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ABSTRACT

Emerging countries predominantly rely on room-level air condi-
tioning units (window ACs, space heaters, ceiling fans) for thermal
comfort. �ese distributed units have manual, decentralized con-
trol leading to suboptimal energy usage for two reasons: excessive
setpoints by individuals, and inability to interleave di�erent con-
ditioning units for maximal energy savings. We propose a novel
inverted HVAC approach: cheaply retro��ing these distributed
units with “on-o�” control and providing centralized control aug-
mented with room and environmental sensors. Our binary control
approach exploits an understanding of device consumption char-
acteristics at on/o� and factors this into the control algorithms to
minimize consumption. We implement this approach asHawadaar
in a prototype 180 �2 room to evaluate its e�cacy over a 7-month
period experiencing both hot and cold climates. We collect enough
evidence to plausibly scale this evaluation, demonstrating country-
wide bene�ts: with just 20% market penetration, Hawadaar can
save up to 6% of electricity per capita in residential and commercial
sectors — resulting in a substantial countrywide impact.
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1 INTRODUCTION

We are in an era of global warming, with most studies indicating
excessive use of energy being its leading cause. By most accounts,
the greatest contribution to global energy expenditure and the
ensuing green house gasses will come from emerging Asian coun-
tries [12, 25], such as China, India, Pakistan, and Bangladesh that in
combination account for nearly half of the world population [13].
With their economic upsurge, the energy demands of these coun-
tries are rapidly rising; thermal comfort of built spaces making
a signi�cant proportion. It is projected that there will be a ten-
fold increase in the world consumption of energy for cooling by
2050 [20]. �us, for example, China alone is expected to surpass
the USA by 2020 as the world’s biggest consumer of electricity for
air conditioning estimated at a trillion kWh [11].

With the late uptake of e�cient thermal comfort systems (like
HVAC) in these regions, the majority of buildings still employ room-
level units — such as window or split ACs, space heaters, ceiling,
and sometimes ventilation fans (see Figure 3 for a typical room) —
for thermal comfort. �ese buildings will be maintained for several
decades with at least 80% to last beyond 2050 [19, 26], considering
housing needs, economic constraints, as well as heritage protec-
tion. �e challenge is compounded with the continental climate
in most countries in the region, which is characterized by extreme
temperature variations, both daily and seasonally. Consequently,
this extreme climate also results in excessive energy usage.

Anecdotally, room occupants set these distributively controllable
units to exceed appropriate temperature creating the kind of indoor
environment in which occupants wear sweaters and use blankets in
July [10]. We validate this observation by a survey of temperature
readings shown in Figure 1; the data validating that a distributive
approach to temperature se�ing results in ine�ciency. �ese ag-
gressive setpoints stem from i) a psychological reaction to outside
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Figure 1: Temperature measurements from randomly sam-

pled rooms in the administrative and residential complexes

of our university with room-level conditioning units: Tem-

peratures o�en kept too high in winters or too low in sum-

merswith neither the incentive nor the capability to achieve

thermal comfort at low energy budget. Our goal is to push

these red dots into the shaded region (recommended range).

Energy saving is a reward.

temperatures (which can be extreme), ii) possibly inappropriate AC
sizing for the room resulting in insu�cient comfort at a person's
location in the room, or iii) a lack of per device thermal control
(space heater without thermostat). Furthermore, these excessive
se�ings also fail to meet conditioning standards [4], thus being
detrimental for the health of the individual.

We propose a novel approach to solve this geographically unique
problem; distributed room-level conditioning governed by a standards-
compliant control abstraction, the centralized building-level ther-

mostat. �is is achieved by adding “smartness” to existing devices
to maintain thermal comfort whilst saving energy. �is approach
is interesting as an inversion to the HVAC approach to managing
thermal comfort: a centralized conditioning unit, the AHU, that
distributes air to zones controlled by individual thermostats.

We present Hawadaar1, as an implementation of this inverted
HVAC approach to evaluate its e�cacy. Hawadaar has three
novel aspects that set it apart from the existing literature. First, its
ability to interleave several modes of achieving thermal comfort —
such as cooling using an AC, an evaporative cooler, or through air
circulation using a fan — with an objective to minimize electricity
consumption. Second, its adaptive two-position control strategy
that intelligently orchestrates these units, accounting for thermal
impacting factors such as internal and external thermal loads, room
insulation, and device characteristics (transients and short cycling).
�ird, its ability to handle a wide variety of heating and cooling
devices to deliver thermal comfort across a wide range of weather
conditions 24/7 all year around.

Our work, thus, has the following signi�cant contributions.
Inverted HVAC Approach: We present an approach that em-

ploys a centralized control abstraction to e�ciently air-condition
existing buildings, lacking HVAC, on a per-room basis. �is ap-
proach to implementing thermal comfort is novel and especially
pertinent to the socioeconomic and climatic constraints of emerg-
ing countries. We elaborate this approach and its IoT-inspired
architecture in Section 2.

1local slang for ventilated and (air) conditioned space.
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Figure 2: Inverted HVAC architecture: IoT retro�tting for

distributed conditioning via a centralized control abstrac-

tion, to improve thermal comfort and energy e�ciency of

legacy buildings.

