Sri Lanka, UAE andmany others, which
account for more than half of the world’s population, present a com-
pletely different scenario. Fig. 1a shows the calculated groundwater
temperature of several cities in the region under study. Unfortu-
nately, in this region, water is not delivered in the taps at these
temperatures. As the water supply is intermittent: a few hours per
day or even a few hours per week, large residential cisterns are
mandatory.

To have running water in taps, most households in this region
employ a two-reservoir water system, as shown in Fig. 1b. A rooftop
tank that is filled either on-demand or according to a fixed schedule
by pumping water from a underground cistern. The scorching sum-
mer heat in these regions can render tap water from overhead tanks
unusable during the day, as shown in Fig. 2. Similarly, in winters, the
water temperature falls significantly below human comfort range.
The latter issue may be dealt with by using a water heating system,
which may be costly but solves the problem. However, there is no
obvious solution for the former.

A cheap and effective solution to this problem holds a much
greater significance for developing countries where in the absence
of affordable air conditioning, people often splash water to achieve
thermal comfort and ward off the dry summer heat. The root cause
of this problem is the inevitable exposure of overhead tanks to direct
sunlight and the heat during the day, which sends the water tem-
perature soaring. Existing solutions may include weatherproofing
water tanks, either through constructing concrete tank structures,
which are costly and beyond the affordable reach of the majority of
the population; or via external insulation of overhead tanks, which
is short-lived and ineffective.
Challenges. In order to achieve thermal comfort from tap water,
its temperature must be maintained as close to groundwater as
possible. This can only be achieved if the exposure of water to the
elements is minimized during daytime, for example, by minimizing
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Figure 2: Empirical observations of diurnal household tap

water usage and temperature variations. The groundwater

temperature is 23 ◦C and replenishment is performed arbi-

trarily by the user. Tap water can get extremely uncomfort-

able both in summers and in winters as highlighted by the

shaded regions. The rooftop tank water temperature is dra-

matically impacted when it is filling up with groundwater.

the amount of time for which the water resides in the overhead
tank. To build a system that can accomplish this goal, we need to
thoroughly understand both water usage patterns and the impact
of diurnal variations in ambient temperature on tank water. This
can be challenging due to the following factors:
• Lack of systems: There is a lack of off-the-shelf integrated systems

with appropriate sensors for measuring and communicating,
preferably via wireless, the required variables, such as water
temperature and flow rate. Available water sensors only report
coarse-grained water flow measurements.

• Lack of data: As a direct consequence of lack of appropriate
systems, there is no data available for initial benchmarking and
analysis. In order to gain insights into the problem, extensive
data must be collected and analyzed first.

• Cost restrictions: For a successful roll out, the cost of the final
solution must be within the affordable range of ordinary con-
sumers. Moreover, the long term savings and benefits offered by
the proposed solution should preferably offset its deployment
cost.
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Solution. We propose Ashray2, a machine learning based system
that maintains tap water temperature as close to that of ground-
water as possible in order to enhance its capacity for providing
maximal thermal comfort. Ashray achieves this by minimizing the
amount of time for which groundwater resides in the overhead tank
before its consumption by the household, consequently, minimiz-
ing its exposure to the elements (heat, sunlight, etc.). To that end,
Ashray learns the water consumption behavior of the household
and pumpswater into the overhead tank only when it predicts immi-
nent water requirement. Ashray comes equipped with sensors that
measure water consumption and temperatures both in the overhead
tank and of the ambient environment. These measurements are
periodically sent to a local compute unit, which employs a machine
learning algorithm to learn the water consumption behavior of the
household as well as the impact of ambient temperature on the
temperature of water in the overhead tank. Ashray dynamically
adapts its pumping schedules to account for diurnal variations in
temperature. For example, in summers pumping is performed more
frequently during the day than at night.

The main contributions of our work are as follows:
• We build a water sensing platform that measures water con-

sumption, ambient temperature and the temperature of water in
the overhead tank. These measurements are reported wirelessly
to a local compute unit. Our platform comes with a recharge-
able battery backup to ensure continuous operation as electric
supply is intermittent in some target regions.

• We deploy this platform in three homes in the city and outskirts
of Lahore, Pakistan for over a year to collect >30 million data
points that capture seasonal variations in water consumption.
We perform an in-depth analysis of this data and unveil usage
patterns. Further, we model overhead tank temperatures amid
changing weather conditions.

• We develop models for water consumption using machine learn-
ing techniques. We show that the consumption of water in
a household can be accurately modeled and forecasted using
Gaussian Mixtures and Hidden Markov Models (MoG-HMM).
Using these forecasting models, Ashray predicts future water
consumption and pumps water into the overhead tanks just
before its imminent use.

