Dynamic TinyOS: Modular and Transparent
Incremental Code-Updates for Sensor Networks

Waqaas Munawar**, Muhammad Hamad Alizaif, Olaf Landsiedelf, Klaus Wehrlef
fComputer Systems and Telematics, Freie Universitit Berlin, Germany
Distributed Systems Group, RWTH Aachen University, Germany
wagaas.munawar @fu-berlin.de,{hamad.alizai,olaf.landsiedel klaus.wehrle } @ rwth-aachen.de

Abstract—Long-term deployments of sensor networks in physi-
cally inaccessible environments make remote re-programmability
of sensor nodes a necessity. Ranging from full image replacement
to virtual machines, a variety of mechanisms exist today to deploy
new software or to fix bugs in deployed systems. However, TinyOS
- the current state of the art sensor node operating system - is still
limited to full image replacement as nodes execute a statically-
linked system-image generated at compilation time.

In this paper we introduce Dynamic TinyOS to enable the
dynamic exchange of software components and thus incremen-
tally update the operating system and its applications. The
core idea is to preserve the modularity of TinyOS, i.e. its
componentization, which is lost during the normal compilation
process, and enable runtime composition of TinyOS components
on the sensor node. The proposed solution integrates seamlessly
into the system architecture of TinyOS: It does not require
any changes to the programming model of TinyOS and existing
components can be reused transparently. Our evaluation shows
that Dynamic TinyOS incurs a low performance overhead while
keeping a smaller - up to one third - memory footprint than
other comparable solutions.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are envisioned to be
deployed in the absence of permanent network infrastructure
and in environments with limited or no human accessibility
[1], [2], [3]. Hence, such deployments demand mechanisms to
update nodes over the air: collecting nodes to apply updates
is often tedious [1], [4] or even dangerous [2], [3]. Typical
updates range from simple modifications, e.g., bug fixes, to
the introduction of new functionality or re-tasking of sensor
nodes.

Remote code-update schemes for sensor nodes meet two key
challenges: (1) resource consumption and (2) integration into
the system architecture. Energy, processing power, memory,
and communication bandwidth are scarce resources on sensor
nodes and their consumption needs to be limited. For example,
full-image replacement [5], [6] results in high transmission
costs while showing low processing demands. In contrast,
modern approaches such as runtime linking of incremental
updates [7], [8] or virtual machines [9], [10] reduce trans-
mission costs while requiring post processing on the sensor
node. Moreover, code-update schemes need to be transparently
integrated into the system architecture to allow that existing

*This work was conducted while the author was working with the Dis-
tributed Systems Group at RWTH Aachen University.

applications can still be used and that users do not have to
adapt to new programming models.

The contribution of this work is twofold: (1) we introduce
extensions to TinyOS to create a dynamic operating system
that supports efficient and dynamic adaptation of the OS and
its applications at runtime and (2) we integrate these exten-
sions transparently into the system architecture of TinyOS.
We believe that systems like TinyOS, for which a large base
of applications and communication protocols exists, require a
transparent integration of code update schemes into the system
architecture to ensure that no changes to this existing, large
code base are required.

Our system design preserves the component model of
TinyOS: TinyOS applications and the OS itself are built
by connecting so called components. Components represent
functional building blocks such as communication protocols,
device drivers, or data analysis modules. During the default
compilation process of TinyOS, these building blocks are
converted into a single, static binary. While this enables code
optimization and ensures a small memory footprint, it omits
the modularity of the OS and its applications. In contrast,
this work introduces dynamic extensions to TinyOS allowing
the user to define TinyOS components that should be kept
modular in the resulting executable. As a result, Dynamic
TinyOS allows to replace these components dynamically at
runtime.

The remainder of this paper is structured as follows. Section
IT discusses related work. We present a system overview in
Section III and system design in Section IV. We evaluate
Dynamic TinyOS in Section V and Section VI concludes the

paper.

II. RELATED WORK

Existing approaches to remote retasking of a sensor network
can be classified into four main categories.