Control Algorithms: We introduce intelligent control algo-
rithms for the centralized thermostat. �ese algorithms are based
on empirical and theoretical understanding of the (conditioning)
device constraints (Sections 3), as well as factors impacting thermal
conditioning, such as modes of heat transfer, room insulation, and
perceived thermal comfort (Section 4).

System Evaluation, micro and macro scale: We perform ex-
tensive micro and macro-scale experiments on Hawadaar proto-
type to demonstrate a) in Section 5, the e�ciency of our algorithms
in achieving setpoints (<±0.5◦C tolerance) with energy savings (at
<50% duty cycle), and b) in Section 6, extending these results to
countrywide scale in terms of the projected savings (6% per capita)
for a given penetration (20%) of a Hawadaar-like system .

We discuss related work along with future outlook in Section 7
before concluding the paper in Section 8.

2 HAWADAAR: THE INVERTED HVAC

We now describe Hawadaar in detail to elaborate the inverted
HVAC approach and its IoT-inspired architecture. We will then
present setup details of a prototype system for a single room.

2.1 What's an Inverted HVAC?

�e inversion of HVAC approach in our proposed system stems from
the inversion of the location of control and conditioning units. We
propose to use a set of disparate and distributed conditioning units
to enforce control from a central location for an alternate to modern
HVAC systems. �is approach makes sense only when viewed
in the context of the socioeconomic background we advocated
earlier: populous emerging economies with widespread installation
of room-level units where ��ing HVAC is cost prohibitive. �e
novelty of our approach lies in identifying this unique opportunity.

�e implementation of this approach, as shown in Figure 2, ex-
tends an IoT-inspired architecture that involves augmenting every
installed unit2 with wireless on-o� control and distributively sens-
ing temperature and humidity through a wireless back-channel
(direct or multi-hop). A centralized hub-like device hosts a so�ware
based control abstraction, the centralized thermostat (CT), to trigger
room-local control for the entire building. �e CT can be con�gured

2ACs, heaters, ceiling and ventilation fans, personal comfort devices.
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Figure 3: Hawadaar Deployment setup: A typical o�ce

room (180 �
2
) with legacy devices (1-4) and IoT retro�tting

(5-7). �e roof and three walls are exposed to elements.

on a per room basis by a user (e.g., the building owner), through a
smartphone app, to either deliver a setpoint or personalized comfort

— based on ASHRAE’s personal comfort metric (PMV) [4] — within
respective, standards-compliant comfort bounds. Further indoor
sensors can be added to improve the per room sensing reliability
and coverage; however, we emphasize on minimizing retro��ing
costs assuming that the indoor sensor is deployed at a pertinent
location where the required thermal objective has to be achieved.
Additionally, an outdoor sensor is required for estimating a room’s
heat transfer coe�cient (see Section 4.3) for intelligent actuation.
For global access and refactoring into other applications (e.g. smart
grids), the CT can be hosted in the cloud where an appropriate API
layer can expose its control and measurements to user applications.

2.2 A prototype implementation of Hawadaar

We now present a practical realization of the inverted HVAC —
Hawadaar — to demonstrate and then evaluate the e�cacy of
this approach. Figure 3 shows our deployment in a 180 �2 room
equippedwithmultiple air conditioning units (fan, AC, space heater).
�is room is representative of closed spaces in the developing world,
where all or a subset of these appliances are present. Our room-
level evaluation can thus be extrapolated to homes, apartments,
hotels, o�ce buildings, etc. Furthermore, this room has three exter-
nal facing walls and roof exposed to the elements, representing a
challenging scenario for conditioning the room.

We reduce the retro��ing complexity by choosing to control each
device with a COTS3 smart-plug [32], that cost as low as $2 when
ordered in bulk. �e existing device sockets are inserted into these
plugs4. For convenience, we choose Z-wave based plugs [32] and
temperature and humidity sensors [33]. We emulate our centralized
thermostat using a Z-wave dongle a�ached to a RPi with all our
control algorithms implemented on it. �us, depending upon the
magnitude of supply order, the current retro��ing cost per room
with three conditioning units could be as low as $10 including
smart-plugs, sensor, and the amortized cost of CT.

3commercial o�-the-shelf
4AC might additionally require a relay in between to cater for high surge currents.

Figure 4: Air conditioning units under consideration: A) sin-

gle unit window AC with 1-ton cooling capacity; B) ceiling

fan with sweep size of 36 inches; C) electric space heater

with three halogen elements.

We choose an arbitrary location for the sensor, i.e, the wall
opposite to the AC when doing setpoint based control, similarly
on the desk next to the �ctional occupant in Figure 3 for PMV
based control. �is sensor, being wireless, can be placed at any
appropriate location and, thus, the above evaluation is su�cient.
�ese (one-per-room) sensors report their values once per minute
to the CT.

We note that our plug-based retro��ing limits our control to
simple on-o� for each device, and can introduce issues with regards
to device safety if the control algorithm does not have appropriate
hysteresis. Entirely for this purpose, we evaluate device constraints
in the next section and use them to tune our algorithms in Section 4
to prevent energy waste as well as wear-and-tear.

3 DEVICES AND CONSTRAINTS

We �rst highlight thermal characteristics of air conditioning devices
under consideration, then brie�y review what device constraints
are relevant and how they impact control, and subsequently derive
these constraints empirically.

