
InKeV: In-Kernel Distributed Network Virtualization for DCN

Zaafar Ahmed
FAST National University
zaafar.ahmed@sysnet.org.pk

Muhammad Hamad Alizai
CS Department, LUMS
hamad.alizai@lums.edu.pk

Affan A. Syed
PLUMgrid Inc.

asyed@plumgrid.com

ABSTRACT
InKeV is a network virtualization platform based on eBPF,
an in-kernel execution engine recently upstreamed into linux
kernel. InKeV’s key contribution is that it enables in-kernel
programmability and configuration of virtualized network
functions, allowing to create a distributed virtual network
across all edges hosting tenant workloads.

Despite high performance demands of production environ-
ments, existing virtualization solutions have largely static
in-kernel components due to the difficulty of developing and
maintaining kernel modules and their years-long feature de-
livery time. The resulting compromise is either in pro-
grammability of network functions that rely on the data
plane, such as payload processing, or in performance, due
to expensive user-/kernel-space context switching.

InKeV addresses these concerns: The use of eBPF allows
it to dynamically insert programmable network functions
into a running kernel, requiring neither to package a custom-
kernel nor to hope for acceptance in mainline kernel. Its
novel stitching feature allows to flexibly configure complete
virtual networks by creating a graph of network functions
inside the kernel. Our evaluation reports on the flexibility of
InKeV, and in-kernel implementation benefits such as low-
latency and impressive flow creation rate.

1. INTRODUCTION
Network Virtualization (NV) allows the creation of mul-

tiple virtual networks over the same physical network. This
technology is fundamental in multi-tenant datacenters, where
each tenant expects a logically isolated networking infras-
tructure between its workloads (i.e., tenant owned virtual
machines). Since SDN provides the required underpinning
of a programmable control abstraction for rapid provision-
ing, instead of box-by-box configuration, it has been globally
adopted as the preferred approach to NV in multi-tenant
datacenters. While the idea of NV is not new, the unique
requirements of DCNs pose new challenges: for example,
each tenant wants to overlay an isolated, potentially un-
modified enterprise-network topology on a single physical
network. A preferred approach to this is to connect tenant
VMs to a distributed virtual network which is independent
of the underlying physical topology of DCN [15, 5]. A dis-
tributed virtual network can configure a complete tenant-
specific logical topology, by chaining virtual network func-
tions (VNF), inside each edge1 hosting tenant workloads.
Outbound packets thus traverse the whole logical topology

1simply, servers inside DCN

inside the source edge before being tunneled to a remote
workload; the overlay-model for SDN. This is like shifting
the network virtualization to compute domain (edges), re-
quiring nothing more than an IP-tunneling facility from the
underlying DCN.

While a promising concept for NV in datacenters, dis-
tributed implementation of virtual networks is challenging
as production-level performance prefers in-kernel implemen-
tations [21]. However, current approaches to adding kernel-
level functionality either require packaging a custom kernel
or upstreaming to mainline kernel, both having drawbacks.
The packaged, but non-standard, kernel approach has re-
sulted in NV solution providers experiencing hesitancy from
customers for their production systems, along with concerns
for packaging and upgrading kernel modules. Upstream-
ing functionality into mainline kernel introduces the Linux
kernel maintainers as an agnostic-to-business-concerns third
party, typically leading to years long innovation cycle. These
arguments are echoed by the architects of Open vSwitch
(OVS): “When Open vSwitch started on Linux, only in-
kernel packet forwarding could realistically achieve good per-
formance, so the initial implementation put all OpenFlow
processing into a kernel module... This approach soon be-
came impractical because of the relative difficulty of develop-
ing in the kernel and distributing and updating kernel mod-
ules. It also became clear that an in-kernel OpenFlow imple-
mentation would not be acceptable as a contribution to up-
stream Linux, which is an important requirement for main-
stream acceptance for software with kernel components” [21].

