

Muhammad Hamad Alizai is a PhD student at the
Distributed Systems Group, RWTH Aachen
University. He received his Masters Degree from
RWTH Aachen in 2007. His studies were funded
by “DAAD-Siemens scholarship Asia 21st
century”. Hamad started his PhD in the March of
2008 under the PhD scholarship program of
DAAD. His research interests include wireless
sensor networks mainly focusing on modeling &
simulation, protocol design, and link level

optimizations. He is the lead developer of TimeTOSSIM – a time accurate
extension of TOSSIM simulator.

Olaf Landsiedel is a PhD student at the Distributed
Systems Group, RWTH Aachen University. He
received his Masters Degree in Computer Science
from the University of Kansas, where he graduated
in 2003 with honors. His studies were funded by a
Fulbright and a Direct Exchange Scholarship. Olaf
received his undergraduate degree from the
University of Kiel. His research interests include
protocol and systems engineering as well as
network modeling and simulation with a focus on
embedded systems.

Klaus Wehrle is the head of the Distributed
Systems Group at RWTH Aachen University.
Klaus received his Diploma and PhD from the
University of Karlsruhe in 1999 and 2002,
respectively, both with honors. From 2002 to 2003,
Klaus was Postdoctoral Fellow at ICSI Berkeley.
His research activities are focused on protocol and
systems engineering, modeling and network
simulation, Peer-to-Peer systems, sensor networks,
and operating system issues of networking. Klaus
actively participates in the IETF; recently RFC

3662 and RFC 3754 were published.

ABSTRACT

Constrained energy and computational resources of sensor
nodes are the two most critical limitations of sensor
networks. Moreover, sensor nodes are envisioned to be
deployed at inaccessible, remote and harsh physical
environments where exchanging node’s power supply is not
feasible. Therefore, it is essential for sensor network
developers to thoroughly evaluate and fine-tune their
applications from energy and timing perspectives. As
incorrect energy estimates could result in underperformance
or possible breakdown of real sensor deployments before
fulfilling the desired operation.

Modeling energy-states of each hardware device and the
time duration it spends in each state is the basic requirement

for accurate energy1 prediction in discrete event based
simulations. In this article we present the architecture of our
power related extensions to TimeTOSSIM – a TinyOS
based simulation environment for sensor network
evaluation. It employs fine grained, automated
instrumentation of simulation models with cycle counts
derived from application binaries to enable time accurate
simulations. By instrumenting the simulation models with
timing information we can capture the duty-cycle and
energy-state of each hardware component. As a result, the
energy consumption of each component of a sensor node
can be computed. The presented approach achieves highly
precise time accuracy when compared to emulation.

I. INTRODUCTION
The desired small physical size of a sensor node and the
absence of permanent network infrastructure results in lack
of constant supply of power for sensor nodes. Therefore, the
operation of sensor nodes rely on limited energy reserves,
typically in the form of batteries and solar cells. As a result,
energy still dominates as a primary concern both in soft- and
hardware development for sensor networks. On the
hardware side, it results in using low-power technologies for
communication, processing and sensing hardware. As a
consequence, it strictly limits the capabilities of sensor
nodes from these perspectives. Recognizing severe resource
restrictions at the software side, consuming minimal energy
and computational resources is the key design objective for
algorithms. From physical up to the application layer,
research focuses on developing energy aware encoding,
medium access, and routing schemes [2][3].

Thorough evaluation of such energy aware applications
before deployment is essential as real deployments are
costly. Hence, developing energy aware applications and
protocols requires a new set of evaluation tools to assist
developers. Accurate prediction of energy consumption and
execution time of algorithms are among the key
characteristics of such tools.

We identify three main requirements in discrete event based
simulation of sensor nodes to accurately predict the power
consumption of applications. First, it shall model the
energy-state(s) of each hardware device. For example, in the
case of radio chip, it includes transmitting, receiving,
power-down, and idle as energy-states. Second, it shall
determine the time a device spends in each of its energy-
states during simulation. Higher time resolutions would
definitely result in more accurate energy predictions. Third,

1 We use the term power and energy interchangeably throughout this
article.

Modeling Execution Time and Energy Consumption
in Sensor Node Simulation

Muhammad Hamad Alizai, Olaf Landsiedel and Klaus Wehrle, Distributed Systems Group, RWTH Aachen
University, Germany

it shall provide accurate models of energy consumed per
time by a device in each of its states.