3.1 Air conditioning units under consideration

Figure 4 depicts the three devices currently employed byHawadaar
for distributed conditioning. With a 1-ton cooling capacity, the
single-unit windowACprovides convective cooling through a single-
stage heatpump. In our setup, we position the setpoint of the
AC's onboard thermostat to its minimum value, thus allowing
Hawadaar to independently control the AC (without altering the
control circuitory) for setpoints above this minimum value. �e
electric heater implements radiant heating through its three halo-
gen elements, each consuming 400W. When tested under cooling
and heating loads greater than 10◦C, the minimum and maximum
room temperatures achieved through the AC and heater are 18◦C
and 26◦C, respectively. Both these values fall well outside the com-
fort zones for the respective seasons (see Section 5.2.2), thereby,
already highlighting the potential of energy conservation through
duty cycling; more so in the case of an electric heater without ther-
mostat. �e ceiling fan has a sweep size of 36 inches and can be
regulated at �ve di�erent speeds, with a maximum air velocity of
3.77ms−1. We set the fan speed to its maximum for on-o� control
by Hawadaar. While the fan only provides air movement, the AC
and heater impact both temperature and humidity.
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Figure 5: Transient vs steady state power consumption.

3.2 Relevant constraints and their impact

How accurately can Hawadaar maintain a setpoint? �is depends
on how aggressively can it actuate the respective air conditioning
devices. For example, in cooling, two-position control is achieved
by switching a device on at temperatures exceeding Ton and o� at
temperatures below Tof f , and ideally Ton should be identical to
Tof f . However, such a strict thermal objective is not achievable due
to deadband requirement to prevent repeated on-o� cycles, as well
as two device speci�c constraints: transient power (the increased
power consumption at startup) and short cycling (actuating it faster
than the speci�ed rate). Hawadaarmust be cognizant of these hard
constraints; otherwise, the former could increase the overall energy
consumption of the system and the la�er could potentially damage
or reduce the life span of a device. �us, to calibrate Hawadaar’s
control algorithm, we study both these characteristics in our setup
and calculate the smallest safe interval tsaf e , the minimum dura-
tion between switching the device o� and then on. Alternatively,
one could pick a large enough tsaf e to make the algorithm agnostic
to such device constraints but this could compromise thermal com-
fort [5]. �e idea is to set tsaf e to the larger of two intervals, i.e.,
max (ttp , tsc ), where ttp and tsc refer to the respective transient
power and short cycling constraints.

3.3 Deriving hard device constraints

Figure 5 shows the power consumption of devices in transient
and steady state. To avoid the penalty of transient power due to
frequent switching, the minimum duration (i.e., ttp ) for which a
device must remain o� is de�ned by the interval over which the
excess transient power equals the power consumed if the device
had not been switched o�. �us, we need to switch o� for at least
long enough that this saved steady state power compensates for
the high transient power at the next startup. A longer o� duration
will indeed translate into power gains. In Figure 5, based on the
area under the curve, we compute ttp simply as ttp = E

P , where
E is the excess transient energy and P is the steady state power
consumption. With regard to short cycling, there are no theoretical
restrictions on the switching frequency of electric heaters and fans.
Whereas, for window ACs, manufacturers specify a minimum o�-
duration of three minutes [23, 24]. Table 3 enumerates tsaf e for
each device that serves as a hard input constraint on the maximum
switching frequency of the control algorithm. However, as we

Table 1: Device Constraints: ttp is transient power and tsc is
short cycling constraint. tsaf e is the larger of these two.

Device

ttp
(sec)

tsc
(sec)

tsaf e =
max(ttp ,tsc )

AC 1.62 180 180
Heater 0.63 - 0.63
Ceiling Fan 4.3 - 4.3

notice in Section 5.2.1, this switching frequency is not actuated
even for very narrow comfort bounds.

4 THE CENTRALIZED THERMOSTAT

With device constraints clearly de�ned, we are now ready to build
a control abstraction, i.e. the centralized thermostat. �e CT allows
to con�gure per room thermal se�ings through a mobile-app, to
either maintain a setpoint or deliver personalized comfort (PMV),
within standards-compliant tolerance. Firstly we explain why a re-
active control strategy is employed in Hawadaar instead of model
predictive control (MPC) [5]. We then describe our control algo-
rithm and its heat-transfer prediction mechanism, which is needed
for the dynamic adaption of comfort bounds (i.e., the tolerance
range) based on thermal load.

4.1 Why two-position control?

�e CT runs an intelligent control algorithm that performs adap-
tive two-position control: dynamically adjusts the so� constraint
(comfort bounds) around a �xed setpoint to satisfy the hard device
constraints. We use this simple reactive control strategy instead
of a complex model predictive approach for three key reasons:
First, unlike centralized HVAC taking tens of minutes to take e�ect,
these room-level conditioning units a�ect human comfort imme-
diately [18]. Second, room insulation levels in older buildings are
suboptimal, thereby requiring an immediate response to deliver
adequate thermal comfort. Finally, a reactive control strategy is
inherently sensitive to changing thermal loads; for example, air
conditioning will run for longer if there are more occupants than
usual in the room. �is eliminates the need for complex thermal
load estimations, further simplifying our pilot system design.