A resulting compromise has been to implement data plane
(DP) of any VNF by splitting functionality between a user-
space component (e.g. ovswitchd in OVS) and a kernel
component (e.g. datapath in OVS) to allow network ac-
celeration by, for example, caching exact flow-rules inside
the kernel. This split, resulting from the inability to safely
make the kernel programmable, demands that user-space
of the DP implementation is thick, with only a thin (and
configurable) implementation in the kernel (cf. Figure 1).
However, this skewed split results in additional latency, due
to packet copies and context switching, in every scenario re-
quiring packet processing in user space. Such a penalty is
most significant for VNFs that implement per-packet pro-
cessing (e.g., middleboxes for encryption and IPS) where
every packet has to traverse into the userspace (V NF2 to
V NFn in Figure 2), as we show in Section 4. However, DP
for even simple VNFs can incur this penalty for the first
packet of a flow (V NF1 in Figure 2), affecting the flow-

user-space

kernel

user-space

Kernel
(eBPF)

Current InKeV

VNF
Data Plane

Figure 1: Logical difference between VNF data plane imple-
mentations, current and InKeV.

creation rate. Thus, for example, with a wildcarded rule in
OVS, every packet for a new flow exits the kernel as its dat-
apath module only caches an exact match. We, therefore,
argue that an in-kernel programmable DP is essential for
network acceleration, as it removes the above two penalties
found in the thin-kernel approach and allows us to construct
distributed implementations of a VNF data-plane.

An alternate approach to add functionality inside the ker-
nel has been recently introduced in the form of eBPF, main-
lined into Linux kernel 3.18 and above [14]. eBPF is an in-
kernel engine that allows dynamic insertion of code via its
own syscall. The ability of eBPF to hook code to any kernel
event — packet capture or system calls — provides users
with a generic ability to respond to events at nano-second
granularity. While we already see widespread use of eBPF
in tracing and seccomp [9], more importantly its in-kernel
programmability allows us to revisit the DP implementa-
tion choices for NV. Thus, we can now dynamically insert
a programmable implementation of a data-plane, inside the
kernel of commodity machines, without any third-party bot-
tleneck to feature delivery time.

InKeV is the data plane for a NV platform built around
eBPF to retain the benefits of an in-kernel DP without hav-
ing to compromise its flexibility and programmability. Fig-
ure 2 illustrates the difference between a thin-kernel imple-
mentation of a DP (Figure 2a) necessitating frequent user-
/kernel-space context switching, and InKeV’s thicker and
programmable DP (Figure 2b). InKeV’s key contributions,
utilizing the in-kernel programmability of a network func-
tion’s DP inherited from eBPF, therefore are:

• An Open-Source orchestration architecture [2]
to dynamically manage the insertion, stitching, and
deletion of programmable DP elements at any edge,
facilitating any overlay-based NV solution (Section 3).

• Network acceleration due to in-kernel VNFs as demon-
strated by a virtual network deployment and compar-
ison with state-of-the-art NV solution based on OVS
(Section 4).

For brevity, we limit our target environment for InKeV
to distributed virtual networks in multi-tenant datacenters.
We shed light on its general feasibility across the NV re-
search domain in Section 5.

2. BACKGROUND: INTRODUCING eBPF
We first briefly introduce the key features of eBPF which

is the core technology used in InKeV, to facilitate under-
standing of its architecture in Section 3.

eBPF (extended Berkeley Packet Filter) is an extension
of BPF [16], which introduced the concept of an in-kernel
interpreter to translate bytecode for a fictional machine ar-
chitecture. The instruction set for this machine however was

VNF1

User-space

Kernel Datapath

VNF2 VNF3 VNFn

Kernel-space

……..

…....

First packet

All packets

VNF 1 to N: Programmable DP functionality L2 switch

(a) Nonprogrammable DP with user-space VNF.

VNF1 VNF2 VNF3 VNFn …..

….. VNF2 VNF3 VNFn VNF1 eBPF

Helpers

maps
User-space
Kernel-space

(b) InKeV’s programmable DP.

Figure 2: A logical comparison of packet path between
user-space VNFs in a nonprogrammable DP and InKeV en-
abled programmable DP with stitched VNFs. Maps provide
an asynchronous medium for in-kernel implementations to
communicate with companion userspace programs (helpers).
Details in Section 2 and 3.

purposefully limited, enough to enable packet filtering and
allow line-rate network monitoring but not more to allow
easy verification of code stability. eBPF extends this ma-
chine architecture to allow implementing greater program-
ming constructs inside the kernel rather than just packet
header matching. eBPF introduced an enhanced 64-bit ma-
chine architecture along with support for typical program-
ming constructs such as call, load, store and conditional
jumps. eBPF also includes several helper functions, a li-
brary of routines that eBPF programs can utilize to inter-
act with the host machine kernel. These helpers2 provide a
diverse set of functionality including, among many others,
getting time and generating random numbers. Similar to
BPF, eBPF also provides kernel-safe code execution by first
verifying an inserted code through an exhaustive search of
code-paths, as well as providing native performance guar-
antees through JIT compilation to x86 and ARM machine
architectures.