In this article we introduce TimeTOSSIM [10] and our
architecture for its energy related extensions. TimeTOSSIM
enables time accurate simulations of sensor network
applications. It is an extension of TOSSIM [6], a discrete
event based simulation tool for sensor networks. The
principle technique to achieve time accuracy in
TimeTOSSIM is to map the platform dependent binary with
simulation source-code. Such a mapping determines the
number of clock-cycles consumed by each source-code line.
As a result, we can instrument the simulation sources to
increment the simulation clock accordingly. TimeTOSSIM
achieves a granularity of source-code line level. This high
level of timing detail attained by TimeTOSSIM simulation
enables us to capture the energy-states and transitions of
each hardware device. Similarly, the time, i.e. the number of
clock cycles, consumed by a device in each of its energy-
states is determined by tracking the simulation-clock. By
combining accurate energy models with the detailed timing
and state information revealed by TimeTOSSIM, we can
accurately predict the power consumption of sensor nodes.

The rest of this article is organized as follows. Section II
presents related work and background. In section III we
discuss TOSSIM and its energy related extensions. Sections
IV and V present our approach for modeling execution time
and energy consumption respectively. Section VI presents
detailed evaluation of accuracy and performance of
TimeTOSSIM. Section VII concludes the article and
presents future work directions.

II. RELATED WORK
In recent years, the complexity of deployed sensor network
applications has heavily increased [11][12]. Therefore, high
degree of realism is desired to thoroughly evaluate
applications before deployment. Similarly, it is also of
strong interest that the evaluation tool be fast and scalable to
a very large number of sensor nodes. Complying with the
demands of sensor network evaluation, many discrete event
simulation [7][8] and cycle accurate emulation [1][9] based
tools have been developed. However, we believe that none
of these tools has been able to fully integrate the
aforementioned evaluation requirements of sensor networks.

Discrete event based simulation, due to its high performance
and scalability, is used to evaluate algorithmic functionality
of sensor network applications. However, its high level of
abstraction and therefore lack of detailed timing prohibits
the use of simulation2 for in-depth analysis of applications.
SensorSim [7] and SENS [8] are examples of discrete event
based simulators for sensor networks which compromise
accuracy over scalability by using abstract simulation
models of sensor nodes.

Emulation, as it is accurate down to the clock-cycle
granularity, offers detailed evaluation of applications and

2 Throughout this article the term “simulation” is used to represent

discrete event based simulation and the term “emulation” is used to
represent cycle accurate instruction set simulation.

operating systems. AEON [5] is an emulation based energy
estimation tool for sensor networks. As it is an extension of
Avrora emulator [9][10], therefore it is inherently cycle
accurate and models the energy consumption at clock-cycle
granularity. Emulation based evaluation tools also provide
deep insight into the much important timing and interrupt
properties of applications. However, emulation typically
suffers from low speed, limited scalability and platform
dependence. Furthermore, emulation environments have
reached a complexity which is an order of magnitude higher
than the system to evaluate, i.e. the sensor node. As a result,
cycle accurate emulators are hard to maintain, extend and
debug. Concluding, emulation is not a recommend choice
for a system like a sensor network, which offers variety of
sensor platforms and can scale to thousands of sensor nodes.

Our main contribution in this article is that we bridge the
gap between scalable but abstract simulation and cycle
accurate emulation. We provide near cycle accurate timing
combined with the scalability, flexibility and portability of
simulation. Hence, TimeTOSSIM is capable of combining
all the essential evaluation properties like time accuracy,
energy prediction, speed and scalability on a single
evaluation platform.

III. TOSSIM
TOSSIM [6] is a TinyOS based simulator for sensor
networks scalable to thousands of network nodes. Although
its simulation core is discrete event based, it significantly
differs from the traditional simulators in two respects. First,
it compiles directly from the platform dependent source
code into the simulation infrastructure by adding an
alternative compilation target. Hence, TOSSIM does not
require the algorithms to be implemented separately for
simulation and hardware platform. Second, unlike
traditional simulation, TOSSIM only replaces low level
device drivers with simulation wrappers while rest of the
code including the operating system (OS) is executed in
simulation. Traditional simulation abstracts from OS level
details by providing abstract simulation models usually
implemented in high level languages like Java or C++.