4.2 Algorithm: adaptive two-position control

We �rst describe the algorithm in the context of maintaining a
setpoint and later extend our description to delivering personalized
comfort. We do not make any assumptions regarding the relative
humidity and use heat index (a.k.a. “apparent temperature” or “feels
like”) as our temperature metric. �us, a setpoint is de�ned in terms
of heat index; not the ambient temperature. Hence, before making
a control decision, the temperature value is �rst converted into its
corresponding heat index (HI), which is calculated as follows:

HI (T ,R) = c1 + c2T + c3R + c4TR + c5T
2

+ c6R
2 + c7T

2R + c8TR
2 + c9T

2R2
(1)

Where T is the air temperature, R is relative humidity, and cn
are Rothfusz regression constants [28]. For brevity, we use the
general term “temperature” (instead of heat index) to simplify the
description of our algorithm.
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Algorithm 1: Setpoint based adaptive two-position control.
Input: desrired setpoint (Ts ), tolerance

1 while True do
2 Tin ← read sensor()
3 Ton ← Ts + tolerance

2
4 Tof f ← Ts − tolerance

2
5 if Tin > Ton then

6 switch on(AC)
7 else if Tin ≤ Tof f then

8 predicted temperature← Ttof f +tsaf e
9 if predicted temperature ≤ Ton then

10 switch o�(AC)
11 update(prediction parameters)
12 reset(tolerance)
13 else

14 extend tolerance(tolerance)

4.2.1 Setpoint algorithm. To begin, the algorithm needs two in-
puts, the required setpoint Ts and comfort bounds (so� constraint);
the la�er de�nes two control positionsTof f andTon symmetrically
around Ts . �us, with a cooling device, in order to achieve Ts as
the average temperature, we must satisfy Ttof f +tsaf e ≤ Ton , i.e.
once the device is turned o�, the temperature a�er the minimum
safe o� duration tsaf e (hard constraint) will not exceed Ton . �is
may, depending upon the thermal load, require the algorithm to
symmetrically extend the tolerance range on both sides of Ts , as
described in Algorithm 1. For this, the algorithm needs to predict at
time tof f (cf. Secton 4.3) the temperature at time tof f + tsaf e in or-
der to decide whether to turn o� the device or extend the tolerance
range to meet the hard constraint. With a minor adjustment, i.e.
by swappingTof f withTon , this algorithm is also used to actuate a
heating device.

4.2.2 PMV algorithm. �e same baseline algorithm is used for
delivering personalized comfort with the following two extensions:
First, the thermal constraint is not the heat index but PMV described
as follows:

PMV = f (M,Ta ,Tr ,v, Pa , Icl ) (2)

Where,M is the metabolic rate of the occupant (assumed 70W /m2

for an o�ce worker); Ta is the air temperature; Tr is the mean
radiant temperature (set equal toTa ); v is the relative air velocity in
m/s−1; Pa is the relative humidity; and Icl is the clothing insulation
factor of the occupant (set to 0.6 clo assuming a usual o�ce dress
code of a long sleeved shirt with trousers). In our work, we assume
some of these parameters to calculate PMV and realize that in
practice these are di�cult to accurately ascertain; however, this
does not a�ect the �delity of the results. Second, while the heat
index based setpoint only utilizes the heater and AC, additional
factors in equation 2, such as air movement, also allow us to use the
ceiling fan for maintaining a desired PMV level. �us, as described
in Algorithm 2, we program the CT to prioritize the use of low-
energy fan, and only turn on the AC when air circulation alone
cannot keep the PMV within the required comfort bounds.

Algorithm 2: PMV based two-position control.
Input: comfort range, set of on devices (ON)

1 while True do
2 calculate(PMV) // see equation 2

3 if PMV > upper bound then

4 if ON= ∅ then
5 v ← AIR VELOCITYf an
6 calculate(PMV)
7 if PMV ∈ comfort range then
8 ON← ON ] fan // switch-on fan

9 else

10 v ← AIR VELOCITYAC
11 ON← ON ] AC // switch-on AC

12 else if fan ∈ ON then

13 ON← ON \ fan // switch-off fan

14 v ← AIR VELOCITYAC
15 ON← ON ] AC
16 else if PMV ≤ lower bound then

17 ON ← ∅ // switch-off all devices

4.3 Predicting the room’s heat transfer rate

�e room’s heat transfer depends upon both external and internal
thermal loads. �e external thermal loads result in heat transfer
through the building envelope from external elements such as the
sun, the earth, and the outside environment. While, internal ther-
mal loads come from heat generated within the room by people,
lighting, equipment etc. As discussed in the previous section, in
order to satisfy the hard constraint, the CT needs to predict the
temperatureTtof f +tsaf e . �e prediction model should thus account
for both external and internal thermal loads whilst being simple
and self calibrating. We note that the maximum duration of this
prediction, in our setup, is just three minutes imposed by the AC.
�is, by the way, also provides a maximum theoretical duration of
discomfort. Since we dynamically update our prediction parame-
ters, as discussed below, our system can repeatedly �x prediction
errors.