One of the most important feature with regard to InKeV
implementation is the support for maps: a < key, value >
data structure. The < key, value > pairs in the maps are
kept as binary blobs, allowing their program-specific in-
terpretation. Thus, the map construct provides a generic
data structure facility for in-kernel algorithms allowing, im-
portantly, to keep state between packet arrivals. These
maps are accessible (all basic primitives of create, lookup,

update, and delete) from user-space using bpf() syscall
and via helper functions from within eBPF code. Thus, they
also enable asynchronous communication between eBPF mod-
ules and user-space programs allowing configuration and
contextualization of the eBPF program execution. These
maps are also accessible in parallel from any eBPF module,
if provided with the corresponding file descriptor.

eBPF also provides the ability to chain together indepen-
dent programs by using a special type of map that only
contains mappings from one eBPF module descriptor to an-
other (BPF MAP TYPE PROG ARRAY). This map is used to tail

2For an exhaustive list, see the man page at
http://man7.org/linux/man-pages/man2/bpf.2.html

In
K

ev

VNF maps

Physical-to-Virtual Manager eB
PF

 K
er

ne
l S

pa
ce

U

se
r S

pa
ce

Services Services Services

Control

Application

Controller API DP/Mgmt API

N
et

w
or

k
G

ra
ph

M

an
ag

er

Tr
an

sp
or

t M
an

ag
er

VNF1

VNF2

VNF3

Patch Panel

Global_map

Graph_
map

Prog_
lookup

VNFn

VNF1

VNF2

VNF3 VNFn

Helpers

Configure

Workloads

VID

VNF stitching

.

. . .

. . .

. .

Figure 3: InKeV architecture: The VNF modules are in-
serted, deleted, and managed by Network Graph Manager.
Patch-panel, Physical-to-Virtual Manager, and Transport
Manager implement the stitching between modules, interac-
tion with physical workloads, and transport to remote edges,
respectively. Maps serve as an asynchronous communication
point between modules.

call from one eBPF program to another, passing along the
context (packet) directly and also avoiding the switching
overhead of recreating a call stack. This ability is impor-
tant as we use it to create programmable DPs and config-
uring logical virtual network topologies inside the kernel, as
we describe next.

3. IN-KERNEL VIRTUAL NETWORKS
InKeV allows creating a distributed virtual network in-

side edges hosting tenant workloads by stitching together
eBPF-based data-planes; an approach similar to NVP [15],
Each packet traverses the complete logical topology of the
virtual network on source edge before being tunneled via the
underlay to the destination edge.

InKeV architecture (cf. Figure 3) is inspired from the
generic framework of the IO Visor Project [8], which ex-
tends the notion of eBPF to have a general abstraction for
managing and programmatically responding to IO events.
In InKeV, we use the concept of a Network Graph Manager
responsible for creating a connected graph of VNF data-
planes thus creating the virtual network at each edge. We
first elaborate the definition and interfaces for a VNF DP
and then describe the InKeV architecture responsible for
stitching these VNFs together.

3.1 VNF Modules
VNFs represent software-based implementation of any net-

work functions: from switches, routers to firewalls and flow
classifiers. We define the DP of these VNF, henceforth re-
ferred to as VNF modules, implementation split between a
thin user-space helper and an eBPF-based kernel compo-
nent. This functional separation corresponds to the expla-

nation in Section 2, where a user-space program can interact
with eBPF modules using maps.

The user-space component of a VNF module can have two
interfaces; an optional north-facing interface for interaction
with the control plane of the corresponding network func-
tion. The south-facing interface enables interaction with
its in-kernel eBPF module by polling the associated maps
(e.g., for communicating statistics or configuration). How-
ever, to punt entire packets to the helper (e.g., for flow cre-
ation through an SDN controller), we can have the eBPF
code send packet to a virtual interface on which the helper
will be listening. The in-kernel module implements the DP
of a network function as an eBPF code3. Each VNF has
Virtual Interfaces (VIs) for packet ingress and egress. It is
configured for its number of VIs and MAC addresses via
maps. Optionally, function-specific maps can be used to
communicate statistics.