Benefits. The results that we have gathered after deploying the
complete Ashray system indicate that, on average, tap water tem-
perature can be reduced by up to 8 ◦C in summers and increased
by up to 3 ◦C in winters, depending upon the annual mean temper-
ature of the locality. This translates into thermal comfort during
summers and energy savings in winters, which is discussed in de-
tail in Section 5. According to our estimates, the energy savings in
winters amount to around 0.339 MMBtu3 or equivalently to 8𝑚3

reduction in natural gas consumption, resulting in a 16% saving on
water heating costs for a typical household. Although this may not
sound very significant for a single household, yet the aggregated
2Or Asrai- Translucent water creatures in English folklore that melt when exposed to
sunlight. We draw an analogy because we want to protect water’s ability to provide
thermal comfort from being eroded by exposure to sunlight and other elements.
3One million British thermal units or Btu, where 1 Btu ≈ 1054 Joules.
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Figure 3: Feeler survey: Most respondents are uncomfort-

able with tap water temperature, and are willing to buy a

technical solution at an affordable price.

savings of natural gas (or electricity) on a regional level would be
substantial, bearing a positive impact on the resources, economies
and the environment of these regions. This is more so as most
of these developing regions are densely populated and thermally
stressed, making them more vulnerable to the effects of climate
change due to 𝐶𝑂2 emissions.

2 OVERVIEW

Designing and conducting a survey that aims to gauge the views of a
population spread across multiple continents is resource intensive.
Hence, instead of a statistically sound and intensive survey, we
conducted a “feeler” survey in two regions, UAE and Pakistan. UAE
has a large diverse community of expatriates, which allowed us to
gauge the views of people from multiple developing countries in
the regions including Bangladesh, China, India, Srilanka, and the
UAE itself where this is an acute problem. The survey was useful
for us to ascertain (i) whether there is an acknowledgement of
the problem in the target population, and (ii) assess the cost of a
marketable solution. We present the results of that survey before
summarizing Ashray in a nutshell.

2.1 Survey

The survey’s respondents were inquired about their perception of
tap water comfort on a five point Likert-scale ranging from “very
comfortable” to “very uncomfortable”. The survey consisted of the
following questions:

• How comfortable are you with your household tap water
temperature in summers?

• How comfortable are you with your household tap water
temperature in winters?

• Would you buy an off-the-shelf solution that provides water
comfort?

• If so, how much are you willing to pay for the solution?
• Are you willing to change your water usage timings?

The survey was conducted online to ensure maximal geographic
coverage for the regions of interest considered in this study. We
solicited the responses of 156 volunteers (62% male, 38% female,
age range 15-80). The results of the survey are shown in Fig. 3. We
can observe that the wide majority of the respondents did not find



IPSN, April 21-24, 2020, Sydney, Australia Abbas et al.

M

utility/tube-well 
cistern

tank

smart 
switch

geyser

cloud

gateway

Sensor
(temp, level, flow)
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the tap water in their households comfortable for use in summers
(see Fig. 3a). A similar trend in responses was observed for winters.

A sizable fraction of the respondents, 18% in summers to be pre-
cise, also reported their satisfaction with the tap water. Of those
who perceived their tap water to be uncomfortable, most were
willing to buy an off-the-shelf technology to improve their water
comfort without having to change their water usage timings or
behavior. Whereas, a small minority was willing to make changes
to their water usage patterns, for example by taking baths late at
night or very early in the morning, to get better thermal comfort
from their tap water (see Fig. 3b). Finally, Fig. 3c shows the cost, in
USD, that most respondents were willing to pay for a solution. Af-
fordability was an important consideration in the design of Ashray
and feedback from potential users on the acceptable cost provided
an estimate of the maximum cost of our proposed solution.

2.2 Ashray in a Nutshell

Ashray aims to provide water comfort by retrofitting the existing
household water distribution system in developing regions with
IoT elements, as shown in Fig. 4. These elements include a sensor, a
smart switch, and a processing unit. The IoT sensor is deployed at
the outlet of the overhead tank to measure (i) the water discharge
out of the tank, (ii) the water temperature inside the tank, (iii) the
ambient temperature, and (iv) the water level inside the tank. These
measurements are periodically transmitted via a wireless medium
to a processing unit (gateway), which is a Raspberry Pi (RPi) in our
experimental setup but could be easily replaced by any computing
hub such as a wireless access point. Water discharge measurements
from the IoT sensor are used to first learn, and then predict water
usage. Whereas, the measurement data on water temperature and
level is used to quantify the thermal characteristics, i.e., heat transfer
rate, of the overhead tank. Our machine learning algorithms, as we
discuss in Sec. 4, operate in real time on the gateway device, such
as a RPi, but may also be hosted on a cloud for long term analysis
of the data, provided a robust internet connection to the cloud is
available. The algorithm decides when, and for how long, to actuate
the water pump through a wireless smart switch.

We next expand on the two key elements of Ashray, that is, the
IoT device and the machine learning algorithms.

Name Flow Level Water
temp

Env
temp

Wireless
comm Battery Price

(USD)

Ashray 27
AMR15 W [51] - - - - 10

MULTICAL® [25] - - 237
WATERON [24] - - - -

K24 Flow Meter [33] - - - - - 21
Table 1:Ashray vs other water sensors: feature comparison.