Instead of developing a complex thermal model for the room,
we use realtime sensor measurements to glean the heat transfer
coe�cient using Netwon’s law of cooling as a �rst approximation.
A similar strategy has also been employed in a personalized comfort
system [18]. According to the law, “the rate of heat loss of a body
is proportional to the di�erence in temperatures between the body
and its surroundings”. �us, given an outside temperatureTout and
room temperatureTin , the rate of thermal energy loss for the room
is proportional to the temperature di�erence:

dT

dt
= −k (Tin −Tout ) (3)

We set T = Ttof f +tsaf e , Tin = Tof f and t = tsaf e and solve the
above equation to estimate a room’s heat transfer coe�cient (k):

k =
ln

(Ttof f +tsaf e −Tout )

(Tof f −Tout )

tsaf e
(4)

However, we repeatedly update k just before Ton (i.e., when all the
devices are o�), aiming for an aggregate account of both external

and internal thermal loads using a single heat transfer coe�cient
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Figure 6: Prediction accuracy: our simple model achieves

high accuracy with a root-mean-square error of 0.18
◦
C.

(k). �e sensed Ttof f +tsaf e in round n is used to calculate the k
value to predict Ttof f +tsaf e in round n + 1 as follows:

Ttof f +tsaf e = Tout + (Tof f −Tout )e
−ktsaf e (5)

Figure 6 depicts the accuracy of our prediction mechanism for
numerous samples over a wide range of indoor and outdoor tem-
perature di�erences. We can easily conclude that this model is
su�ciently accurate for a reactive control strategy with a maxi-
mum required prediction length of just three minutes.

5 EVALUATING THE DEPLOYMENT

Our pilot deployment seeks answers to two fundamental questions
regarding a thermal comfort solution: i) How comfortable is it? and
ii) what are its energy bene�ts? To answer the �rst question, we
evaluate the minimum temperature tolerance (best e�ort service)
required to operate Hawadaar. �is best e�ort service is also rel-
evant to satisfy high comfort requirements of a demanding user
and to stress test Algorithm 1. To answer the second question, we
compare energy consumption in multiple se�ings. For example,
when varying tolerance around a �xed setpoint; when exceeding
appropriate temperature se�ings, based on our anecdotal obser-
vation substantiated in Figure 1; and by interleaving devices of
variable energy consumption, as in Algorithm 2.

Although our deployment setup is in place since November 2016,
here we only report results from experiments during two challeng-
ing weather spells occurring between Jan. 25 - Jan 28, 2017, and
May 1 - May 15, 2017, respectively. �roughout these experiments,
the room occupation varied between 0 (at night) to at most 3 (during
the day) occupants.

5.1 �ermal comfort: the best e�ort service

�is part of the evaluation corresponds to the adaptive control that
minimizes the tolerance range (|Tof f −Ton |) whilst satisfying hard
device constraints. �us, as described in Algorithm 1, the o�-time
of a device is �xed at tsaf e while the on-time (duty cycle) is a func-
tion of thermal load at a certain instant of time. We expect the
algorithm to minimize its tolerance range, given the device con-
straint (tsaf e ), such that Tof f +Ton2 is always approximately equal
to the required setpoint (Ts ). In other words, we want our system
to achieve two goals: (i) dynamically adapt the tolerance range and
thus the duty cycle based on the thermal load, and (ii) deliver an av-
erage temperature — in terms of heat index — that does not deviate
from the required setpoint. An inaccurate temperature prediction
at Tof f could potentially lead to such deviations. Figure 7 veri�es
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Figure 7: �e best e�ort service: Hawadaar successfully

adapts the thresholds of its two-positions symmetrically os-

cillating around the setpoint. �e heat index re�ects the

room temperature.

the �delity of our algorithm and its temperature prediction under
varying but high external thermal loads, when the setpoint is kept
near the middle (24◦C) of ASHRAE’s speci�ed comfort range for
summers. We can clearly see that Hawadaar achieves its goals
by successfully adapting the tolerance range oscillating around the
setpoint. Even at such high thermal loads, Hawadaar is able to
maintain a temperature tolerance of just ±0.4◦C (see Figure 7 for
3PM onwards). Since the AC has the longest tsaf e , these results
represent the worst case of this best e�ort service.

5.2 �antifying energy bene�ts of Hawadaar

�eare twomain aspects of Hawadaar's implementation that bring
about its energy bene�ts. First, its standards-compliant thermal
comfort resulting in aggressive duty cycling of single units. Second,
when available, its ability to prioritize low power devices. �is
section evaluates these two aspects of energy e�ciency in multiple
thermal se�ings.

Comparing energy savings in an experimental se�ing is not
straight forward, as each day has its own parameter variations
that a�ect how much energy should be spent to cool or warm a
room. To draw logical conclusions, we still try to make approximate
comparisons between days with similar average air temperature
while minimizing the variance among internal thermal loads.

5.2.1 When varying tolerance around setpoint. We want to see
if changing the tolerance level around a �xed setpoint a�ects the
energy e�ciency of the system. We use two tolerance ranges:
±0.5◦C and ±1◦C, thus satisfying category A (2◦C) of ASHRAE’s
comfort requirement in terms of temperature deviation [4]. We
keep the setpoint approximately at the middle of the comfort range:
22.5◦C in winters and 24◦C in summers, as depicted in Figure 8. For
this part of the evaluation, the indoor sensor is placed on the wall
opposite to the window sill, where the AC is installed (cf. Figure 3).
We make the following key observations:

�e nature of the heat transfer mechanism results in di�erent

thermal behaviors. �e rise and fall of room temperature is gradual
in winters (cf. Figures 8(a) and 8(b)) but rapid in summers (cf.
Figures 8(c) and Figures 8(d)). In other words, the period — one
complete on-o� cycle — is larger for the heater in comparison
with the AC as a consequence of the heat transfer mechanism. For
the AC, cooling occurs through air convection. �is can be short-
lived a�er the AC is switched o� as the air absorbs heat from the
surrounding objects including external walls rapidly. For the heater,
radiation is the physical mechanism of heat transfer, both in the
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Figure 8: Setpoint evaluation: Results are shown for two tolerance levels. �e heat index re�ects the room temperature. �e

thermal behavior in winters and summers is di�erent due to the nature of heat transfer mechanisms: convection for AC and

radiation for heater. �e latter yields higher energy savings with wider temperature tolerance around the setpoint.