3.2 InKeV Architectural Components
InKeV architecture acts as the “operating system” which

can accept VNF modules (think “programs”). It consists
of the Network Graph Manager, a user-space component,
which is responsible for interacting with the DP configura-
tion component of a larger, overlay-based, NV solution. The
other three InKeV components (cf. Figure 3) are in-kernel
eBPF modules implementing following functions: (i) inter-
facing packets between workloads and the virtual network
(physical-to-virtual manager), (ii) stitching VNF modules
(patch panel), and (iii) tunnel packets between workloads
on different edges (transport manager).

3.2.1 Network Graph Manager (NGM)
The NGM creates the DP of a virtual network by im-

porting, validating, and installing a graph of VNF Modules.
For this purpose, it needs a virtual network configuration in
terms of the constituent VNF modules and their connectiv-
ity. This configuration can be used to, for example, migrate
tenant specific topologies to data centers.

With a virtual network configuration in place, NGM in-
stalls the relevant VNF DPs using the IO Visor compiler
system for eBPF, the BPF compiler collection (BCC) [1],
to appropriately package user/kernel space modules. As we
explain below, each module’s VI(s) needs a unique identi-
fier (VID), assigned by NGM, within an edge. The NGM
finally pushes the connectivity matrix to the patch panel, via
the Graph map, to stitch eBPF modules forming a virtual
network inside the kernel. As an example, a simple virtual
network consisting of two subnets can comprise two bridge
VNF modules and a router VNF module. The VI of each
bridge is stitched to a different VI of the router; thus forming
a basic B-R-B topology.

3.2.2 Physical-to-Virtual Manager (PVM)
PVM represents the logic to interface physical endpoint

(workload VM/container) and the in-kernel virtual network.
The network interface of an endpoint, typically a tap or
veth interface, has an ifindex registered with PVM. Pack-
ets coming out of an endpoint will transit PVM, which is
an eBPF program hooked to the tc ingress queue, captur-
ing packets as the sk buff structure. PVM will also gener-
ate a unique VID for this ifindex to enable phy-to-virtual

3A future possibility is to extract this from a P4 like descrip-
tion of DP into eBFP code, an effort currently underway [4].

mapping. This VID is appended to the packet and is then
delivered to the patch panel (as described next). Oppo-
sitely, when a packet from the virtual network has to be
delivered to a workload, a similar mapping between a VID
and the destination ifindex is maintained inside the PVM.
The PVM uses the bpf clone redirect() helper function
to deliver this packet to the appropriate workload interface.
Overall, PVM acts as a map between network stack of the
workloads and the InKeV’s virtual network.

3.2.3 Patch Panel
The Patch Panel (PP) implements the actual stitching to

create a virtual graph between VNF modules. Each VNFs
thus forward its packets, with their VID as metadata, to
the patch panel. This is achieved by using PP’s well-known
index in a Global map of type PROG ARRAY (see Sec-
tion 2), allowing a tail call into the PP’s code. Further-
more, the metadata containing the VID, is appended to the
sk buff.cb field as convention. However, for the case requir-
ing packet traversal to another edge (e.g., for a distributed
bridge), the VNF module use the interface provided by the
transport manager (described next).

PP uses two maps, Graph map and Prog lookup, to achieve
packet traversal inside a virtual network. The Graph map
uses the connectivity matrix to stitch VIDs. Upon receiv-
ing a packet, a simple lookup on its source VID metadata
provides the VID of packet destination. The Prog lookup,
then, provides a mapping between the destination VID and
the corresponding eBPF module.

With this implementation, we can now connect VNFs in
an arbitrary graph to build a distributed virtual network
within an edge.

3.2.4 Transport Manager (TM)
The TM is responsible for tunneling packets between ten-

ant VMs on different edges, an essential characteristic of
multi-tenant datacenters. For this purpose, underlay tun-
nels are created (using e.g., GRE, VXLAN, or Geneve) en-
abling overlay networking between workloads on different
edges [15]. It is important to note that the eBPF module
implementing TM keeps track of tenant-to-tunnel informa-
tion, thus ensuring isolation and security. However, the ac-
tual tunnel creation can use native-to-kernel facilities (like
VXLAN tunneling), thereby allowing us to best utilize ker-
nel software as well as hardware offload capabilities. TM
provides an API, which is also registered in the Global map,
to VNFs. We require, as part of the API, that a packet to
TM should contain the appropriate tunnel ID. The TM will
use this identification to either forward the packet to a work-
load on the same edge, or over the tunnel, or drop it if the
corresponding tunnel does not exist. The information about
the correct tunnel and their creation remains a function of
the NV platform implementation; since this paper focuses
on the programmable DP we do not further discuss these
details.

