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ABSTRACT
We propose incremental checkpointing techniques enabling
transiently powered devices to retain computational state
across multiple activation cycles. As opposed to the exist-
ing approaches, which checkpoint complete program state,
the proposed techniques keep track of modified RAM loca-
tions to incrementally update the retained state in secondary
memory, significantly reducing checkpointing overhead both
in terms of time and energy.
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ganization → Embedded software; Reliability;
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1. INTRODUCTION
The increasing dependence of embedded sensing devices

solely on harvested energy breaks the assumption of a con-
tinuous energy supply prevalent in existing computation para-
digms. Harvested energy, either from natural sources or due
to intentional provisioning of an environment through wire-
less energy transfer, is typically intermittent [1, 2]. Check-
pointing computational state (registers, global variables, and
call stack etc.) before power blackout and restoring it at
the start of next activation cycle (aka. intermittent com-
puting) is thus essential to allow these transiently powered
devices to resume, and not restart, the previously running
computations. However, any system support for intermit-
tent computing must be energy efficient, to perpetuate max-
imum energy for application execution, and execute quickly,
to minimally disrupt the normal execution.

Recent state-retention solutions for transiently powered
devices [1,3] are suboptimal; they checkpoint complete pro-
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gram state, either the whole memory [3] or at least its occu-
pied portion [1], each time a call to a checkpointing system
is made due to depleting energy buffer. This results in re-
dundant and increased checkpointing overhead (i.e., an IO
operation) as even the unmodified state, since the last check-
point, is unnecessarily rewritten in the secondary storage.
These approaches accept this penalty as they lack the abil-
ity to determine which RAM locations have changed since
the last checkpoint.

An optimal checkpointing solution should be able to pre-
cisely identify modified RAM locations and only update
those in the secondary storage. To this end, we propose
two different, platform independent incremental checkpoint-
ing approaches that can proactively track changes in the
computational state.

2. INCREMENTAL CHECKPOINTING
Our first approach is near-optimal, as it accurately tracks

and records modifications in the main memory except for
processor registers. The second approach avoids such com-
putational overhead by binding variables to program paths,
only updating the relevant variables in the secondary storage
if the corresponding path has been executed.

2.1 Tracking Changes in State (TCS)
This approach is based on a key observation that the com-

putational state is only changed by a few, well defined state-
ments in the program, such as assignment, increment, shift
operations, and function calls and returns. We can instru-
ment the source code to record corresponding memory lo-
cations (i.e., by inserting calls to special functions) before
the execution of such state-modifying statements. Figure 1
shows that such an instrumentation results in significant re-
duction in the size of checkpoint. TCS thus offers a tradeoff
between computational and checkpointing overhead. Hence,
its feasibility can only be established if the energy consumed
by these additional computations is significantly less than
the energy required to checkpoint the complete program
state—an expensive IO operation.

2.2 Event to Variable Mapping (EVM)
Our second approach avoids any computational overhead

by binding variables to program paths through offline, static
program analysis. We define such a program path in an em-
bedded sensing device as the path triggered by a certain
interrupt, such as from radio, sensor, or timer. By remem-
bering all the interrupts (or events) that have occurred since
the last checkpoint, we can predict which variables could
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Figure 1: Checkpoint size when using an incre-
mental approach (green bars) is significantly less
than the complete application size (horizontal dot-
ted line). This graph depicts the results of a simple
TinyOS application that displays a counter, received
in a packet, on the three LEDs of TMote Sky. The
application is interrupted after every 10 seconds to
checkpoint and restore its state.

have been modified. Although EVM is slightly wasteful, as
a variable on a certain path might not necessarily be mod-
ified after each run (e.g., inside an unexecuted if block), it
has negligible runtime overhead.

Both these approaches are implemented through platform
independent, pre-compiler extensions that automatically in-
strument the source code with relevant incremental check-
pointing functionality.

3. OPTIMIZATIONS
The two presented approaches are restricted by the pe-

culiar characteristic of Flash-storage; requires to erase the
complete block before rewriting a certain byte in that block.
Hence, in the worst case, these approaches might not offer
any advantage over the existing solutions; consider a situa-
tion where a few bytes have to be updated in all the occupied
blocks (by the checkpoint) requiring a mass erase operation
and then rewriting of the complete program state. To ad-
dress these limitations, we propose both software and hard-
ware optimizations.

3.1 Software Optimizations
Our software optimizations deal with reallocation of vari-

ables in the RAM. With regard to TCS, we can, for example,
classify variables based on how often they are modified using
pre-deployment simulation runs. Variables with higher fre-
quency of modification can be grouped together in RAM so
that they can potentially map on to the same Flash block,
avoiding frequent mass-erase of all the occupied blocks by
the checkpointing system. Similarly, for EVM, we can reallo-
cate variables based on the program paths on which they are
encountered. For example, all the variables on the path trig-
gered by a radio interrupt can be grouped together such that
a solitary radio interrupt between two consecutive check-
points will only result in the update of radio-relevant storage
block(s).

3.2 Hardware Optimizations
Although software optimizations are useful to mitigate the

limitations of block-addressable Flash storage for incremen-
tal checkpointing, they still do not allow us to exploit the
maximum potential of the proposed approaches. The major
limitation is the mass-erase that has to happen at the block
level before every rewrite of even a single byte. To this end,
we serially interface byte-addressable, random access FRAM
with our target platforms (based on 16 and 32 bit MCUs) to
maximize the advantage of incremental checkpointing. For
an additional cost of just $2 per node, a serially interfaced
FRAM that requires only three MCU pins, brings about two
additional benefits besides eliminating the mass-erase prob-
lem; (i) its energy budget (during read, write, and standby)
is in orders of magnitude less than typical Flash storage,
and (ii) it liberates the Flash storage from the checkpoint-
ing overhead making it completely available for applications.

4. FUTURE WORK
We have already implemented front-end compiler exten-

sions for TCS to instrument the source code with the ability
to record state modifications in main memory. Although
both the presented approaches are platform independent
and can easily be ported to any C based platform, we ini-
tially implement it for TinyOS to utilize its extensive ap-
plication repository for later evaluations. We are optimiz-
ing this approach to further reduce the checkpointing over-
head by monitoring the size of the call stack between two
checkpoints. Furthermore, we plan to maintain a temporary
buffer in RAM, i.e., a replica of the checkpointed register
values, allowing us to compare fresh register values with the
previous checkpoint locally before updating in the secondary
storage—an expensive IO operation.

In the case of EVM, we are currently automating our
static analysis to bind variables to program paths and ad-
dressing related challenges. One major concern is the limita-
tion of static code analysis in dealing with pointer aliasing,
as pointers can point to arbitrarily different memory loca-
tions during runtime.

After complete implementation, the bulk of our future
work lies in a methodical comparison between the two pre-
sented approaches establishing their utility for real world
applications. Such a comparison should highlight, for exam-
ple, the tradeoffs between computational overhead of TCS
and the laziness of EVM in identifying modified computa-
tional state for incremental checkpointing.
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