Full-Image Replacement: These techniques such as Xnp
[5] or Deluge [6] operate by disseminating a new binary
image of an application and the OS in the network. Since
the image is compiled and linked afresh in every iteration,
these solutions offer a very fine-grained control over the
possible reconfigurations. However, these approaches result in
bandwidth overhead as unchanged parts of an application need
to be re-disseminated in the network.

Host machine execution

Sensor node execution >

\

Il ‘|]]
; | | | |
& : : : |
= ! | 1 Application :
s - : : .
3 H 1] 1
5 i PN i
o 1 \ ¥
é- E i /—\ N P
9 i { main.exe) Mote Hardware
o ; N p— \ ST e

|
3 o i . i ; i | BlockC }
3 ; Compilation E : ; LF\‘, Network wide g Block ! S
S N N N B A A 1 1oL Lo s Dissemination i A&B T N
=l o J : Neemeg '2‘"'\ "‘ r"
< ~JUser ; N N _
8 | specified i ; ELE‘: Mote Hardware
! ! o |

boundaries

Fig. 1.

Overview of code updates in Dynamic TinyOS in comparison with the traditional TinyOS: In the first step a user chooses boundaries among the

building blocks of an application and the OS. In the second step, ELF files are generated according to the specified boundaries. These ELF file are disseminated

in the network and linked on the mote to form the application.

Differential Image Replacement: Zephyr [7] and others [8],
[11] disseminate the changes between an executable deployed
in the network and a new image. While this reduces the
bandwidth consumption, the fundamental drawback of image
replacing remains: These approaches cannot utilize high-level
knowledge of the application structure. Zephyr tries to min-
imize this effect by rerouting all function calls through an
indirection table to mitigate the shifts in function locations
between the old and the new version of an application. Al-
though this increases the similarity between the two versions,
it imposes additional memory and performance penalties.

Virtual Machines (VM): VMs such as Maté [9] and oth-
ers [10], [12] reduce the energy-cost of disseminating new
functionality in the network as VM code is commonly more
compact than native code. However, virtual machines typically
allow application updates only and interpret the VM code.
Hence, they result in runtime overhead and decrease the
lifetime of sensor nodes.

Dynamic Operating Systems: These, e.g., Contiki [13], SOS
[14] and FiGaRo [15], provide the benefits of both image re-
placement and virtual machines i.e. fine grained code updates
at low dissemination and run-time overhead. However, specific
challenges remain: For example, SOS’s design necessitates
the use of position independent code, which, due to compiler
limitations, is not fully supported on common WSN platforms.
Contiki allows only one-way linking for loaded modules and
hence obligates more energy-intensive, polling-based service
routines for interrupts. Moreover, Contiki’s architecture re-
stricts possible reconfigurations to application components
only.

Commonly, dynamic OSes follow a clean slate approach
which causes hindrance in their wide scale adoption. Two
notable exceptions are FlexCup [16] and TOSthreads [17],
which are built on top of TinyOS. FlexCup offers dynamic
adaptation for TinyOS based applications but lacks the support
for new extensions to NesC, TinyOS programming language,
and employs nonstandard tools. As a result, the non-standard
toolsets need to be ported to a wide range of development plat-

forms, making maintenance and the roll-out of new features
time consuming. Similar to Contiki, the TOSthreads library
and its linker limit code replacement to application compo-
nents only. Moreover, it follows a polling based approach
for kernel to application communication instead of NesC’s
well established and more efficient event based approach.
Additionally, it introduces a new interface for users, rendering
it difficult to adopt. Concluding, both these approaches are not
transparent for end users, lack the support for reuse of TinyOS
code, and cause a substantial increase in the steepness of the
learning curve.

In contrast to existing work on dynamic OSs, this paper
shows how an existing and well established OS can be trans-
parently transformed into a dynamic OS without following a
clean slate approach or introducing new programming models.