The accumulated functionality of the four architectural
components delineates our first contribution, i.e., an or-
chestration architecture to create distributed virtual net-
works inside the kernel of all edges hosting tenant workloads.

4. InKeV NETWORK ACCELERATION
We now empirically demonstrate our second contribution,

i.e., InKeV’s network acceleration. With regard to NV in

datacenters, NVP [15] and OpenStack’s Neutron4 [19] rep-
resent the state-of-the-art, and hence candidates to be com-
pared with InKeV. Since both these platforms use OVS as
their software data-plane, their in-kernel implementations
are limited to exact match flow-rules. Thus, any VNF in
the virtual topology (L2-above for Neutron and middleboxes
in NVP) results in packet exiting in-kernel DP for VNF
processing in a namespace/process/container, which may or
may-not be hosted on the same edge. InKeV by the virtue
of its programmable DP allows to chain the DP of VNFs
inside the kernel, avoiding packet exits from the kernel. In
this evaluation we compare InKeV with Neutron because it
is open source and a representative of state-of-the-art for the
data plane of NV platforms that are based on Open vSwitch.

4.1 Latency
Latency is an important performance parameter in multi-

tenant DCN, where even a fraction of a second can impact
user experience and lower operating revenues [12]. With
our programmable in-kernel DP of VNFs, we can push code
to exponentially increase the functionality of DP, without
requiring any user-space context switch. Whereas, for OVS
based platforms, any programmable VNF in the data path
will result in user-space switching.

Setup: The latency experiments are performed on a sin-
gle, i7/32GB, 3.4Ghz, ubuntu-14 desktop machine. We use
devStack install of OpenStack, using the stable liberty re-
lease [18]. We also upgrade the Kernel to version 4.3, with
the BPF Compiler Collection (BCC) tools to implement
InKeV’s components [1].

We use a single machine setup to present the best-case
latency comparison with InKeV, even though reference im-
plementation of Neutron requires VNFs as Linux names-
paces on a separate “network node”. This single machine
setup eliminates latency incurred due to any underlay/fabric
traversals. We want to evaluate the traversal similar to
in Figure 2, where a packet has to exit into user-space for
packet processing. To emulate this behavior we use the ba-
sic router implemented as a network namespace, connecting
two different subnets represented by two bridges (a VNF
requiring user-space punt). To extend the chain of such net-
work functions we repeat this B-R-B topology where each
bridge connects a workload5. We thus create eleven bridges
to host ten routers and calculate latency as a function of
increasing size of this chain by pinging to hosts on differ-
ent subnets. Each experiment, repeated thirty times, uses a
ping test to calculate latency. We use a 60s interval to allow
flows to timeout and necessitate user-space transits.

Results: Figure 4a summarizes an order of magnitude im-
provement in latency for experiments where each workload
in the topology pings all other workloads. The x-axis depicts
different experiments each with different number of routers
in the topology. The error bars represent standard error.

We expect these results to largely apply when compared
with any user-space, programmable DP solution as they
mainly depict the latency associated with frequent user-
/kernel-space transits.

4.2 CRR and Throughput
Next to latency, we evaluate the impact of InKeV on

4OpenStack’s reference implementation for NV in DCN.
5We manually add routes to connect workloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8 9 10

La
te

n
cy

 (
m

s)

VNF

(a) Latency

0

8

16

24

32

40

48

56

 1 2 3 4

T
C

P
_C

R
R

 (
T
h
o
u
sa

n
d

s/
S

e
c)

VM Pairs

InKeV OpenStack

(b) Flow Creation Rate (10 pkts per flow)

0

5

10

15

20

 8 10 12 14 16

T
h
ro

u
g

h
p

u
t

(G
b

p
s)

Message size (KB)

(c) Throughput

Figure 4: InKeV vs. Neutron: Evaluating the benefit of traversing the DP of an in-kernel distributed virtual network.

connection-request-response CRR test [13] — a system level
metric that is affected by latency to CP — and throughput.