Table 2: Daily energy savings of Hawadaar through aggres-

sive duty cycling of single units. Savings fromAC are not ap-

plicable in this particular case aswe expect theAC's onboard

thermostat to achieve similar results for the same tempera-

ture settings.

Tolerance

On-time (hours/day) Energy Consumption (kWh/day) Energy Savings (kWh/day)

Heater AC Heater AC Heater AC

±0.5 14.42(60%) 9.3(38%) 17.5 31.35 11.6 −

±1 11.26(47%) 9.27(38%) 13.6 31.15 15.5 −

form of visible and non-visible light, and e�ects all the surrounding
objects not just the air. �is process of heating is slower but longer
lasting a�er the heater is switched o� as the room air continues to
absorb heat from heated objects maintaining a residual warm air
temperature.

�e nature of heat transfer has a contrasting impact on energy

e�ciency ofHawadaar over di�erent tolerance levels. Table 2 summa-
rizes the energy consumption and total on-time of devices per day.
In winters, we can see that the on-time of the heater is reduced by
approximately 3 hours when the tolerance increases from ±0.5◦C
to ±1◦C. In contrast, in summers the AC on-time per day is similar
for both tolerances. �ere are two reasons: First, the “slow start”
of radiative heating makes it less e�cient for frequent switching,
as this increases the number of times the cold halogen element
will have to be reheated (see magni�er in Figure 8(a)). Second, as
described above, the ability of radiative heating to sustain the air
temperature for longer durations given a larger tolerance range.

As an aside, duty cycling of the heater at ±0.5◦C daily saves a
further 11.6 kWh (40%) compared with continuous operation. Since
ACs have onboard thermostats that already duty cycle, assuming
similar setpoints and tolerance, such savings are not applicable.

5.2.2 When exceeding appropriate temperature se�ings. We now
want to highlight the energy bene�ts of Hawadaar due to its ability
to implement centralized policies, thus prohibiting excessive use of
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Figure 9: Optimal vs excessive: �e standards-compliant

Hawadaar saves energy by prohibiting excessive setpoints.

conditioning units. �is refers back to our anecdotal observation in
Section 1. Figure 9 shows how the AC on-time increases when the
setpoint veers from optimal (24◦C) to excessive (23, 22, and 21◦C).
We can see that even a single degree deviation from the optimal
setpoint increases the on-time by 11%, which translates to ≈5 kWh
per day. Similar observations, in the context of centralized HVAC,
have been reported in [22]. �ese results clearly reiterate the need
for an Hawadaar-like solution to implement centralized policies
in regions, where the excessive and unhealthy use of conditioning
units puts tremendous load on their stressed power grids.

5.2.3 By interleaving devices of variable energy consumption. We
now turn our focus onHawadaar’s energy e�ciencywhen thermal
comfort is de�ned in terms of PMV. �e idea is to evaluate the
energy bene�t of interleaving low-power ceiling fans. We measure
this impact for ASHRAE’s recommended range of PMV (-0.5 < PMV
< 0.5) during two noticeably di�erent weather conditions occurring
at di�erent times of the day in hot summers.

Day time results. Figure 10 shows results for maintaining PMV
with (Figures 10(b)) and without (Figures 10(a)) a fan during hot day-
time. We can observe that, under challenging weather conditions,
the use of a fan has limited impact on the operational time of the
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Figure 10: PMV evaluation (day): In hot conditions, inter-

leaving a fan has limited impact on AC usage. �e fan ex-

tends the duration for which PMV remains within speci�ed

range without using AC but results in a further rise in tem-

perature, adding to the cooling load of AC.

AC, for two reasons. Firstly, the ceiling fan pushes down the hot air
that rises up a�er absorbing heat from surrounding objects, thus
increasing air temperature. Secondly, the use of fan extends the
duration for which PMV remains within speci�ed range due to
air circulation resulting in a further rise in air temperature. �is
increases the cooling load of AC during hot weather conditions.

Night time results. �e impact of the fan is signi�cantly pro-
nounced under relatively moderate weather conditions at night, as
can be seen in Figure 11. �e prolonged use of ceiling fan helps
maintain a desired PMV without the need for a high-power AC,
resulting in ≈30% reduction in AC usage. �ese types of energy
optimizations through aggregate usage of devices are highly un-
likely through manual operation or device speci�c thermostat; and
de�nitely not possible at night with occupants asleep.

Overall, with PMV as comfort metric, we record a 15% reduction
in AC usage per day, that translates into approximately 2.5 kWh of
energy savings a�er subtracting the power consumed by the fan.