Component Price ($)
ESP32 + wifi [13] × 2 0.98
Temp Sensors [12] 0.84
Flow Sensor [14] 3.52
Level Sensor [15] 3.71

Battery+Charger [16, 17] 1.97
Relay [3] 1.49

Gateway [2] 10.00
Pack. & assembly 4.00

Total 26.51

Table 2: Ashray cost breakup.

(a) Sensor Architecture. (b) Ashray in Action.

Figure 5: Ashray sensor architecture (a) and installation at

the outlet of of the overhead tank (b).

3 ASHRAY→WATER SENSOR

Justification. Although a variety of water sensors (or meters) are
available off-the-shelf, yet they do not fulfill all our requirements,
i.e., measure water level in the tank, water discharge from the tank,
as well as the temperatures, both inside and outside the tank. This
information is required to provide sufficient features for building a
robust forecasting algorithm using machine learning techniques.
Additionally, the sensor must be easy to deploy and sufficiently
cheap to meet the expectations of an ordinary user as highlighted
in Sec. 2.1.

As shown in Table 1, existing solutions fall short of meeting our
requirements. MULTICAL [25] is the closest match to our require-
ments but is prohibitively costly. Our choice of components ensures
that all the requirements of Ashray are met at a substantially lower
hardware cost compared to MULTICAL [25], as shown in Table 2.
These are per-component prototyping costs which may further be
reduced in bulk purchases, in mass production and with application
specific hardware design.
Architecture. The IoT sensor is attached to the outlet of the water
tank. It comprises of the following components, which are shown
in Fig. 5.
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(1) A Water Flow Sensor that measures the water discharge, i.e.,
the volumetric flow rate of the water flowing out of the over-
head tank. We use a Hall effect based DN25 flow sensor [49].
It can measure flow rates within the range 1 litres/min to 60
litres/min, which is adequate for capturing tap water usage
in homes.

(2) A waterproof Ultrasonic Sensor to measure the water level
inside the overhead water tank that is attached to the ceiling
of the tank.We use JSN-SR04T Integrated Ultrasonic Ranging
transducer [43] with ameasurement range of 600 centimeters
that is sufficient to capture the water level inside commonly
used overhead water tanks.

(3) Two Temperature Sensors, which are installed both inside
and outside of the tank for sensing water and ambient tem-
peratures, respectively. We use DS18B20 sensor [9], which
has an operating range from −55 ◦C to 125 ◦C.

As shown in Fig. 5a, these sensors are interfaced with a WiFi
enabled ESP-8266 MCU [11], which polls the sensors every 5 sec-
onds and then transmits the measurement data to the gateway for
further processing.

Most developing countries are struggling to meet their growing
energy demands, often resulting in intermittent supply of electricity
to most households. Hence, our IoT sensor comes equipped with
a 12 hours rechargeable battery [34], which is sufficient for the
typical duration of power blackouts in these regions. The sensor is
housed in a weatherproof package to protect it from the elements.

Besides the IoT sensor, Ashray also needs to remotely actuate
the water pump based on the output of its forecasting algorithms.
For this purpose, we have developed a smart switch module with an
ESP8266 MCU that is interfaced to a solid state relay. The relay can
handle up to 40 amperes, which is sufficient to power the household
water pumps. Communication between the gateway and the smart
switch happens via the HTTP protocol.
Deployment. The IoT sensor was initially deployed in two homes
(A and B) in Lahore city, with varying number of tenants and fix-
tures, for data collection. Lahore, the second largest city of Pakistan,
is a large metropolis of over 10 million inhabitants where the two-
reservoir water distribution system is most prevalent. The sensor
has been successfully collecting data since May 2018 with no down
time. Home A has five tenants, two adult males (aged 28 and 57
years) and three adult females (ages 20, 22 and 25 years). Home B
has seven tenants, two adult males (aged 25 and 40), three adult
females (27, 35, and 60 years) and two children (aged 7 and 9 years).
This deployment allows us to observe the water consumption be-
havior over a sufficiently long period of time to build models for
forecasting using machine learning techniques. We demonstrate
subsequently in Sec. 5.2 that this deployment is sufficient in scale
for building robust forecasting algorithms.

4 ASHRAY→WATER USAGE FORECASTING

Ashray relies on accurate water usage forecasting to determine
water pumping schedules. A generic pumping model was dismissed
early on because often small amounts of residual water in the
overhead tank is highly impacted by the elements, as shown in
Fig. 2. Thus, we perform a rigorous analysis of the data to unveil
underlying patterns for selecting the most appropriate forecasting
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algorithm. We present a statistical analysis of the collected data in
Sec. 4.1, and subsequently build a forecasting model in Sec. 4.2.