Setup: We now deploy a multi-node OpenStack setup with
the network node (where an OpenStack router namespace
is hosted) on a different edge. This setup consists of two
desktop machines (specs as before) connected via a 1Gbps
switch. Thus, while the InKeV implementation of the B-R-
B topology resides on the same physical edge requiring no
transit on the underlay, a reference multi-node OpenStack
implementation will require traversal over the underlay to
the router name-space at flow-creation time. This example
thus emulates any network function that requires hairpin-
ning to outside-kernel, e.g., service insertion of functions
into a NV solution.

Results: Figure 4b shows the results for the CRR test
using netperf as we increase the number of VM pairs. We
can clearly see that InKeV sustains an order-of-magnitude
faster CRR due to its ability to create flows inside the ker-
nel. This improved CRR eventually translates into better
response for application flows requiring frequent connection
establishment (handshakes), such as HTTP.

To further investigate the impact on raw throughput, we
calculate the throughput over a single flow (cf. Figure 4c),
and observe that the OpenStack network hits a throughput
limit around 0.6Gbps, primarily due to the 1Gbps physical
network which it has to traverse. Instead, InKeV’s in-kernel
traversal of the network allows delivery of packet, across
different virtual subnets, to confront no such constraints,
reaching 20Gbps with the default netperf message size, when
the source and destination workloads are on the same phys-
ical machine.

Overall, this evaluation uses multiple metrics to demon-
strates the benefits of InKeV’s implementation of a dis-
tributed, in-kernel, virtual networks using programmable
DPs.

5. DISCUSSION
Our main technical contribution is showing how a very

nascent technology, i.e. eBPF, can be used to not only
build in-kernel programmable VNFs but also (and in a novel
way) how to interconnect them on a single edge and across
different edges. The implementation required a significant

engineering effort but is essential to demonstrate the full
potential of a flexible and in-kernel alternative to NV. We
consider the CP aspect, to orchestrate the creation of these
VNFs and extending these VNFs to be distributed across
multiple edges, as a complimentary work beyond the cur-
rent scope. Nonetheless, the benefits of InKeV overlap and
extend to two related fields.

5.1 NFV and InKeV
Network Function Virtualization (NFV) presents an inter-

section of SDN and cloud technologies specialized to satisfy
the demands of the Telecom Operators [17]. The NFV use-
case however demands carrier grade performance of network
functions and 99.999% (or five nines) reliability, but with
virtualized workloads over commodity hardware. This re-
quires efforts to improve the packet processing performance
of DP, especially in the context of virtualized workloads
that share physical interface(s). Here, one concern has re-
volved around line-rate packet processing alternative to the
slower standard Linux networking stack. For example, a
zero-copy approach, i.e., sharing buffers between user &
kernel space, in PF RING [6] is employed to bypass the
kernel stack for fast processing in the user-plane [7]. Simi-
lary, for VMs—commonly used in cloud environment—PCI
passthrough allows direct access to physical NICs. To scale
such an approach to multiple VMs sharing a NIC, techniques
like SR-IOV are used [10]. However, above approaches re-
quire specialized drivers restricting them to specific hard-
ware NICs [7, 10]. More importantly, with VM/container
based workloads that share the kernel of a host machine,
packet traversal includes kernel and then to any user-space
program — incuring the overhead of a per-packet upcall
(cf. Figure 2 in [11]). NetVM tackles this issue through
an architecture that extends DPDK with support for “vir-
tual bumps” to chain processing logic in user space [11],
requiring modification in the hypervisor. Furthermore, the
architectures for container based workloads, or containers
inside VMs, are not immediately supported. With an eBPF
engine, its associated helper functions, and maps, packets
entering a kernel can be captured, processed, forwarded —
all with native performance on any commodity machine.

Similarly, the stitching feature of InKeV can be extended,
straight-forwardly, to chain together VNFs and implement

the service chaining concept. For such an extension the CP,
orthogonal to our DP architecture here, will be different
from a typical NV platform. It can, for example, focus more
on orchestration and load-balancing to service chains rather
than distribution of network functionality.

5.2 Programmable DP and InKeV
A second overlapping area to InKeV arises from work

to make DP, along-with CP, programmable and thus en-
able SDN implementation to be truly vendor-agnostic and
future proof. P4 provided a template for this approach,
by arguing for a platform independent specification of DP
functions [3]. OVS provides a flow-based data-plane API to
configure network functionality, along with an in-kernel dat-
apath module that ensures native performance once a flow
is written [21]. However, its kernel module remains a bottle-
neck in implementing new features and protocols, requiring
either a custom-kernel or longer delivery times. InKeV pro-
vides, through its eBPF-based VNF abstraction, an ability
to build and stitch programmable network functions. In-
terestingly, this approach is validated by the recent use of
eBPF-engine to augment OVS and support network func-
tionality specified in the P4 format [20]. Similarly, efforts
are already underway to write a P4 compiler that generates
eBPF code, allowing P4 to integrate with any commodity
machine [4]. Thus, it is possible that InKeV can, in the
near future, incorporate VNF specified in P4. This possibil-
ity will enable InKeV to host third-party VNF, specified in
the P4 language, in its virtual network graph.