The fact that TOSSIM compiles directly from the platform
dependent source-code makes it more expressive and
realistic than SensorSim and SENS. TOSSIM only needs to
model the low level components responsible for hardware
interaction such as low level access to timers,
communication channels, sensors, and the radio. These low
level components expose the real hardware and are placed at
the Hardware Presentation Layer (HPL) of the TinyOS-2.0’s
platform abstraction model [13]. TOSSIM also benefits
from the event-based, component oriented programming
model of TinyOS by translating the hardware interrupts into
discrete simulator events which drive the simulation.

One of the extensions of TOSSIM is PowerTOSSIM [4],
which evaluates the energy consumption to predict the life
time of a sensor node. It extends TOSSIM by adding a new
PowerState module that records energy-state transitions of
each hardware component. For the CPU, a mapping
technique is used at basic-block granularity to determine the
number of clock-cycles for which the CPU remained active.

PowerTOSSIM relies on an abstract simulation clock which
is adjusted at the start of every new simulator-event to
determine the time for which a hardware device remained in
each of its power-states. Therefore, the simulation results
show deviations of up to 13% from real power
measurements. Moreover, rigorous testing of the CPU
profiling technique has revealed an error of 5700% in
calculating CPU active time [5]. PowerTOSSIM uses
Postmortem analysis (i.e. offline analysis after simulation)
to calculate the energy consumed by sensor network during
simulation. Such offline analysis can only contribute to
determine the power consumption. It is unable to assist the
developers in observing the behavior of applications in
response to the unreliability caused by decaying and
expiring nodes during the simulation.

The approach presented in this article is partly similar to
PowerTOSSIM’s CPU profiling technique. However, we
generalize it to perform online clock advancement and
dynamic event queue adaptation compared to offline
modeling in PowerTOSSIM. By doing so, we also provide a
deep insight into the much important timing and interrupt
properties of applications, operating systems and hardware
components. Furthermore, we provide a more fine grained
instrumentation level than PowerTOSSIM and features -
such as energy models - can be easily derived from the
detailed timing model presented in this article. Similarly,
TimeTOSSIM outperforms Avrora in terms of speed and
scalability while maintaining highly precise time accuracy.

IV. MODELING EXECUTION TIME
Classic simulation models the behavior of a system at event
granularity. It translates all events, e.g. interrupts and tasks
in TinyOS into discrete simulator events. Events are
executed one after another. Thus, time in simulation is
handled discretely; at the beginning of an event the
simulation time is set to the execution time of the event and
remains unadjusted throughout the event execution.
Therefore, events in simulation take zero simulation time.
However, in real life events have an execution time and may
interrupt, interfere or delay each other, resulting in different
execution and completion order compared to simulation.
Under peak loads, this may even load to event misses on
interrupts and tasks. Summarizing, simulation only
contributes to testify the algorithmic functionality of an
application. However, due to the lack of time accuracy in
modeling a system, false-positives about the performance of
applications are inevitable in simulation.

A. Simulation Clock Incrementation
We resolve timing discrepancy of sensor network
simulation by enabling TOSSIM’s simulation to track the
system time during event execution. Our proposed solution
determines the execution time (clock-cycles) of each source-
code line being executed inside a simulator-event and then
increments the simulation time accordingly. The underlying
technique is to automate the mapping between simulation
source-code and the platform specific executable. This is
only possible when nearly identical application and
operating system code is executed in simulation and on the
hardware platform, which is typically the case in sensor
network operating systems. Such a mapping enables us to

identify the processor instructions corresponding to a
source-code line. From the respective processor data-sheet
we next retrieve the number of cycles consumed by each
instruction and therefore can compute the time to execute
each source-code line on the sensor node platform. Figure 1
illustrates this process.

The code mapping technique is particularly suited for
embedded CPUs (such as in sensor nodes) employing
sequential instruction execution without any pipelining and
caching strategies. For such platforms, the execution time of
a binary instruction is static and can be modeled without
interpreting each individual instruction.