4.1 Analyzing Water Usage

Usage Spans. Fig. 6 shows water usage for a single day, and is
typical of the usage pattern we observe throughout the year. A
descriptive analysis of the data suggests that there are two distinct
spans of water usage: dormant and active. We can see a relatively
dormant period from midnight to early morning and an active pe-
riod that lasts throughout the day with different average water
usage, potentially requiring different models for accurate forecast-
ing within each span. This requires a clear demarcation of the
changepoint between these spans.

Identifying changepoints is a well studied problem in statistics.
Our year long data consists of over 30 million data points that we
have divided into daily chunks. The two distinct daily spans advo-
cate using a Bayesian technique. We therefore apply Markov Chain
Monte Carlo (MCMC) techniques using the Metropolis-Hastings
algorithm. We use the PyMC3 library for implementing the MCMC
technique [41].

Fig. 7 shows the outcome of MCMC. The active span for home A
commences between 0700 and 0800 hrs, as shown in Fig. 7b, and
ends between 2300 and 2400 hrs., as shown in Fig. 7a. The sample
pdf of the water usage in each span are shown in Fig. 7c. We have
two substantially distinct means, reinforcing the requirement for
separate models during the active and dormant spans.
Usage Patterns. Every household can have different usage pat-
terns depending upon the type of activities and the number of
occupants. We therefore analyzed the distribution of water usage,
as shown in Fig. 8. Fig. 8a indicates that there are multiple peaks
(i.e., a multi-modal distribution) for different rates of water usage,
mapping to different household chores. The higher peaks on the left
show the most commonly observed usage patterns—routine usage,
extracted and expanded in Fig. 8b. Whereas, the tail of the data
shows rarely observed usage patterns—abnormal usage, extracted
and expanded in Fig. 8c.

Applying an IQR (inter quartile range) analysis confirms a rela-
tively long tail, as shown in Fig. 8d: The routine activities use less
than 10.6 litres/min (with an average below 5 litres/min) whereas,
abnormal usage can go as high as 20 litres/min.
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Figure 8: Daily water usage patterns for homes A and B. A multi-modal usage pattern was observed.
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Figure 9: Cullen and Frey plot for finding the best fit distri-

bution. Gaussian is the best candidate distribution.

To model this multi-modal usage pattern, we segmented data
around each peak and identified the distribution of each segment.
Fig. 9 shows the Cullen and Frey plot [8] for a sample segment. We
can easily conclude that the best candidate distribution is Gaussian
for each peak. To further verify that the Gaussian distribution is
indeed a good fit for all segments, we perform qq (quartile-quartile)
analysis on all these segments using a Gaussian distribution as
a theoretical reference. Fig. 10 shows the qqnorm plots for four
of these segments, as a sample, corresponding to the two highest
and the two lowest peaks. We can clearly observe that Gaussian

distribution is indeed a good fit. We observed the same outcome
for all peaks in the data.

We can thus conclude that the entire data set is a mixture of
Gaussian distributions. This makes a MoG-HMM (mixture of Gauss-
ian Hidden Markov Model) based machine learning algorithm a
suitable candidate for modeling and usage forecasting.

4.2 Forecasting

Model.Our daily water usage forecasting model is shown in Fig. 12.
The inputs to the model are: (i) instantaneous water usage in liters
per minute, and (ii) time of the day. The output is the predicted
water usage in the next interval. At the highest level, the model
consists of two states, active (𝐴𝑠 ) and dormant (𝐷𝑠 ). Within each
state, water usage can either be routine (𝑀𝑟 ) or abnormal (𝑀𝑎), as
discussed in Sec. 4.1, and these states predict water usage.

To differentiate between𝑀𝑟 and𝑀𝑎 , we employ a usage classifier.
Our classifier is itself based on a HMM, which determines the
matching probability of current water usage (𝐷) with both the
models. Thus, the output of the classifier can be describe as below:

𝑚𝑜𝑑𝑒𝑙 = argmax
𝑚∈{M𝑎,M𝑟 }

(𝐷 |𝑚)

Thus, the overall model is MoG-HMM with a Gaussian usage
pattern within each state of the active and dormant spans.
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(a) qqplot of water usage under

2.5 litres

(b) qqplot of water usage be-

tween 2.5 and 6.5 litres

(c) qqplot of water usage be-

tween 11 and 13 litres

(d) qqplot of water usage be-

tween 13 and 16 litres

Figure 10: qq plots for the two highest and two lowest peaks. Gaussian distribution is the best fit for each segment.
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Figure 11: Forecasting interval and accuracy.