6 ESTIMATING COUNTRYWIDE BENEFITS

To illustrate the energy bene�ts of Hawadaar on a countrywide
scale, we use the results from Section 5, together with estimates
of annual electricity consumption on air conditioners and electric
heaters in residential and commercial buildings. We are interested
in extrapolating energy savings for an emerging economy that is
populous, with a sizeable middle and upper middle class in urban
areas living in buildings which can be retro��ed with Hawadaar,
and faces extreme climate with signi�cant temperatures variations
in summer and winter months.
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Figure 11: PMV evaluation (night): In moderate condi-

tion, the AC on-time is signi�cantly reduced (≈30%) due to

Hawadaar’s ability to intelligently interleave the fan.

�e main challenge we encounter in this exercise is the lack of
electricity consumption estimates in buildings (residential or com-
mercial), at an aggregate level or by end use, in such a context. To
address this, we employ an international benchmarking approach
that uses plausible inputs from US electricity consumption surveys,
to arrive at conservative estimates of annual electricity consump-
tion in residential and commercial buildings on air conditioners and
electric heaters in our typical economy. �e inputs and assumptions
underlying our projected savings are discussed below.

6.1 Inputs and assumptions

�e �rst input is the annual electricity consumption by end use
in buildings in the US as recorded in the Residential Energy Con-

sumption Survey (RECS) [14] and Commercial Building Energy Con-

sumption Survey (CBECS) [6]. �e RECS provides data on annual
electricity usage in kWh for residences, while the CBECS provides
data on electricity usage in kWh and �oor space in square feet for
commercial buildings in di�erent climate regions of the US by end
use, such as air conditioning and space heating, amongst other
uses. �e simplifying assumption we make is that US electricity
consumption data is representative of electricity usage in emerging
economies. �ere are undoubtedly variations in building materials,
appliance e�ciency, and engineering systems in the US relative to
any developing country, and we should expect the US consumption
to be lower when accounting for be�er technologies for cooling
and heating. �is would lead us to start out with more conservative
estimates of consumption in emerging economies, and thus more
conservative estimates of savings. To ensure that consumption
pa�erns due to seasonal variations are similar to our context, we
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Table 3: Inputs for estimating total annual electricity saving.

Average Hot Humid Mixed-Dry/Hot-Dry Mixed-Humid

Residential AC (kWh/household) 2442.00 4077.00 1899.00 1777.00
Commercial AC (kWh/f t2) 3.10 5.34 2.10 2.52

Commercial Heating (kWh/f t2) 0.34 0.12 0.15 0.52
Population

Number of households 10 million
Commercial Floor Space 1000 million square feet

Penetration Rate 0–50%

take care to focus only on buildings in hot-humid, mixed-humid,
and mixed-dry/hot-dry building regions 5.

�e second input is the stock of residential and commercial build-
ings that can bene�t from Hawadaar. We calculate energy savings
for a large emerging economy, with signi�cant urbanization. We
assume a total population of 250 million persons, urbanization rates
of 40%, implying an urban population of 100 million persons. As-
suming that half of the urban population lives in buildings where
Hawadaar can be used, and average household consists of 5 per-
sons, we have a bene�ciary population of 10 million households or
residential units. To arrive at estimates of commercial �oor space,
we use plausible numbers of the density of commercial �oor space
per capita of various developing countries available from recent
research [16], assuming that the stock of commercial �oor space is
1000 million square feet.

�e third input is the penetration rate of Hawadaar in our ben-
e�ciary population. In the base case, we assume that the average
penetration rates of Hawadaar for air conditioners is 20%. For
electric heaters, we assume 20% penetration in commercial build-
ings and 0% in residential units, as we expect natural gas based
space heating to be predominant in households due to its cheaper
cost; currently not supported by Hawadaar.

Finally, based on our empirical results in Section 5, we normalize
energy savings emanating from both the key features of Hawadaar:
(i) aggressive duty cycling of single units and (ii) interleaving of
low-power devices. In the �rst case, we set energy savings from
AC to 35% (cf. Section 5.2.2): �is is the optimistic case where we
assume an average deviation of ≈-2◦C from the optimal setpoint
based on our anecdotal observation. Hawadaar can preempt such
excessive se�ings to claim its energy savings because it is standards-
compliant. In the second case, we assume the energy savings from
AC to 15% (cf. Section 5.2.3). �is is the pessimistic case where
we disregard our anecdotal observation and only consider savings
fromHawadaar’s ability to minimize energy consumption through
interleaving low-power devices when using PMV as a comfort
metric. We strongly believe that this is the bare minimum bene�t
of deploying Hawadaar. Finally, in both cases the energy savings
from electric heater are set to 40% (cf. Section 5.2.1), assuming
no onboard temperature control units and that only commercial
buildings use this type of heating.

Our inputs to calculate projected savings are summarized in
Table 3. Total savings are found by multiplying the per unit air
conditioner and electric heating consumption for di�erent climate
zones with savings above, assuming a penetration rate of 20%. We
also calculate savings for di�erent penetration rates. With these

5�ese climate regions were created by the Building America program and are meant
to capture the di�erences in climate and building types in di�erent parts of the country.
�ese regions include cities such as Houston, Dallas, Pheonix, Memphis, and Atlanta,
which have climate similar to cities such as Mumbai, New Delhi, Karachi, Lahore,
Tehran, Dhaka, Beijing, and Cairo.
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Figure 12: Countrywide estimates of annual energy savings.

inputs, we calculate very conservative estimates of total savings
(cf. Figure 12), which can be considered a lower bound on actual
savings that may be realized from implementing Hawadaar.