III. SYSTEM OVERVIEW

In this section we briefly describe the overall architecture of
Dynamic TinyOS. TinyOS based sensor network applications
consists of a large selection of individual software components
which are ‘wired’ together to achieve the desired functionality.
In the standard TinyOS compilation process, these building
blocks are mashed-up to form a single, monolithic binary-
image of the application. However, as each component pro-
vides a dedicated functionality to the overall system, updates
such as the deployment of a new functionality or a bug
fix are commonly limited to a small number of neighboring
components or even a single component. Hence, the modular-
ity of TinyOS forms a natural starting point for a dynamic
operating system: Dynamic TinyOS alters the compilation
process of TinyOS to preserve user selected parts of the
component structure across the compilation phase. The result
is an executable consisting of multiple, replaceable objects.
Hence, during deployment, updates of applications or of the
OS itself can be disseminated in the network to replace
existing objects on the sensor node.

Code updates in Dynamic TinyOS work in three phases,
see Figure 1: (1) Via extensions to the NesC compiler of

TinyOS we compile components, i.e., applications and system
components, into multiple objects. As a result, the component
based structure of the TinyOS application is preserved during
the compilation process. (2) Using a standard dissemination
algorithm!, such as the one of Deluge [6] or others [18], [19],
updates - i.e. binary objects - are transferred to the sensor node
over the radio. (3) A thin runtime on the node stores these
updates and integrates new components into applications or
the OS.

Moreover, Dynamic TinyOS allows users to define the gran-
ularity of replacements. Hence, a user can combine multiple
TinyOS components into a single object. While this increases
the size of updates, it reduces the overhead of run-time linking
on the sensor node and enables compiler optimizations inside
this object. As an example, Figure 1 shows the process of
dividing an application. It can be one of the applications shown
in Table I with its respective components. Here the application
is divided into two blocks, one containing components A
and B and the other containing component C. Any updates
to component C will only require the retransmission of this
single component for updates, while updates to A require the
block containing A and B to be disseminated in the network.
Thus, the tradeoff between transmission energy and linking
overhead can be adapted based on expected future application
and deployment requirements.

IV. DyNAMIC TINYOS

In this section we discuss the architecture of Dynamic
TinyOS in detail. It consists of two main components: (1) On
the host, we isolate a single TinyOS component or a group
of components and compile them into an ELF object. (2)
We provide Tiny Manager, a runtime system executing on
the sensor node. It handles storage and integration of new
components, i.e., code updates. These new ELF objects are
linked into an executable binary-image and loaded in program
memory. Next to the discussion of these two core components
of Dynamic TinyOS, we conclude this section by presenting
optimizations for ELF objects to minimize transmission and
linking overhead.

A. Host-Side System

First, Dynamic TinyOS compiles an application and the OS
core into separate ELF files based on user specified bound-
aries for incremental updates. Compiling parts of a TinyOS
application in isolation from the rest has two side effects: (1)
It introduces ambiguities, such as the parametrization of NesC
generics and default event handlers, and (2) it limits compiler
optimizations. To address the first issue, Dynamic TinyOS
provides a compiler extension, so called component isola-
tion, which resolves these ambiguities and enables automated
compilation of TinyOS components into solitary ELF objects.
Dynamic TinyOS addresses the second issue by allowing
the user to group multiple TinyOS components into a single

'Our approach is independent of any dissemination algorithm and well es-
tablished code dissemination algorithms are available. A thorough exploration
of these algorithms is beyond the scope of discussion in this paper.

Component Type:
[Initialization
I Runtime

Module B
Module A

A
; JAAY

Ld

Fig. 2. Architectural elements of Tiny Manager. Only the interrupt router is
active during the normal execution of a loaded application. Linker, file system
and symbol table handle storage and integration of newly received code.

File Sys

Symbol
Table

Loaded App.

Tiny Manager

VAN ELVAVAN

Mote Hardware, e.g. TelosB

object limiting modularization to user required parts. While
these larger objects increase optimization possibilities, such
as code inlining and loop unrollments, they increase the size
of updates. Hence, Dynamic TinyOS allows users to balance
the cost of updates and their performance penalties.