Forecasting Interval. An important aspect of the model is to de-
termine how often to forecast water usage as we schedule water
pumping accordingly. Multiple conflicting parameters need to be
balanced for identifying an optimal interval. First, forecasting error
is impacted by the forecasting interval. The smaller the interval, the
better the expected accuracy. Second, forecasting interval impacts
the comfort level, which we define as loss of comfort in terms of
a percentage deviation from groundwater temperature. For exam-
ple, very short forecasting intervals result in pumping only small
amounts of water into the overhead tank, impacting the residual
water temperature insignificantly. Third, for each forecasting inter-
val we need to decide whether or not to turn on the water pump. A
very small interval may cause short cycling of the water pump, caus-
ing it physical damage. Thus, the forecasting interval is a function
of these three parameters, as described below:

Forecasting Interval= f(Short Cycling, Forecasting Error, Comfort Level)

We dynamically update the forecasting interval as these param-
eters may be different in different regions and times of the day. For
example, a larger interval may suffice for the dormant span whilst
the impact of elements is moderate, similarly a relatively smaller
interval may be necessary for the active span wherein a greater
impact of elements is expected during the day. Fig. 11a shows the
results for a given usage pattern in an active span. We can see that
an interval of approximately 13 minutes balances loss of comfort
against forecasting error, while easily satisfying the short cycling
requirements of the water pump.

Active
Span

State
Classifier

changepoint

Routine
Usage

Abnormal
Usage

State
ClassifierRoutine

Usage
Abnormal
Usage

Dormant
Span

Figure 12: Daily water usage forecasting model.

Forecasting Accuracy. To evaluate the accuracy of the forecasting
model, we computed the R-squared metric for the entire data set,
and obtained a score of 0.9 for both homes. In order to visually
ascertain the accuracy of results, Fig. 11b overlays the actual and
forecasted water usage patterns for a span of eight hours. The
forecasting is indeed accurate, justifying the correct selection of
models made during the analysis.

Forecasting errors may potentially result in stock outs of the
overhead tank. We cater for this by defining a minimum level of
water that must be maintained in the tank. Similar to two-position
control [40], the water pump is automatically turned-on with an
updated forecast once the water falls to that level.

5 EVALUATION

We evaluate Ashray both by simulation and in deployment. The
simulation assesses the performance of Ashray over a wide range
of conditions driven by traces collected from our sensor deployment.
We then report the results from a full fledged deployment of Ashray
in another home to validate the simulation results. Our key results
indicate that using Ashray translates into:

• up to 8 ◦C reduction (in summer) and 3 ◦C increase (inwinter)
in tap water temperature, making it more comfortable for
the household. In many cases, the reduction in tap water
temperature during summers can be helpful in preventing
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Figure 13: Tank model vs empirical measurements. Water temperature is accurately predicted for a range of different inputs.
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Figure 14: Overhead tank model.

scalding due to prolonged exposure to relatively hot tap
water.

• at most only 0.6 ◦C worse from an oracle: an ideal prediction
that knows in advance when and how much water will be
used, but is impossible to implement in practice.

• up to 16% reduction on heating costs for an average house-
hold in our country as water is supplied to the geyser at
a relatively higher temperature in winters; thus requiring
relatively less heating. This can potentially translate into
massive gas savings if Ashray is adopted on a regional scale.

5.1 Ashray Performance in Simulation

The simulation of Ashray requires two inputs. First, household
water usage patterns. For this purpose, we use traces from our
sensor deployment, as described in Sec. 3. Second, the ambient
temperature and radiation traces of a given region.We use traces for
the year 2018 provided by Time andDate AS [47] andMeteoblue [32].
Both these inputs are used to derive an overhead tank model, as
described below.

5.1.1 Overhead Tank Model. When the water pump is turned on,
water flows into the overhead tank at flow rate 𝐹𝑖 and temperature
𝑇𝑖 . This water mixes with the stored water in the tank, resulting in
a change in volume and temperature of the water inside the tank .
Water flows out of the tank at a rate 𝐹𝑜 and temperature𝑇𝑜 through
the outlet. Since we assume a homogeneous mixture of water, i.e.,

incoming water is instantaneously mixed with existing water in
the tank, water temperature observed at the time of usage is equal
to tank’s internal water temperature (𝑇𝑜 = 𝑇 ).

For a given residual volume𝑉 and temperature𝑇 of water inside
the tank and external temperature 𝑇𝑒 , energy flows into the tank
if 𝑇𝑒 is greater than 𝑇 and out of the tank otherwise, as depicted
in Fig. 14. Let the total change in energy of the tank be 𝑄 , which
depends on the net flow of energy into the tank. As a first order ap-
proximation, we can model the rate of change in𝑄 using Newton’s
law of cooling:

¤𝑄 = ¤𝑄𝐹𝑖 − ¤𝑄𝐹𝑜 + ¤𝑄𝑑 (1)

where, ¤𝑄𝐹𝑖 is the rate of energy inflow due to 𝐹𝑖 at𝑇𝑖 , ¤𝑄𝐹𝑜 is the
rate of energy outflow due to 𝐹𝑜 at 𝑇𝑜 , and ¤𝑄𝑑 is the rate of change
in energy due to the difference between 𝑇𝑒 and 𝑇 . For an object of
mass𝑚, specific heat 𝐶 , and temperature 𝑇 , its total energy will
be 𝑄 =𝑚𝐶𝑇 . We know that𝑚 = 𝜌𝑉 where 𝜌 is the density of the
object. Therefore:

¤𝜌𝑉𝐶𝑇 = 𝜌𝐹𝑖𝐶𝑇𝑖 − 𝜌𝐹𝑜𝐶𝑇𝑖 + ¤𝑄𝑑

𝐹𝑖 and 𝐹𝑜 are the flow rates of incoming and outgoing water, re-
spectively

¤𝑉𝑇 = 𝐹𝑖𝑇𝑖 − 𝐹𝑜𝑇 +
¤𝑄𝑑

𝜌𝐶

which gives

𝑉 ¤𝑇 +𝑇 ¤𝑉 = 𝐹𝑖𝑇𝑖 − 𝐹𝑜𝑇 +
¤𝑄𝑑

𝜌𝐶
(2)

Accuracy.We implemented the tank model using equation 2 and
compared its accuracy with the empirical measurements of the
sensor deployment. As a sample, Figure 13 shows a comparison
between the predicted and measured daily water temperature in
the overhead tank on four different days. We can observe that the
model accurately predicts the water temperature for a range of
different inputs.
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Figure 15: Temperature difference between Ashray and

ground truth for two months. Ashray improves water com-

fort across various climatic regions. The average improve-

ment in
◦C is 8.15, 3.68, 4.21 in summers and 2.49, 2.79, 3.36

in winters for Tehran, Cairo and Mumbai, respectively.

5.1.2 Simulating Ashray. To measure the general impact of
Ashray in various cities, we require their respective ground wa-
ter temperatures. Note the groundwater temperature remains near
constant throughout the year [36].

Fig. 1a provides groundwater temperatures of over 400 cities. In
order to scale down the evaluation, we group temperatures from
Fig. 1a using k-means clustering. We exclude cities with groundwa-
ter temperatures below 15 ◦C as these typically do not represent the
target developing regions. The k-means clustering results in three
clusters with means 17.26 ◦C, 21.96 ◦C, and 26.89 We then find the
nearest matching city for these three clusters, resulting in Tehran
(17 ◦C), Cairo (21.4 ◦C), and Mumbai (27.1 ◦C). We use these three
groundwater temperatures along with the usage patterns of home
A to simulate the tank water temperature with and withoutAshray.
For brevity, we refer to the tank temperatures without Ashray as
ground truth, i.e., water is pumped routinely by the household as
per previous practice.
Benchmarks. Apart from the ground truth, we use three ap-
proaches to benchmark Ashray performance:

• Two-position control, which is a common method used in
industry to control water level in tanks. In this strategy, a
lower and an upper threshold is defined and the water pump
is turned on and off at these two levels, respectively.

• Manual Optimization of the user schedule. Since water is
typically pumped into the overhead tank once per day, we
find an optimal daily time for pumpingwater once that would
yield the best water temperature. This is to see whether a
simple intervention in manual scheduling can impact water
comfort.

• Oracle is a theoretically perfect forecastingmodel that knows
water usage patterns and daily temperature variations a
priori to maximize water comfort. However, as these patterns
cannot be known in advance, implementing this approach is
not possible in practice.

Results→ water comfort. Fig. 15 shows the cumulative distribu-
tion of the difference of tap water temperature between Ashray
and the ground truth in summer and winter for Tehran, Cairo and
Mumbai. Note that the positive difference in temperature shows
the improvement offered by Ashray in ◦C. We can clearly see that

Ashray improves water comfort in all observations in both sum-
mers and winters. In more than 50% observations, the improvement
in summers is at least 6 ◦C for Tehran and 3 ◦C for Cairo and Mum-
bai. This is a substantial improvement in the target region, where a
single ◦C improvement in water temperature matters, as is evident
by the widespread use of costly but ineffective external insulation
techniques among most households.

Table 3 shows the detailed simulation results for all approaches.
We note the following key observations:

• Ashray offers relief in scorching weather conditions when
the ground truth temperature reaches dangerous levels,
which can be harmful to households. This can be observed
by comparing the𝑚𝑎𝑥 columns of Ashray and ground truth
in summers.

• The water temperature offered by Ashray is at most 0.6 ◦C
worse than that of an ideal oracle, which deterministically
knows future usage. Note that the oracle is also not able to
deliver the water at groundwater temperature due to the
dead level constraint that requires a minimum water level
to be maintained in the tank.

• Ashray’s performance is understandably dependent on the
input water temperature and weather. The lower the temper-
ature of the input water in summers, the more comfortable
is Ashray’s tap water, and vice versa in winters.

• Standard non-predictive approaches, such as two-position
control, offer minimal advantage in terms of water comfort
as they are not optimized for achieving it.