B. Event Queue Adaptation
Tracking system time during event execution may result in
overlapping events and only helps in determining the
execution time of each event separately. However, the
overall timing and interrupt behavior of an application still
remains undetermined. For example, in TinyOS tasks are
executed sequentially and therefore can delay each other's
execution. However, interrupts are executed immediately
and delay the execution of any currently active task. Under
peak loads, interrupts and tasks are even dropped when their
corresponding queues overflow. By extending the
simulation queue with priorities representing tasks and the
various interrupt levels, we can easily model such a
behavior.

We assign execution priorities to different events. As events
in the TOSSIM event-queue represent hardware interrupts
or TinyOS tasks, it is possible to determine the type of an
event and its execution priority from the processor data-
sheets. Correct ordering of events can be achieved by
visiting the event queue at the start of every source line after
incrementing the simulation clock. The idea is to reschedule
events with lower priority, execute events with higher
priority immediately, and thereby delay or interrupt the
execution of currently active events. Overall, these timing
and rescheduling extensions to simulation models give a
detailed insight into the performance of a system without the
need for complex emulators or test-beds.

Figure 1: Source-code mapping and instrumentation

C. Static and Manual Code Mapping
For simulation, TOSSIM replaces low-level device drivers
on the hardware presentation layer3 (HPL) of TinyOS with
simulation wrappers. Therefore, simulation and platform
specific code differ on the hardware presentation layer and
the presented code automated instrumentation techniques
does not apply for low-level device drivers. However, these
layers are commonly quite slim. In this sub-section we
present the implementation of two techniques to enable
accurate timing even in these code sections: (1) static code
mapping and (2) manual code mapping.

We apply static code mapping in simple device drivers that
do not contain any conditional statements and therefore
execute in a constant number of cycles. For example, we
applied this approach to model the time required to enable
or disable pins of the microcontroller, timers and radio into
TimeTOSSIM. Although this process does not introduce
inaccuracies in terms of cycles, it is not as fine granular as
the commonly used source line granularity. Thus, interrupts
may get delayed by a number of cycles. However, HPL
code sections are usually 10 to 100 cycles and therefore
executed in a couple of micro seconds.

Likewise, to model code sections that were extended for
simulation in TOSSIM and to address that some code in the
HPL layer may have a higher complexity, we use manual
mapping. Based on the fact that the simulation model needs
to reassemble the functionality of the device specific code,
we manually map sections with equal functionality and
instrument the simulation code with the corresponding
number of cycles. We applied this approach to the TOSSIM
scheduler. Its implementation strongly differs from the
device specific one, but it reassembles the same
functionality and therefore can be easily instrumented
manually.

It is important to highlight that this automated mapping and
simulation instrumentation process is performed offline i.e.
during compilation of the simulation-code to enable time
accurate simulation execution. Please note that this process
is neither bound to a certain hardware platform nor to
TinyOS. Therefore, it can easily be applied to any other
sensor node architecture and operating system. We use
TOSSIM for our prototype implementation because it
compiles directly from the platform dependent source-code
into the simulation infrastructure. Moreover, our choice is
influenced by the fact that TOSSIM simulates TinyOS,
which is the de-facto standard operating system for sensor
networks.

V. FROM TIMING TO ENERGY
Timing is the preliminary requirement for modeling energy
consumption of a device. Once we have the knowledge
about different states and the duration a device has been in
each state, we can easily determine the energy drainage of

3 TinyOS has a platform abstraction architecture consisting three layers;

Hardware Independent Layer (HIL), Hardware Abstraction Layer (HAL),
and Hardware Presentation Layer (HPL). The code at HIL and HAL level is
platform independent while only a small portion of code lies at HPL level
that provides access to the original hardware and is platform dependent.

that device using accurate energy models. In this section we
discuss the key requirements for predicting energy
consumption of sensor networks. We also show that
TimeTOSSIM is an ideal platform that fulfills all these
requirements and can easily be extended to provide fine-
grained energy estimates.

