
TinyOS Meets Wireless Mesh Networks

Muhammad Hamad Alizai, Bernhard Kirchen, Jó Ágila Bitsch Link, Hanno Wirtz, Klaus Wehrle
Communication and Distributed Systems, RWTH Aachen University, Germany

{lastname}@comsys.rwth-aachen.de

Abstract
We present TinyWifi, a nesC code base extending TinyOS

to support Linux powered network nodes. It enables devel-
opers to build arbitrary TinyOS applications and protocols
and execute them directly on Linux by compiling for the
new TinyWifi platform. Using TinyWifi as a TinyOS plat-
form, we expand the applicability and means of evaluation of
wireless protocols originally designed for sensornets towards
inherently similar Linux driven ad hoc and mesh networks.

1 Motivation
Although different in their applications and resource con-

straints, sensornets and Wi-Fi based multihop networks share
inherent similarities: (1) They operate on the same frequency
band, (2) experience highly dynamic and bursty links due to
radio interferences and other physical influences resulting in
unreliable routing paths, (3) each node can only communi-
cate with nodes within its radio range forming a mesh topol-
ogy, and (4) the intended use cases in both domains demand
a reliable and highly scalable communication infrastructure.
As a result, the majority of algorithmic concepts [1,5,6] and
state-of-the-art protocols — including MAC [7], link estima-
tion [2] and routing [3, 4] — originally designed for sensor-
nets are equally relevant in the Wi-Fi domain and vice versa.
It is due to the significant implementation and porting effort
that the developers are restricted to build and evaluate their
prototypes for a single domain and implicitly assume their
applicability in the other [2, 4, 6].

We introduce TinyWifi, a TinyOS platform supporting
Linux driven devices. It allows direct execution of proto-
col libraries originally developed for a different networking
domain. Applications from highly resource constrained sen-
sornets can easily be compiled for resource rich Wi-Fi based
networks , thereby making the very rich and mature protocol-
repository of TinyOS available for broader wireless research.

During our evaluation on a 50 node mesh testbed, we ob-
served that TinyWifi is particulary useful for (1) evaluating
prototypes, (2) fine-tuning protocol parameters and (3) es-
tablishing multiple performance metrics in different wireless
domains without reimplementation.

Copyright is held by the author/owner(s).
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
ACM 978-1-4503-0344-6/10/11

2 TinyWifi
The goal of TinyWifi is to enable direct execution of

TinyOS applications and protocols on Linux driven network
nodes with no additional effort. To achieve this, the Tiny-
Wifi platform extends the existing TinyOS core to provide
the exact same hardware independent functionality as any
other platform (see Figure 1). At the same time, it exploits
the customary advantages of typical Linux driven network
devices such as large memory, more processing power and
higher communication bandwidth. In the following we de-
scribe the architecture of each component of our TinyWifi
Implementation.

2.1 Timers
The TinyOS timing functionality is based on the hardware

timers present in current microcontrollers. A sensor-node
platform provides multiple realtime hardware timers to spe-
cific TinyOS components at the HAL layer - such as alarms,
counters, and virtualization. Once configured, these timers
trigger an interrupt in the future without the need for conti-
nous monitoring.

Although our target devices provide hardware timers as
well, user space applications have no access to them. There-
fore we use the Linux itimer library. Each process run-
ning on a Linux kernel is allowed to use a single realtime
itimer. We introduce a new VirtualizeLinuxTimer compo-
nent that uses this single itimer and provides virtual alarms
and timers, which the TinyOS timer multiplexing is then
based on. Hence, providing timing functionality similar to
any other sensor platform (see Figure 2).

2.2 The Split-Phase Operation
Non-blocking system calls are realized as split-phase op-

erations in TinyOS. A command that starts a system service
returns immediately while the completion of that service is
signaled later via so-called events. TinyWifi supports both
blocking and non-blocking system calls. The support for
blocking system calls in Linux is trivial. To mimic hard-
ware such as radio chips that process data in parallel, we use
threads. The completion of these parallel processing threads
is then indicated via a Linux signal, which in turn triggers
the main TinyOS thread.

