






### **Conventional Methods**

- 1. Excessive use of Pesticides
  - Adverse effects on health of soil & Environment
- 2. Excessive Tillage
  - High Energy Consumption
  - Affects soil structure
- 3. Broadcasting the Seeds by Hand
  - Labor intensive
  - High Seed Waste
  - Uneven Distribution
- 4. Excessive use of Water for Irrigation
  - Waste of resources





|      | Agri-Activity          | Conventional/<br>Traditional Method                         | Proposed Method                                                             | Intended Benefits                                                                       |  |
|------|------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
|      | Seedbed<br>Preparation | 1. Ploughing                                                | Minimum tillage<br>(agitation) through<br>specially designed<br>sowing tool | <ul><li>Energy conservation</li><li>Soil preservation</li></ul>                         |  |
|      | Seeding                | <ol> <li>Throwing seeds</li> <li>Manual Planters</li> </ol> | The same tool having the seeding mechanism                                  | <ul><li>Minimization of seed wastage</li><li>Precision in depth &amp; spacing</li></ul> |  |
|      | Irrigation             | Open Water Channels                                         | Targeted irrigation<br>through robotic<br>movement and sowing<br>tool       | Greatly reducing<br>the required water<br>quantity                                      |  |
| 产业发生 |                        |                                                             |                                                                             |                                                                                         |  |

|  | Agri-Activity              | Conventional/<br>Traditional Method                       | Proposed Method                                                       | Intended Benefits                                                          |  |  |  |  |
|--|----------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
|  | Fertilizer<br>Distribution | 2. Mixing in Water                                        | Water soluble fertilizer distributed through the robotic end-effector | <ul> <li>Optimized use of<br/>fertilizer (saving<br/>the cost!)</li> </ul> |  |  |  |  |
|  | Pesticiding                | Separate Pesticide     Spraying                           | Integrated pesticide spraying                                         | Product and labor<br>cost will be saved                                    |  |  |  |  |
|  | Weeding                    | <ol> <li>Manual</li> <li>Weeding<br/>Chemicals</li> </ol> | Robotic agitation to weed out the unwanted plants                     | <ul> <li>Savings in cost of<br/>labor/ weeding<br/>chemicals</li> </ul>    |  |  |  |  |
|  | Soil Monitoring            | Manual operation                                          | Automatically through Soil Sensor                                     | <ul> <li>Optimal management of soil health.</li> </ul>                     |  |  |  |  |
|  |                            |                                                           |                                                                       |                                                                            |  |  |  |  |

## **Literature Review**

- Farm-Bot Genesis
  - Open source Blog
- Agricultural Robot for automatic ploughing and seeding
  - Ankita.A, Abirami.E, Amrita Sneha.A
- Autonomous Agricultural Robot towards robust autonomy
  - Martin Holm Pedersen & Jens Jense
- Valley Irrigation Pakistan
  - Farming Solution providers



### **Literature Review**

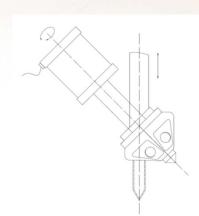
- Iowa Agriculture literacy foundation
  - · Agriculture Blog by WILL
- Soil Quality
  - Article by Dr Lengnick)
- Implementation of remote control for a spraying robot
  - by Chun-Mu Wu, Jui-Tsung Lu
- CROPWATCH-Institute of Agriculture and natural Resources
  - by University of Nebraska-Lincoln)



### To Develop a Multipurpose Robotic End-Effector that incorporates:

- An Automatic digging mechanism
- An Automatic seed sowing mechanism
- A system that can irrigate or fertigate fields efficiently.
- A feedback system that can detect moisture level of the field.
- A system for weed detection and its effective removal.
- A system that can effectively spray pesticide.
- All packaged in one product
- Reconfigurable
- Versatile

| COMPARISON TABLE:                 |                     |               |             |                             |                         |                               |  |  |  |  |
|-----------------------------------|---------------------|---------------|-------------|-----------------------------|-------------------------|-------------------------------|--|--|--|--|
| Products                          | Farm-Bot<br>Genesis | Maestro<br>SW | Hand Seeder | C-P<br>Irrigation<br>System | Conventional<br>Farming | Our tool<br>mounted<br>on C-P |  |  |  |  |
| Ability to serve in<br>Big Fields | 0                   |               |             |                             |                         |                               |  |  |  |  |
| Pest Control<br>system            |                     |               |             |                             |                         |                               |  |  |  |  |
| Even seed<br>Dispensing           |                     |               |             | 0                           |                         |                               |  |  |  |  |
| Automation                        |                     |               |             |                             |                         |                               |  |  |  |  |
| Eco-Friendly                      |                     |               |             |                             |                         |                               |  |  |  |  |
| Irrigation/<br>Fertigation        |                     |               |             |                             |                         |                               |  |  |  |  |


# Initial Design Multipurpose End-Effector

#### Multipurpose End-Effector

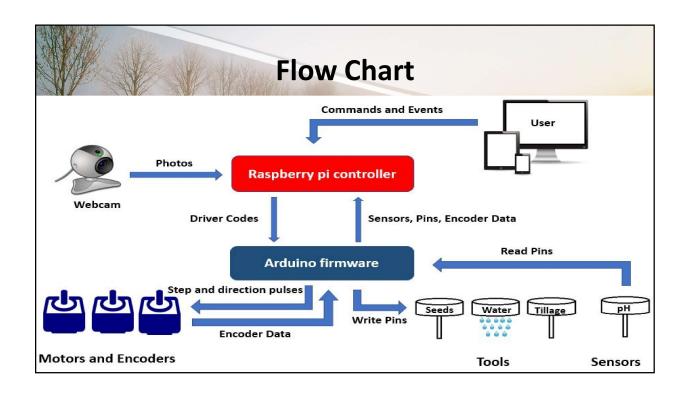
Out of a number of initial options, an indexing tool design was considered to be the best option.

#### Selection Criterion:

- Expert Opinion
- Ranking on design objectives

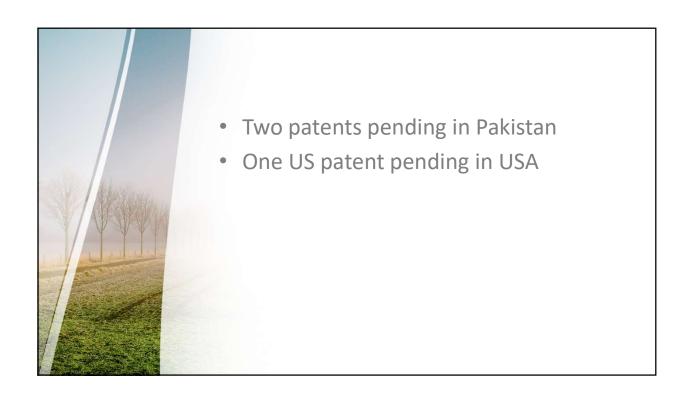


## **Applications & Scope**


### Applications:

- Can be installed in any field ranging from medium to large for best performance and profit.
- Can be installed temporarily with the existing Central Pivot Irrigation system (rental services).
- Can perform Sowing, Tillage and Irrigation/Fertigation efficiently.

#### Scope:


There is still a lot of room for improvement like:

- Can be made power efficient by equipping it with solar Panels.
- Can be used for Poly cultured and Mono Cultured Farms.
- Can benefit the economy if widely practiced.
- Can incorporate online data and cloud services.