A. Modeling Energy-states
To model the energy-states of hardware we benefit from the
TOSSIM’s simulation infrastructure. It only replaces low
level device drivers at the HPL layer with simulation
wrappers to enable simulation. Rest of the code remains
same for simulation and real hardware. These simulation
wrappers capture all the events triggered by higher level
code to change device’s energy-state. For example, when
sensors are activated to read data and deactivated to save
energy or LEDs are turned on and off. The only exception
where we are unable to capture the energy-states and
transitions is the radio chip. The reason is that in the case of
radio TOSSIM abstracts from the original platform
dependant code and provides a complete simulation
implementation for modeling radio propagation.

To overcome this limitation we extended TimeTOSSIM to
provide support for the simulation of CC1000 radio chip4.
Our implementation is based on the original TOSSIM
approach i.e. to utilize maximum platform dependant code
and abstract from the original implementation at the lowest
possible level (i.e. HPL layer). We use the original TinyOS
code for CC1000 radio chip and provide our own simulation
wrappers at the HPL layer, as shown in Figure 2. In doing
so, we regain our granularity by enabling automated
mapping and instrumentation of communication related
source-code and capture each and every state transition of
the radio chip. Hence, it enables us to accurately predict the
energy consumption of the radio chip. Our prototype
implementation of radio chip also facilitates us in evaluating
TimeTOSSIM, as CC1000 is supported by publically
available emulation platforms such as Avrora.

4 Currently, TOSSIM provides an abstract implementation of packet

level CC2420 radio chip present in MicaZ and TelosB sensor node
platforms.

Figure 2: Implementation of CC1000 radio chip for
TimeTOSSIM

B. Determining Time per Energy-state
Our instrumentation approach increments the
simulation clock before the execution of each
source-code line. Therefore, it allows us to
determine the duration a device spends each of
its energy-states at source-code line granularity.
Hence, TimeTOSSIM is capable of predicting
the energy consumption at much higher
granularity than PowerTOSSIM, which relies
on the abstract simulation clock of TOSSIM.
On the other hand, TimeTOSSIM it is
inherently much more sclable and faster than AEON as
shown by our evaluaiton results in section 5.

C. Energy models
 Energy models can be created for each hardware
component by consulting respective data-sheets, which
provide current estimates at clock-cycle granularity. A
simple application level benchmarking can be used to
validate energy models derived from the data-sheets. In
short, this process does not require any complex low level
benchmarking. Due to our previous work on AEON’s [5]
energy models, we benefit from the availability of accurate
energy models for Mica2 sensor node.

VI. EVALUATION AND PERFORMANCE COMPARISON
In this section we thoroughly evaluate TimeTOSSIM both
from performance and accuracy perspectives. We compare
the accuracy of TimeTOSSIM with the cycle accurate
emulator, Avrora, and the speed of TimeTOSSIM with the
original TOSSIM implementation. The evaluation is based
on three types of benchmarks: (1) micro benchmarks, (2)
evaluation of static and manual instrumentation, and (3)
macro benchmarks.

In our micro-benchmarks
we evaluated the time
accuracy of different types
of mapped code-blocks
(loops, control-structures
etc.) independently from
each other to give a deep
insight into the timing
properties of source-code.
Table 2 shows that we
achieve 100% accuracy in

the case of simple statements (variable initialization,
assignment etc.), do and while loops, and if-else clauses.
However, in case of for loops, switch clauses and nested-
while loops, the simulation clock drifts by few clock cycles.
The reason is that our mapping technique calculates the
execution time of a source line by counting the number of
cycles required by the corresponding assembly instructions
without interpreting them. Thus, in the case of switch clause
and for loop, the total number of assembly instructions

being executed depends on the current value of the decision
variable and the current iteration of the loop, respectively.
For example, the initialization of loop variable happens only
before the first iteration but our mapping technique, as its
abstracts from instruction interpretation, counts the
corresponding number of cycles for each iteration of the
loop. Patching the corresponding compiler to add further
code annotations can remove this inaccuracy, but here we
deliberately compromise the inaccuracy over the complexity
of our approach: Firstly, because the simulation clock gets
re-synchronized at the start of every new simulator event (a
timer fire or hardware interrupt). Secondly, as our macro-
benchmarks later in this section show, the overall accuracy
of TimeTOSSIM is only slightly influenced by these
inaccuracies and we still achieve beyond 99% time accuracy
for most applications.