Results→ energy savings. In winters, Ashray supplies water to
the geyser at a relatively higher temperature, implying less heating
effort to attain the desired temperature. To evaluate energy savings,
an approximate geyser model can be describe as follows: Let 𝑉 be
the volume of the geyser, which is always filled to capacity with
water at a desired temperature 𝑇𝑔 . On using a volume of water
with mass𝑚, let 𝑇𝑔′ be the new temperature of the water in the
geyser after cold water from the overhead tank mixes with it. As
𝑇𝑔′ < 𝑇𝑔 , therefore, in order to maintain the desired temperature,𝑇𝑔 ,
the geyser fires up to heat the water in its tank. In the steady state,
the amount of heat, 𝑄 , required to achieve the desired temperature
is given by Q =𝑚𝑐Δ𝑇 , where Δ𝑇 = 𝑇𝑔 −𝑇𝑔′ . Using this model, we
estimate the volume of natural gas required to generate Q.

We compare the energy consumption of the geyser with and
without Ashray to accrue the corresponding benefits. The intuition
is that, in winters, supply of water at a higher temperature to the
geysers by Ashray would require less heating to maintain the
desired tap water temperature. For the results shown in Fig. 15b, the
amount of gas required to heat water using a geyser is decreased by
8𝑚3 when using Ashray. This translates into an average monthly
saving of 16% on water heating costs for a single household.

In summary, Ashray promises to provide near optimal thermal
comfort in simulation. The next section validates these simulation
results in a real world deployment.

5.2 Ashray Performance in Deployment

Settings. We validate the simulation results by deploying Ashray
in home C, which is located in the outskirts of Lahore, 70 kms from
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Cities Temperature Summer (◦C) Winter (◦C)
Oracle Ashray Ground Truth Two Position Manual Opt. Oracle Ashray Ground Truth Two Position Manual Opt.

Mumbai
(27 ◦C)

min 27.18 27.28 29.00 27.09 29.00 24.90 24.25 20.42 22.00 20.33
max 30.39 31.08 35.87 38.00 38.53 27.00 27.00 24.00 24.83 25.45
mean 28.17 28.62 32.29 34.33 32.87 25.96 25.43 22.42 23.83 23.54

Cairo
(21 ◦C)

min 21.14 21.27 23.00 21.00 23.00 19.12 18.85 15.87 18.02 15.37
max 24.83 25.34 30.13 31.98 32.00 21.00 21.00 18.00 20.21 18.00
mean 22.61 23.01 26.16 25.47 26.67 19.86 19.21 17.10 17.54 16.91

Tehran
(17 ◦C)

min 18.45 19.02 23.00 16.59 16.00 13.92 13.65 10.79 11.90 10.45
max 25.55 26.01 36.39 32.98 35.89 16.00 15.45 14.00 14.50 14.00
mean 20.63 21.03 28.87 27.09 26.00 14.73 14.31 12.28 12.75 11.95

Table 3: Ashray vs the rest. Ashray is near optimal (compare Ashray & Oracle columns) and outperforms non-predictive

conventional approaches.

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

23.50

33.66

43.89

   
  A

m
bi

en
t

Te
m

pe
ra

tu
re

 (
 °C

)

●Week 1 Week 3 Mean of Week 1 Mean of Week 3

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

24.50

28.39

32.25

36.25

Sun Mon Tue Wed Thu Fri Sat
Week Days

   
Ta

nk
 W

at
er

Te
m

pe
ra

tu
re

 (
 °C

)

● ASHRAY Ground Truth Mean of ASHRAY Mean of Ground Truth

Figure 16: Ashray performance in deployment. Simulation results are validated for week long spans with similar average

ambient temperatures (see the top graph). On average, Ashray achieves 4 ◦C reduction in tank water temperature (see the

bottom graph).

homes A and B. The deployment in a different home also allows us
to validate our machine learning model, which was trained using
data traces from other homes (A and B), on a largely unseen water
consumption behavior. Home C hosts one adult male (aged 65), two
adult females (aged 40 and 60) and three children (aged 8, 13 and
16). The overhead tank in home C can store 250 gallons of water,
which is directly pumped from a ground reservoir. The groundwater
temperature is 23 ◦C. We activate Ashray after a brief two-week
training period in July 2019. Our baseline for comparison is the
ground truth sans Ashray, i.e., routine pumping by the household.

Also, note that it is not possible to simultaneously compare the
two approaches for the same time-frame, as any given approach
dictates the pumping schedule, which in turn, determines the tap
water temperature. Thus, only one approach can be active at a given

time. A fair comparison would be to take two reasonably long time-
frames with approximately similar average ambient temperatures,
and measure the difference between their tap water temperatures.
Results. Fig. 16 compares the tap water temperature of Ashray
(in week 3) with the ground truth (in week 1). Here ground truth
corresponds to actual empirical measurement without Ashray. The
mean difference in ambient temperatures for week 1 and week
3 is negligible; guaranteeing a fair base for comparison. We can
clearly observe that Ashray consistently maintains a lower average
temperature, and conclude that the simulation results carry over
to the deployment. Please note that a point-by-point comparison
in Fig. 16 is not valid because the data is from two different time-
frames.