1) Component Isolation: The main issues faced during
isolation of TinyOS components is the non-availability of
system information which is hidden in parts of the application
that are not being compiled at the moment. For example, the
timer dispatch component needs to be parameterized with the
number of timers used in the OS and applications. Similarly,
the scheduler needs to be parameterized with the number
of threads in the system. Component Isolation of Dynamic
TinyOS parameterizes such components by collecting informa-
tion from other modules in the system and user requirements
with which it configures the NesC compiler of TinyOS. This
parameterization consists of two main parts for each compo-
nent to be isolated: a component-wrapper and an application
side place holder. The component wrapper ensures that the
component being isolated is provided with the required knowl-
edge of the rest of the application for correct compilation.
Likewise, the application side place-holder ensures that the
application gets the required knowledge about the component
which will be linked-in at runtime. During this process, the
actual source code of both the application and its component
is not changed. This transparent integration allows the reuse of
existing TinyOS based applications and seamless integration
of Dynamic TinyOS into the existing TinyOS skeleton, thereby
remaining transparent to the application developer.

2) Component Over-Provisioning: ~ Component over-
provisioning allows to provide additional functionality for
expected future updates. For example, the OS core can
provide additional timers or slots for additional threads
expected to be required by future deployments of new
functionality. Additionally, over-provisioning can be used to
configure a base block to provide the functionality needed by
typical sensor network applications, i.e., consisting of timers,
scheduler, radio and other hardware drivers. This design
ensures that a currently deployed application can be changed
to radically different tasks by merely communicating the user
implemented part of the new application (see our evaluation

36 I Deluge

Zephyr
34 C— Dynamic TinyOS
3] D T B |

Number of Bytes (KB)
o
t

0 S

Blink
freq. change

Blink
function added

Blink to
RadioCntToLeds

CntToLeds to
RadioCntToLeds

Fig. 3. Performance in common software update scenarios. Zephyr results in
smaller updates for very small changes in application. In contrast, Dynamic
TinyOS has a stable update-size because it operates at the component level.
It outperforms Zephyr in the case of bigger changes in applications such as
the addition of a new component.

in Section V for an example).

B. Node Runtime: Tiny Manager

Once updates have been received on the sensor nodes,
the dissemination protocol invokes the linker to integrate the
received modules and place the resulting new binary image
in the program memory of the sensor node. To accomplish
this, Dynamic TinyOS provides a runtime on the sensor node,
called Tiny Manager (see Figure 2). It consists of the following
four main components:

« File System: The file system provides storage capabilities
for received ELF objects.

o Linker: The linker is responsible for linking newly
received ELF objects with the program base and placing
the resulting binary in code memory.

« Global Symbol Table: A global symbol table maintains
the symbols offered by each module and resolves depen-
dencies among individual modules.

o Interrupt Router: Unlike a compile-time linker, a run-
time linker does not have flexibility in the placement
of code segments. Hence, location dependent code such
as interrupt handlers are replaced by a place holder,
called interrupt router, which forwards interrupts to their
corresponding handlers placed dynamically at run-time.

Apart from the interrupt router, all components are inactive
during the normal execution of application. This minimizes
the runtime overhead of the Tiny Manager.

C. ELF Optimizations

After discussing the design of Dynamic TinyOS in detail,
we discuss optimizations to ELF files to reduce their size.
These optimizations reduce transmission overhead and storage
requirements which are both scarce resources on sensor nodes.

The ELF format, though a widely used standard, is not
optimized for low power processors. For example, the string
table, which holds the names of all symbols in a ELF file, can
account for a large fraction of the file. Due to the naming

0 10 20 30 40 (KB)
Bombilla VM
Deluge
(Golden Image)
SOS Core =ROM
RAM

Tiny Manager

Fig. 4. Memory-footprint comparison for Dynamic TinyOS. Tiny Manager
only utilizes 7.7% of the RAM and 32% of the internal flash ROM on TelosB
platform, which is significantly less than all other comparable solutions

schemes of the NCC compiler in TinyOS, function names
often tend to be quite long, on average about 80 characters
each. We decrease the size of the symbol names down to
3 characters by replacing each symbol name with a unique
string based on an alphanumeric counter. The mapping of
these names is stored in a database on the host and is used
when recompiling and updating parts of the application. This
procedure results in: (1) significant reduction in the size of
ELF file, (2) reduction in the size of the symbol table and (3)
reduction in number of string comparison operations during
linking on the sensor node.