After evaluating the accuracy of TimeTOSSIM regarding
programming structures, we testify our static and manual
mapping technique. We evaluate the time accuracy of
different operations performed on the most frequently used
on-chip hardware components: LEDs and timers. Currently,
apart from instruction execution, Avrora only emulates
these two on-chip hardware components correctly for
TinyOS-2 based applications. LEDs are the simplest
example of a hardware component attached to a micro-
controller pin. Evaluating LED operations fully tests the
functionality of our approach because any operation on
LEDs involves automatic, static and manual code mapping
and instrumentation, as all hardware components are
accessed via HPL layer of TinyOS. Profiling of the low
level LED component of TinyOS shows that the minimum
granularity (maximum clock advancement) in LED
operations is 47 clock cycles (6 microseconds). Similar to
the access to microcontroller pins, we evaluated the
accuracy of Timer components in TimeTOSSIM. Our
results show that we achieve the same accuracy and
granularity as emulation (see Table 1).

In our macro-benchmarks, we test the time accuracy and
scalability of TimeTOSSIM at application level. Table 3
shows the accuracy level we achieve with different off-the-
shelf applications. We compare the simulation traces of
TimeTOSSIM with Avrora. Our measured results show
beyond 99% time accuracy for most of the applications.
Additionally, we use the TestScheduler application to stress-
test the accuracy of TimeTOSSIM from the worst-case point
of view. The TestScheduler application is a sanity check for
TinyOS scheduler and has no hardware events that could re-
synchronize the simulation-clock. Nonetheless, we still
achieve 88% accuracy. This level of accuracy is
independent from the compiler optimizations of the sensor

Application Instrumentation level and accuracy in %
 Source-line (No

optimizations)
Source-line (Space
related
optimizations)

Basic
block

Function

Blink 99.69 99.63 99.79 98.93
BlinkTask 99.73 99.55 99.73 98.84
CntToLeds 99.69 99.64 99.69 98.97
TestScheduler 87.7 81.44 87.7 NA

Table 3: Time accuracy of different standard TinyOS applications
achieved in TimeTOSSIM (compared to Avrora) for different
instrumentation granularities and compiler optimizations.

Component Accuracy Minimum Granularity
Leds 100% 47 clock-cycles
Timers 100% Same as emulation

Table 1: Accuracy of different hardware components

Table 2: Simulation clock
drifts for different code
blocks

Code-block Clock drift in
cycles

Statements 0
While loops 0
Do loops 0
For loops +4
Nested while -1
If-else clause 0
Switch clause 15

node application. Basic-block level instrumentation
achieves similar timing results as source line
instrumentation. However, it has a lower granularity and
therefore may delay interrupts under high load. Function
level instrumentation results in even less accurate modeling
compared to basic-block and source line granularity.
However, basic block and function level granularity result
in less code instrumentation and therefore increase the
simulation speed of TimeTOSSIM.

After evaluating the accuracy achieved with TimeTOSSIM,
we evaluate the performance of TimeTOSSIM when
compared to TOSSIM and Avrora. All experimental results
discussed in this section were executed on a customary end-
user machine, a Pentium IV with 3 GHz clock frequency
and 1GB of RAM. Our evaluations show that TimeTOSSIM
when using instrumentation on source line granularity is up
to 10 times slower than TOSSIM while being more than 100
times faster than Avrora, especially when using large
numbers of nodes (see Figure 3). For single node
simulations the overhead of TimeTOSSIM is reduced to a
factor of 1 to 6, as the number of adaptations of the event
queue gets reduced drastically.

In comparison to PowerTOSSIM, TimeTOSSIM shows a
similar performance overhead. Thus, PowerTOSSIM and
TimeTOSSIM need about the same time for simulation.
However, TimeTOSSIM provides much more functionality
and features like fine gained energy modeling can be easily
added to TimeTOSSIM based on the derived cycle counts.

