Use of UAV(s) for Agriculture and Forestry Applications

Dr. –Ing. Ahmad Kamal Nasir, PhD. Assistant Professor, Electrical Engineering Dept. @ SBASSE, LUMS

Right input at the Right time at the Right place at the Right rate

Precision Agriculture and Forestry Research Cluster

Areas

Mobile Robotics Artificial Intelligence **Knowledge Management Precision Agriculture & Forestry**

Some Projects

- Aerial Mapping of Forests/Fields 2015 ongoing (Ahmad, Awais)
- Knowledge Based Systems for Diagnostics Crops/Livestock (Awais)
- Tree Counting 2015 ongoing (Ahmad, Awais)
- Carbon Stock/Sink Estimation 2015 Ongoing (Awais, Ahmad)
- Tree Specie Identification (Zehra)
- Alarm/Fault Management System, IFPTMN, 2012-2015 completed (Awais, Aun Abbas, Ahmad Kazmi, Ahrar)
- Imitative Learning in Robots, 2013 completed, (Awais)
- Visual-Insertional Odometry, 2015 ongoing, (Ahmad, Abubakr)
- Gardinator: Home Gardening Assistant 2014 ongoing (Awais, Haider Ali – DLR Germany)

People

Mobile Robotics (Ahmad Kamal Nasir, EE) Artificial Intelligence (Zehra Shah, Mian M Awais) Knowledge Management (Mian M Awais)

Needs for progressive farmers

- Precision or Site-Specific Agriculture practices considers Right input at the Right time at the Right place at the Right rate. It requires
 - Map the **field yield variability** in order to determine best strategy for **optimum fertilizer usage**
 - Monitor the health, nutrient and water of crops at every few centimeters in order to identify low yield areas
- Chemical applications (Pesticide)
- Crop and Livestock inventory management

Solution!: An Eye In The Sky

What UAS options are available to you?: Rotary

DraganFly X6 \$36,000.00 http://www.draganfly.com

MicroDrone MD4-200 € 50,000.00

http://www.microdrones.com

Mikrokopter \$ 3- \$15k http://www.mikrokopter.us/

What UAS options are available to you?: Fixed Wing

Our Indigenous Solution

Left figure, developed fixed wing UAV for forestry/agriculture land aerial survey. Right figure, ground control station

Methodology: It's all about the data analytics

Methodology:

Callon

RED

HEALTHY

Natural color image of soybean

GREEN Dr. - Ing. Ahmad Kamal Nasir

Other Solutions

- Satellite
 - Global Coverage (Large Scale)
 - Low Spatial Resolution (0.3 m)
 - Cloud Cover
 - Low Temporal Resolution
- Airborne-Lidar
 - Regional Coverage (Medium Scale)
 - Medium Spatial Resolution (0.1 m)
 - On Request
- Unmanned Aerial System (UAS)
 - Local Coverage (Small Scale)
 - Very High Spatial Resolution (0.05 m)
 - All-Time Ready (Repeatability)

Technology Comparison

Cost Comparison

A cost comparison between UAV, Aircraft and Satellite remote sensing in

shows that UAVs are cost effective for small areas. Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., Vaccari, F.P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R. and Gioli, B.,

Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., Vaccari, F.P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R. and Gioli, B., 2015. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. *Remote Sensing*, 7(3), pp.2971-2990. Tr. - Ing. Ahmad Kamal Nasir 12

Nestle Sar-Sabz Farm Renla-Khurd Pakistan Nov 2016

A. K. Nasir and M. Tharani, "USE OF GREENDRONE UAS SYSTEM FOR MAIZE CROP MONITORING," in *ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, 2017 Dr. - Ing. Ahmad Kamal Nasir 13

Sar-Sabz Farm Flight (135 acres)

Maize Crop Yield Map Multiple Flights: 15Nov, 27Nov, 15Dec 2016

Benefit: Identification of Land Level Problems

Benefit: Identification of Low Plants Count Areas

Benefit: Identification of Nitrogen Concentration Problem Due to Flood Irrigation

Optimization of seeding rate: Non-Uniform Sowing by Labor

UAS for Girdawari (Crop Reporting Service, Punjab Agriculture Department) at Kala Shah KaKu using **UAS**

- A test Flight was carried out on 2nd March 2017 at KSK in accordance with the Crop Reporting Service Requirements.
- Mr Anwar Baig Director CRS,
- Mr. Azaz A.D CRS, Mr. Farooq(SO CRS), Mr Waseem Mirza and other CRS representatives were also present

Planned Mission at the Sample Village using **UAS**, 100 Acres

Executed Mission at the Sample Village using UAS

Kala Shah KaKu – Health Map (03 March 2017)

Kala Shah KaKu – Aerial Map (03 March 2017)

Kala Shah KaKu – Girdawari (03 March 2017)

Mango Farms Managment: Jahanpur – Shujaabad (13 Nov 2016), 200 Acres

Sugarcanes: Jahanpur – Shuja-abad (13 Nov 2016), 144 Acres

Precision Forestry

- Deforestation and Forest Degradation
 - Underdeveloped countries
 - Environmental health and the health of the people living in these regions
- Conventional Aerial Remote Sensing
 - Some low-resolution satellite images are freely available (e.g., Sentinel [1] up to 10m, Landsat [2] up to 30m resolution and MODIS [3] up to 1000m resolution).
 - The low-resolution imagery is not useful for vegetation classification and tree counting applications [4].
 - High resolution commercial (e.g. QuickBird [5] up to 0.65m resolution) satellite imagery are costly, which makes them inaccessible for researchers in developing countries (Raw data: 17 \$/km²).
 - The latest 0.5m resolution imagery is available at $30 \notin /km^2$
 - Air-borne LIDAR survey costs 450 \in /km² [6].

A. K. Nasir, M. M. Awais, Hubert Roth, Nasser Gyagenda, "Tree detection and counting in 3d point clouds", *IEEE Transactions* on *Geoscience and Remote sensing*, 2017 (In Publication)

Flight planning LUMS Campus (100 acres)

Flight plan for the aerial survey. In the left figure, yellow lines represent the planned flight path, green markers represent the way points and the red markers represent the polygon end points.

Automatic Trees Detection and Counting

Tree Height and Crown Spread Estimation in 3D

Left figure, Unfiltered Cluster, Right figure, Filtered Cluster

Multiple Flights Result

Detected trees in areas with buildings (Left) and without buildings (Right). Cyan Cross show GT Trees, while blue, yellow and green dots show detected trees from the point clouds 1, 2 and 3 respectively.

CHARACTERIZATION OF THE ALGORITHM IN AREAS CONTAINING BUILDINGS USING CONFUSION MATRIX

Actual Trees = 261	POINT CLOUD 1	POINT CLOUD2	Point Cloud 3
Total Trees Detected	119	112	140
True Positive	100	94	108
True Negative	0	0	0
False Positive	19	18	32
False Negative	161	167	153
F1 Score	53%	50%	54%
Miss Rate	62%	64%	59%
False Discovery Rate	16%	16%	23%

CHARACTERIZATION OF THE ALGORITHM IN AREAS CONTAINING NO BUILDINGS USING CONFUSION MATRIX

Actual Trees = 73	POINT CLOUD 1	POINT CLOUD2	POINT CLOUD 3
Total Trees Detected	36	23	23
True Positive	32	23	17
True Negative	0	0	0
False Positive	4	0	6
False Negative	41	50	56
F1 Score	59%	48%	35%
Miss Rate	56%	68%	77%
False Discovery Rate	11%	0%	26%

Summary