6.2 Savings and environmental impact

Figure 12(a) shows the countrywide estimate of energy savings
by di�erent climate zones at a market penetration of 20%. In the
optimistic scenario, savings range from 1462 million kWh to 3237
million kWh, and in the pessimistic scenario, savings range from
645 million kWh to 1393 million kWh. Savings are higher for cool-
ing in humid zones, given the higher consumption per household
and per unit area. Similarly, heating consumption and thus savings
are higher in climate zones with greater need for heating during
the year. Given our assumptions about the population size, resi-
dential air conditioning accounts for ≈85%, while commercial air
conditioning and heating together account for 15% of total esti-
mated savings. In Figure 12(b) we display the e�ect of changing the
penetration rates on savings for the buildings located in average
climate zone. Total savings rise proportionally with penetration
rates, as we assume a uniform consumption rate in our population.

To understand the magnitude of total energy savings, we can
also express them as a fraction of per capita consumption in the
residential and commercial sectors. Assuming an average per capita
electricity consumption of 255 kWh in residential and commercial
sectors6, the estimates in Figure 12(a) imply that between 1.15% to
5.76% of electricity consumption in these sectors can be saved with
penetration rates of just 20%. As we increase the penetration rates
from 5% to 50%, the percentage savings range from 0.87% to 8.68%
in the optimistic scenario and from 0.38% to 3.79% in the pessimistic
scenario. Overall, these projections illustrate that even with very
conservative assumptions, Hawadaar can have an economically
meaningful impact on consumption at a macro level.

7 RELATEDWORK

E�cient operation of HVAC has been at the forefront of existing
literature on energy conservation [1, 3, 7, 9, 21, 29, 30] and ther-

mal comfort [15, 18, 27, 31] in buildings. Energy conservation is
typically achieved by incorporating occupancy pa�erns [1, 7, 21]
6�e average per capita electricity consumption in lower middle income countries
ranges from 500 to 1000 kwh per capita out of which approximately 30% is residential
and commercial electricity consumption [8]. Using the midpoint consumption of 750
kwh per capita we can conclude that residential and commercial sectors account for
255 kwh per capita of electricity consumption. �en we can express our total savings
in per capita terms and �nd the percent saved.
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and thermal load predictions [5, 9] into HVAC operation schedules,
or by exercising more �ne-grained control, such as room-level air
�ow control [29] and stage selection in a multi-stage HVAC [30].
Aswani et al. [5] employ similar predictive techniques for the energy
e�cient operation of a room-level AC only, thereby addressing a
subset of problems considered in this paper. Studies focusing on im-
proving thermal comfort of centralized HVAC try to �nd improved
setpoints based on occupants' feedback [15, 31], or by augmenting
HVAC with personal devices to create micro thermal-zones around
a user for highly personalized thermal comfort [2, 18, 27]. �ese
personal comfort systems nonetheless rely on HVAC to �rst achieve
a building wide setpoint; this facility is not available in our setup.

Our goal to achieve thermal comfort at low energy budget is
aligned with existing literature but the nature of challenges we
face is inherently di�erent. For example, the type of buildings, the
extreme weather, as well as thermal characteristics and location
of conditioning units entail us to build more aggressive control
strategies, such as the ones employed by Hawadaar. �is paper
thus primarily focuses on developing and evaluating these cen-
tralized control strategies. While the current implementation of
Hawadaar is oblivious to occupancy prediction (estimating the
number of occupants for determining internal thermal load) due to
its reactive control strategy, occupancy detection (if and when the
room is occupied) is an orthogonal but well-researched problem
outside the current scope of this paper. �us, we do not foresee
any inherent challenges in the seamless incorporation of existing
occupancy detection solutions inHawadaar, to re�ne its operation
schedules and further reduce energy consumption.

�e work that comes closest to our idea of interleaving AC and
ceiling fan is the collaboration of NEST with a smart ceiling fan
company [17]. �e key idea is to adjust fan'speed as temperatures
rise, allowing to increase thermostat setpoint of a centralized HVAC
while still feeling just as cool. However, we observed that for our
range of operating temperature and suboptimal building insula-
tion, simultaneous use of AC and fan results in higher average
temperature as the fan forces hot air down.

8 CONCLUSIONS

�is paper serves as a proof of concept for the fundamental compo-
nents of an unconventional, inverted HVAC architecture for older
buildings in emerging countries. As an alternative tomodernHVAC,
we proposed IoT-based retro�ts to reinforce legacy air conditioning
units for policy driven actuation. Hawadaar is a practical realiza-
tion of this proposal, demonstrating its e�cacy in achieving a high
level of thermal comfort at low energy budget. Our empirical eval-
uations, when plausibly scaled to countrywide estimates highlight
the worthwhile impact of Hawadaar, providing energy savings
that directly translate into reduced carbon emissions in countries
that rely heavily on burning fossil fuels for electricity generation.
We see a greater value in pursuing this work further not only to
widen its impact, such as by including more device types, but also
to improve its implementation and algorithmic aspects.
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