Concluding the performance and accuracy evaluation, it can
be said that TimeTOSSIM, though slower than TOSSIM,
provides a very accurate simulation of sensor nodes.
Although code instrumentation on source code line
granularity introduces some inaccuracies, their overall
impact seems to be small. Furthermore, the fact that
instrumentation of source lines does not require any special
compiler extensions ensures that TimeTOSSIM can easily
be ported to various sensor node platforms and operating
systems.

VII. CONCLUSION AND FUTURE WORK
Energy estimation is a crucial characteristic of evaluating
sensor networks and their applications. In this article we
presented automated instrumentation of simulation models
to enable time accurate simulation – a prerequisite for
accurate energy estimation. Our evaluation results have
shown that automated instrumentation on source-code line
granularity provides beyond 99% accuracy for typical
sensor network applications while offering much higher
performance, scalability and easy portability compared to
today's emulators. Finally, we illustrated that our approach
leads to determine the energy-states and duty cycle of each
hardware component of a sensor node. As a result, we can
determine the energy consumption of each hardware
component, and in due course, of the whole sensor network.

Although our approach promises highly accurate energy
estimates, a true evaluation can only be performed after the
integration of energy models to TimeTOSSIM. Currently,
we are adding energy models of different sensor platoforms
(e.g. Mica2 and MicaZ) and features like shutting down
expired nodes in TimeTOSSIM simulation.

REFERENCES
[1] Polley, J., Blazakis, D. McGee, J., Rusk, D. Baras, J.S.

“ATEMU: A Fine-Grained Sensor Network Simulator” In
Proceedings of IEEE SeCon, Santa Clara, USA, 2004.

[2] Shah R.C, Rabaey J.M, “Energy aware routing for low energy ad hoc
sensor networks”, In Proceedings IEEE WCNC, Orlando, USA, 2002

[3] Tijs van Dam, Koen Langendoen, “An adaptive energy-efficient
MAC protocol for wireless sensor networks”, In Proceedings Of
ACM Sensys, Los Angeles, USA, 2003 .

[4] Shnayder, V., Hempstead, M., Chen, B., Allen, G. W., and Welsh, M.
“Simulating the Power Consumption of Large-Scale Sensor Network
Applications,” In Proceedings of ACM SenSys, Nov. 2004.

[5] Landsiedel, O., Wehrle, K., and Gotz, S., “Accurate Prediction of
Power Consumption in Sensor Networks,” In Proceedings of IEEE
EmNetS-II, Sydney, Australia, 2005.

[6] Levis, P., Lee, N., Welsh, M., and Culler, D. “TOSSIM: accurate and
scalable simulation of entire tinyOS applications,” In Proceedings of
ACM SenSys, New York, USA, 2003.

[7] S. Park, A. Savvides, and M. B. Srivastava, “SensorSim: a simulation
framework for sensor networks,” In Proceedings of ACM MSWiM,
New York, 2000.

[8] S. Sundresh, W. Kim, and G. Agha, “SENS: A Sensor, Environment
and Network Simulator,” In Proceedings of Annual Simulation
Symposium, Washington, USA, 2004.

[9] Titzer, B.L. Lee, D.K. Palsberg, J. “Avrora: scalable sensor
network simulation with precise timing” , In Proceedings of
ACM/IEEE IPSN, Los Angeles, USA, 2005.

[10] Landsiedel, O., Alizai, H., and Wehrle, K. “When Timing Matters:
Enabling Time Accurate and Scalable Simulation of Sensor Network
Applications”, In Proceedings of ACM/IEEE IPSN, Washington,
USA, 2008.

[11] Chintalapudi, K., Fu, T., Paek, J., Kothari, N., Rangwala, S., Caffrey,
J., Govindan, R., Johnson, E., and Masri, S., “Monitoring Civil
Structures with a Wireless Sensor Network”, In Proceedings of IEEE
Internet Computing Journal, 2006.

[12] Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh, M.,
“Fidelity and yield in a volcano monitoring sensor network”,
In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation , Berkley, USA, 2006.

[13] V.Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, D. Culler,
“ Flexible hardware abstraction for wireless sensor networks”, In
Proceeding of European Workshop on Wireless Sensor Networks,
2005

Figure 3: Scalability comparison of different sensor
network simulators and emulators. Please note the
logarithmic scale on y-axis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