6. CONCLUSIONS
We presented an eBPF based DP architecture that brings

the benefits of in-kernel implementations to the network vir-
tualization domain while removing flexibility and delivery
time concerns for kernel level implementations. InKeV’s
key contribution is an architecture to flexibly stitch together
programmable and in-kernel DP of VNF to build a network
graph that can be used to construct a distributed and ac-
celerated NV solution. The performance evaluation high-
lights network acceleration of InKeV when compared with
OpenStack’s reference NV implementation using the OVS-
based DP implementation, typical of most NV solutions.
Although this paper maintains its focus on distributed vir-
tual networks, the general feasibility of InKeV spreads across
the whole NV domain including NFV, service chaining, and
programmable DPs in SDN. Hence, exploring this general
feasibility, and a complete CP architecture for NV delin-
eates our primary future work.

7. REFERENCES
[1] Bpf compiler collection.

https://github.com/iovisor/bcc, 2015.

[2] Z. Ahmed. ebpf patch panel. https://github.com/
zaafar/ebpf_turtle/tree/master/InKeV/core, 2015.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, et al. P4: Programming
protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[4] M. Budiu. Compiling p4 to ebpf.
https://github.com/iovisor/bcc/tree/master/

src/cc/frontends/p4, 2015.
[5] M. Casado, T. Koponen, R. Ramanathan, and

S. Shenker. Virtualizing the network forwarding plane.
In Proceedings of the Workshop on Programmable
Routers for Extensible Services of Tomorrow, page 8.
ACM, 2010.

[6] L. Deri et al. Improving passive packet capture:
Beyond device polling. In Proceedings of SANE,
volume 2004, pages 85–93. NLUUG Association, 2004.

[7] DPDK. List of supported nics.
http://dpdk.org/doc/nics, 2015.

[8] L. Foundation. IO Visor Project.
https://www.iovisor.org/, 2015.

[9] B. Gregg. ebpf: One small step.
http://www.brendangregg.com/blog/2015-05-15/

ebpf-one-small-step.html, May 2015.

[10] H. Guan, Y. Dong, K. Tian, and J. Li. Sr-iov based
network interrupt-free virtualization with event based
polling. Selected Areas in Communications, IEEE
Journal on, 31(12):2596–2609, 2013.

[11] J. Hwang, K. Ramakrishnan, and T. Wood. Netvm:
high performance and flexible networking using
virtualization on commodity platforms. Network and
Service Management, IEEE Transactions on,
12(1):34–47, 2015.

[12] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo:
Predictable message latency in the cloud. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages
435–448. ACM, 2015.

[13] R. Jones. Care and feeding of netperf. Hewlett
Packard Company, 2007. http://www.netperf.org/
svn/netperf2/trunk/doc/netperf.pdf.

[14] Kernelnewbies. Linux 3.18.
http://kernelnewbies.org/Linux_3.18, 2015.

[15] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,
P. Ingram, et al. Network virtualization in
multi-tenant datacenters. In USENIX NSDI, 2014.

[16] S. McCanne and V. Jacobson. The bsd packet filter:
A new architecture for user-level packet capture. In
Proceedings of the USENIX Winter 1993 Conference,
pages 2–2. USENIX Association, 1993.

[17] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten,
F. De Turck, and R. Boutaba. Network function
virtualization: State-of-the-art and research
challenges. 2015.

[18] OpenStack. Devstack liberty release.
https://github.com/openstack-dev/devstack/

tree/stable/liberty, 2015.

[19] OpenStack. Neutron.
"https://wiki.openstack.org/wiki/Neutron", 2015.

[20] B. Pfaff. P4 and open vswitch.
http://p4.org/p4/p4-and-open-vswitch/, 2015.

[21] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson,
A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, et al. The design and implementation of
open vswitch. In 12th USENIX Symposium on
Networked Systems Design and Implementation, 2015.