Nonetheless, we can confidently conclude that Ashray models
are indeed robust and water comfort is guaranteed across a wide
range of conditions.
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6 DISCUSSION

No-frills. Ashray is a no-frills water comfort system in the sense
that it makes a valiant effort to provide water comfort by preserving
the groundwater temperature, without spending energy on directly
heating or cooling water. However, its performance is strongly
dependent on the temperature of water in the underground cistern,
which typically remains constant throughout the year and is close
to the groundwater temperature. A future version of Ashray may
also consider meeting tighter comfort bounds in scheduling as well
as benefit from solar radiation to heat water in overhead tanks in
winters.

Ashray does not account for the temperature effects of water
flow in pipes, as most deployments in the region are based on
PVC (polyvinyl chloride) pipes. PVC pipes offer better thermal
insulation, are cheaper, last longer, and have vastly replaced GI
(galvanized iron) pipes for plumbing. Moreover, these pipes are
typically installed inside walls, further insulating them against the
elements and minimizing any impact on water temperature.

Target regions typically rely on gravity based water flow in
household water distribution and ASHRAY retrofits into these sys-
tems for providing comfortable running water. Other potential
solutions, such as using a pressure pump that can supply water di-
rectly to taps are costly and may require redesigning existing water
networks. Further, they would necessitate uninterrupted supply of
electricity, which is not to be expected in target regions.
Related Work. Related work on the subject can be divided into
two broad categories, i.e., water comfort and water conservation.

Comfort: Water comfort has been largely studied in the context
of minimizing energy consumption of hot water provisioning in
winters. For instance, Circulo [22] learns patterns of hot water usage
in a home and circulates hot water only when it is highly likely to
be used. This approach reduces hot water circulation costs in homes
by 30% without increasing water wastage by households while
waiting for hot water. Water circulation pumps can incur more
than $1000 per year in energy costs, and hence do not represent a
plausible choice for the regions considered in this paper. Similarly,
a smart water heater (SWH) [45] has been proposed to reduce
heat losses through piping: delivering lower temperature water
whenever possible. SWH uses data fusion techniques to infer the
fixture being used, the mixed water temperature at the fixture, and
the pipe volume for that fixture. After learning a model for each
fixture, it solves a control optimization problem to decide when
and at which temperature to deliver water to minimize energy
consumption without sacrificing the thermal comfort of the user.
SWH can reduce water heating costs in homes by 8 to 14%.

Both Circulo and SWH try to minimize the costs associated with
using hot water in homes while ensuring the thermal comfort of
the household. However, both these solutions are useful only in
winters. On the contrary, Ashray tries to deliver water comfort
in summers, which is critical to the health and well-being of the
common household, as discussed in Section 1, owing to the extreme
summer temperatures experienced by the regions under consid-
eration. Similarly, in winters, Ashray reduces the cost of heating
water by leveraging ground water temperature.

Conservation: Household and irrigation water conservation [50]
is important to: ensure the sustainability of fresh water reserves,

save energy on water treatment and distribution, and preserve fresh
water habitats.

An important aspect of water conservation is understanding
water consumption. Various solutions have been offered to en-
able a household to understand its water consumption and make
informed decisions regarding water conservation. For instance, eco-
feedback [19] and persuasive displays [28] have been proposed to
create household awareness on where water use occurs, whether
such use is excessive and what steps can be taken to conserve water.
Likewise, HydroSense [21], a single-point pressuring sensor that is
installed within a home’s water infrastructure supports both the
identification of activity as well as the estimation of the amount of
water being used at individual water fixtures. Work on HydroSense
has been extended further to make the sensor self-powered through
energy harvesting [7] as well as critically examine the feasibility of
using pressure-based sensing and determine water usage activities
in real world deployments [20]. Similar in spirits, WaterSense [44]
uses motion sensors to automatically infer howmany fixtures are in
each room, and how much water each fixture uses. NAWMS [26] is
a self-calibrating system that provides information on when, where,
and how much water is being used. The system uses wireless vibra-
tion sensors that are attached to pipes and, hence, does not require
either plumbing or any special expertise for its installation. Water-
bot [4] is a system that informs and motivates behavioral changes
at the sink for the purpose of increasing safety, hygiene and water
conservation. Slightly different in nature, RoyalFlush [37] detects
toilet overflows to avoid damage to property such as furniture and
appliances.

These works on water conservation are both complementary
and orthogonal to Ashray. We do not see any specific need for a
fine-grained fixture-level water usage estimate in Ashray as it only
influences the schedule of water pumping into the overhead tank,
which serves as a common water source for all fixtures.

7 CONCLUSIONS

In developing regions, the use of overhead tanks in water distribu-
tion networks causes water to loose its groundwater temperature.
We present an affordable solution for the masses, Ashray, which
delivers near groundwater temperature in taps using simple IoT
retrofits and forecasting models developed using machine learn-
ing techniques. Ashray improves thermal comfort by up to 8 ◦C
in summers and 3 ◦C in winters. Additionally, it reduces heating
costs in winters by supplying running water to the geyser at a
relatively higher temperature. Our performance evaluation, using
both simulations and deployment, confirms these benefits.
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