As second optimization we split the symbol table on the
sensor node into two sub-tables: one contains static core
symbols and the other is filled at runtime with the symbols of
dynamically loaded ELF modules. The static part is created
at compilation time and placed sorted in ROM. As a result,
this table allows a fast binary search among the symbols,
increasing the energy efficiency of the linking process.

These two optimizations enhance the processing speed,
resulting in energy savings of up to 66% when compared
to the original ELF file while not changing the structure of
ELF files themselves. Hence, our optimizations do not require
customized tools, allowing the use of standard tool chains, and
result in a low maintenance and porting effort.

V. EXPERIMENTAL EVALUATION

After discussing the design of Dynamic TinyOS we next
compare its performance with existing approaches for code
updates in TinyOS, such as Deluge and, where possible?,
Zephyr and Maté. The evaluation focuses on key factors
such as the size of updates, energy consumption, memory
footprint, and processing overhead. We implemented Dynamic
TinyOS for the TelosB platform [20] and the recent 2.1
release of TinyOS [21]. Hence, our comparative evaluation
covers a broad range of standard applications from the TinyOS
repository, underlining the feasibility of our approach.

A. Size of Updates

First, we evaluate the size of updates in Dynamic TinyOS
to determine its energy and storage requirements. Figure 3
shows the results for our approach in comparison to Deluge

2Zephyr is not (yet) open-source. Hence, — when available — our comparison
relies on the same benchmarks as used by Zephyr to establish a base for a
fair comparison.

10 ————400
7
r
Storing in Ex-Flash Loading in Program ROM, ~
sp/ 7]
l|«—— Linking and Relocating ———~—» &
L
P -
) Energy e i
é Current Pid =)
£ - {200 E
= >
g =)
t 4 b o
3 f=
O 1 w
l
2 | 4
-
e
.
7
O 1 1 1 1 1 1 1 1 il | 0
0 5 10 15 20 25 30 35 40 45 50
Time (s)
Fig. 5. Current draw and energy utilization during processing and loading

of the BlinkTask application on the TelosB platform. The peaks, generated by
turning on all onboard LEDs simultaneously, mark the boundaries between
the different operations.

and Zephyr for different software update scenarios ranging
from a simple timer-frequency change in the Blink application
to the retasking of sensor nodes with a completely new
application. The results show that Zephyr, as it is based on
byte level comparison, performs better for very small changes
in an application, such as the addition of a small function
to a component. However, Dynamic TinyOS shows consistent
update-sizes and outperforms existing approaches for compo-
nent level changes, such as addition of a new component to the
existing application. This is because it preserves the high level
structural knowledge of an application and its components.
Hence, updating from the CntToLeds to the RadioCntToLeds
application only requires communicating the main application
component, while radio, timer and led components can be
reused.

B. Memory Footprint

Due to a thin runtime component, i.e., Tiny Manager, the
memory footprint of Dynamic TinyOS is small in comparison
to popular existing solutions (see Figure 4). On the TelosB
platform, it consumes only 7.7% of RAM and 32% of the
program memory. Furthermore, the external flash memory is
completely available for the file system and *Golden Images’.
Hence, it leaves the majority of the storage resources for the
OS, applications and code updates.

C. Energy Consumption

The two main factors that contribute to the overall energy
overhead of Dynamic TinyOS are: (1) dissemination of com-
ponent updates and (2) linking of newly received components
with the application on the sensor node.

1) Code Dissemination: We evaluate the energy consump-
tion during the dissemination process of Dynamic TinyOS and
compare our results with Deluge for a set of representative
applications from the TinyOS repository (see Table I). These
applications utilize a broad range of TinyOS system compo-
nents and protocols - MAC, timers, LEDs, radio, and sensing