2.3 Radio Communication
We encapsule TinyOS messages in UDP packets using

datagram sockets. Another option would be to pass the data



H I L

HAL

HPL

nesC Application

TinyOS

Mote Hardware

Linux Operating System

Radio Sensing LEDs Timing Serial

Socket
API

Computer
Sensors

Pseudo-
Terminal

Itimer
API

Console
Output

Radio
Wrapper

Sensor
Wrapper

Counter
Interrupts

Integrated
UART

I/O
Controller

Figure 1. TinyWifi Architecture
The hardware abstraction layer (HAL) translates HIL func-
tionality to the device specific modules of the hardware pre-
sentation layer (HPL). TinyOS is independent of the HPL im-
plementation, thus new platforms can be added by providing
the corresponding HPL modules.

directly to the Wi-Fi adapter but we avoid this for three rea-
sons: (1) To maximize portability, (2) to minimize interfer-
ence with different applications on the network, and (3) to
allow direct execution of TinyWifi without negotiating spe-
cial kernel level privileges. Moreover, to establish similar
behavior in both wireless domains, we broadcast packets but
suppress routing by adjusting the TTL value accordingly. By
doing so, packets are only received by TinyWifi nodes in the
radio range.
2.4 Serial Communication

The majority of TinyOS applications use the serial com-
munication port, particulary the base station. In order to pro-
vide a similar functionality, i.e. serial active messaging on
a TinWifi device, a Linux pseudo terminal is used. As with
typical motes, an unaltered serial forwarder connected to the
pseudo terminal allows for sending and receiving serial data
to and from the TinyWifi node.
2.5 Sensing and Debugging

Since we emphasize on protocol evaluation, sensing is a
subordinate issue. Nevertheless, we do supply demo sensor
implementations to allow for TinyWifi to be used out of the
box.

In addition to the printf library to output debugging in-
formation through the serial interface to an attached PC and
displayed in a human readable manner, TinyOS provides dbg
functions to print additional information. In our TinyWifi
implementation we print those messages directly to standard
output. Similarly, to indicate the status of a physical mote to
a developer, motes are equipped with LEDs. TinyWifi pro-
vides pseudo-LEDs: Messages are sent to standard output
similar to the debugging mechanism of the TOSSIM simula-
tor.
3 Initial Tests

TinyOS is equipped with a number of useful test applica-
tions: Blink and BlinkToRadio demonstrate the proper func-

Application

Timer 1 Timer 2 Alarm 1 Alarm 2 Alarm 3

Hardware
Timer 1

Mote Hardware

Hardware
Timer 2

CMP A CMP ACMP B CMP B

Single Linux itimer

VirtualizeLinuxTimer

. . .. . .

replaces

Figure 2. Timers
The TinyWifi timer implementation provides several in-
stances of alarms and timers because Linux only provides
a single realtime timer per proccess.

tioning of timers and radio communication, respectively. Os-
cilloscope and Multihop-Oscilloscope prove an accurate im-
plementation of demo sensors and the serial message in-
terface. We also evaluated TinyWifi in a 50 node wireless
mesh testbed by running the Collection Tree Protocol, Bea-
con Vector Routing and the S4 routing protocol. We were
able to successfully build routing trees and receive and dis-
play demo sensor measurements from the TinyWifi nodes via
a TinyWifi base station.
4 Future Work

Our future work is mainly focused in three directions: (1)
We aim to use the wireless interface directly in order to op-
timize active messaging and utilize extra features such as
RSSI. (2) We want to thoroughly evaluate the routing and
link estimation protocols of TinyOS. Finally, (3) our major
focus lies in comparing these protocols with standard pro-
tocols used in the in the Wi-Fi domain, such as OLSR and
AODV.
Acknowledgments

This research was funded in part by the DFG Clus-
ter of Excellence on Ultra High-Speed Mobile Information
and Communication (UMIC), German Research Foundation
grant DFG EXC 89.
5 References
[1] M. H. Alizai, O. Landsiedel, J. A. Bitsch Link, S. Goetz, and K. Wehrle.

Bursty traffic over bursty links. In SenSys’09, Nov. 2009.
[2] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis. Four-bit wireless

link estimation. In HotNets, 2007.
[3] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker,

and I. Stoica. Beacon vector routing: Scalable point-to-point routing in
wireless sensornets. In NSDI, May 2005.

[4] Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith. S4: Small state
and small stretch routing protocol for large wireless sensor networks.
In NSDI, 2007.

[5] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali. Routing
without routes: The backpressure collection protocol. In IPSN, 2010.

[6] J. Newsome and D. Song. Gem: Graph embedding for routing and data-
centric storage in sensor networks without geographic information. In
SenSys ’03, 2003.

[7] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. In SenSys ’04, 2004.


	Motivation
	TinyWifi
	Timers
	The Split-Phase Operation
	Radio Communication
	Serial Communication
	Sensing and Debugging

	Initial Tests
	Future Work
	References