App- Comp- Size Tx. Ene- | Deluge | Saving
lication onent (B) rgy(mJ) Size Factor
Blink OS-Comp 6616 465.1 33726 5.1
Blink 824 57.93 40.9
Leds 1728 121.48 19.5
Timer 5424 381.31 6.2
Scheduler 1980 139.19 17
BlinkTask OS-Comp 6640 466.79 33726 5
Blink 992 69.74 34
Leds 1728 121.48 19.5
Timer 5424 381.31 6.2
Scheduler 2356 165.63 14.3
Radio- OS-Comp | 28232 1984.71 33954 1.2
CntToLeds Radio 1352 95.05 25.1
Leds 1728 121.48 19.6
Timer 4772 335.47 7.1
Scheduler 3092 217.37 10.9
Sense OS-Comp | 17040 1197.91 34074 2
Sense 940 66.08 36.25
Leds 1728 121.48 19.7
Timer 6296 442.61 54
Scheduler 2576 181.09 13.2
Oscillo- OS-Comp | 39328 2764.75 34504 0.87
scope Oscilloscope 2008 141.16 17.1
Leds 1720 120.91 20.0
Scheduler 3728 262.07 9.25

TABLE I

SAVINGS IN TRANSFER ENERGY DUE TO INCREMENTAL UPDATES

hardware - required to drive the sensor hardware-platform,
allowing us to comprehensively validate our results. It is fair
to conclude that Dynamic TinyOS consumes significantly less
transmission energy - up to a factor of 40 - than Deluge. How-
ever, reducing the size of our updates introduces processing
overhead at the sensor node as discussed in the next section.

2) Processing: Processing an update consists of three steps:
(1) storage in the external flash, i.e., file system, (2) linking and
relocating, and (3) loading into program memory (see Figure
5). The energy consumption of this processing and loading of
an updated component does not solely depend on the size of
the component but also on the symbol dependencies and the
number of relocations that need to be performed.

Deluge has a constant energy overhead because it always
disseminates the complete application and OS image. In con-
trast, the energy overhead of Dynamic TinyOS depends on
the size of the components to be updated and the required
processing on the sensor node. Overall, Figure 6 shows that
Dynamic TinyOS outperforms Deluge in terms of the overall
energy required for code dissemination and processing of
updates.

D. Runtime Performance Overhead

The changes required to enable incremental code updates
in TinyOS effect two main areas: (1) the compilation process
and (2) the inclusion of an additional runtime layer, i.e.,
TinyManager.

1) Compiler Optimizations: Compiling parts of an applica-
tion in isolation reduces the overall code optimization possi-
bilities for a compiler. Moreover, setting explicit boundaries
between application components can result in additional calls
to those functions which otherwise might have been inlined. To

Total Energy (mJ)

0 500 1000 1500 2000 2500

0OS-Comp -
8 Blink -
s
e
o Leds -
g
s .
5 Timer - = Processing Energy

Tx. Energy

Scheduler -
2 Monolithic
g Binary

Fig. 6. Energy overhead comparison of Dynamic TinyOS with Deluge.

Dynamic TinyOS results in significantly less overhead than Deluge for all
the update scenarios. Deluge has a constant overhead for all update scenarios.

stress-test the impact of isolated compilation of components,
we use two benchmarks: (a) A syntactic benchmark, which
uses the TestScheduler application from the TinyOS repository,
as a sanity check for our approach. To evaluate our approach
from the worst-case point of view, we modified this application
to make 10,000 cross component calls to the Scheduler. (b)
An application that calculates a 256 point FFT.

Table II shows that Dynamic TinyOS consumes slightly
more code memory when compared with the traditional
TinyOS. Furthermore, the runtime performance overhead of
Dynamic TinyOS is very small: While showing a less than
10% worst case overhead, it takes the same execution time for
a computationally intensive real-world algorithm, i.e., FFT.

2) Interrupt Re-Routing Overhead: During normal appli-
cation execution, i.e., when no are updates processed, only
the interrupt routing component of Tiny Manager is active. It
introduces a short delay in the processing of interrupts. On the
TelosB platform, the worst case delay is 23 instruction cycles
— equivalent to processing required for copying eight bytes
in memory. No performance depreciation is caused by other
components and hence code execution in Dynamic TinyOS
remains native.

Overall, our evaluation shows that Dynamic TinyOS out-
performs other approaches for code updates in TinyOS and
even shows a very small overhead when compared to a static
TinyOS binary.

VI. CONCLUSIONS

In this paper, we presented Dynamic TinyOS to enable fine
grained code updates of deployed TinyOS based applications.
It outperforms other approaches for code updates in terms
of memory footprint and energy consumption while resulting
in a minimal run-time overhead. Even, when compared to a
traditional, static TinyOS binary, it shows only a very small
memory and performance overhead. Furthermore, Dynamic
TinyOS provides an unprecedented level of flexibility in the
granularity of the possible reconfigurations of both applica-
tions and the OS core at runtime.

Application Dynamic TinyOS Traditional TinyOS
ROM (B) Time ROM (B) Time
TestScheduler 1810 | 504ms 1754 460ms
FFT 14718 | 5.320s 14232 5.320s
TABLE II

IMPACT OF COMPILER OPTIMIZATIONS ON THE MEMORY SIZE AND
EXECUTION TIME

Overall, Dynamic TinyOS adds a minimal performance
overhead and integrates transparently into the existing TinyOS
system architecture to enable code-reuse and to remain trans-
parent to end users. We believe that the ability to load modules
dynamically — as introduced by Dynamic TinyOS - is a very
logical evolution of TinyOS in it’s current state.

REFERENCES

[1] D. Pompili, T. Melodia, and 1. F. Akyildiz, “Deployment analysis in
underwater acoustic wireless sensor networks,” in WUWNet 06, 2006.

[2] P.Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and
early experiences with zebranet,” in ASPLOS-X, 2002.

[3] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees, “Deploying a wireless sensor network on an active
volcano,” IEEE Internet Computing, vol. 10, no. 2, 2006.

[4] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring,
and D. Estrin, “Habitat monitoring with sensor networks,” Commun.
ACM, vol. 47, no. 6, 2004.

[5] J. Jeong, S. Kim, and A. Broad, “Network reprogramming,” Aug 12,
2003. [Online]. Available: http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf

[6] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in SenSys 04, 2004.

[71 R. K. Panta, S. Bagchi, and S. Midkiff, “Zephyr: Efficient incremental
reprogramming of sensor nodes using function call indirections and
difference computation,” in USENIX ’09, 2009.

[8] J. Jeong and D. Culler, “Incremental network programming for wireless
sensors,” in IEEE Secon ’04, Santa Clara, USA, 2004.

[9] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor

networks,” in ASPLOS-X. ACM, 2002.

R. Miiller, G. Alonso, and D. Kossmann, “A virtual machine for sensor

networks,” SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 145-158, 2007.

N. Reijers and K. Langendoen, “Efficient code distribution in wireless

sensor networks,” in WSNA 03, 2003.

N. Brouwers, P. Corke, and K. Langendoen, “A java compatible virtual

machine for wireless sensor nodes (demo abstract),” in SenSys "08, 2008.

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and

flexible operating system for tiny networked sensors,” in LCN ’04, 2004.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic

operating system for sensor nodes,” in MobiSys '05, 2005.

L. Mottola, G. P. Picco, and A. A. Sheikh, “Figaro: Fine-grained

software reconfiguration for wireless sensor networks,” in EWSN, 2008.

P. J. Marr6n, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and

K. Rothermel, “Flexcup: A flexible and efficient code update mechanism

for sensor networks,” in EWSN 06, 2006.

K. Klues, C.-J. M. Liang, J. yeup Paek, R. Musaloiu-E., P. Levis,

A. Terzis, and R. Govindan, “TOSThreads: Safe and Non-Invasive

Preemption in TinyOS,” in Sensys '09, 2009.

T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update

mechanism for wireless sensor networks,” University of California, LA,

Tech. Rep. CENS-TR-30, 2003.

P. Levis, N. Patel, S. Shenker, and D. Culler, “Trickle: A self-regulating

algorithm for code propagation and maintenance in wireless sensor

networks,” in NSDI ’04, 2004.

J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power

wireless research,” in IPSN 05, Los Angeles, California, 2005.

P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,

E. Brewer, and D. Culler, “The emergence of networking abstractions

and techniques in tinyos,” in NSDI’04, 2004.

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

