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Incident Detection Algorithm using Wavelet Energy
Representation of Traffic Patterns

Asim Karim1 and Hojjat Adeli2

Abstract: Automatic freeway incident detection is an important component of advanced transportation management systems~ATMS!
that provides information for emergency relief and traffic control and management purposes. Earlier algorithms for freeway
problems have produced less reliable results, especially in recurrent congestion and compression wave traffic conditions. T
presents a new two-stage single-station freeway incident detection model based on advanced wavelet analysis and pattern
techniques. Wavelet analysis is used to denoise, cluster, and enhance the raw traffic data, which is then classified by a radial bas
neural network. An energy representation of the traffic pattern in the wavelet domain is found to best characterize incident and no
traffic conditions. False alarm during recurrent congestion and compression waves is eliminated by normalization of a sufficie
time-series pattern. The model is tested under several traffic flow scenarios including compression wave conditions. It produced
detection and false alarms characteristics. The model is computationally efficient and can readily be implemented online in an
without any need for recalibration.
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Introduction

An important component of any advanced transportation man
ment system~ATMS! is the reliable and efficient detection o
traffic incidents. Traffic incidents on heavy demand freeways
seriously disrupt the performance of the entire highway netwo
From an engineering point of view, the challenge is to localize
disruptive effects of an incident. The key to this problem is
development of an automatic algorithm that immediately rec
nizes the presence of a congestion-inducing incident so tha
fective control measures can be taken to prevent the spread o
congestion. A typical urban highway network often has exc
capacity at any given time. The goal is to effectively utilize th
extra capacity when a bottleneck occurs.

Traffic incident detection algorithms must rely on data o
tained at periodic time intervals from traffic sensors or detect
The common traffic data available for use in incident detect
algorithms are the lane occupancy, speed, and flow rate obta
from road sensors located every 500 m to 2 km at usually 20
30-s time intervals. Incident detection algorithms must be abl
process this information to determine changes in patterns
may indicate an incident condition. However, incident-like p
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terns may also be produced by nonincident conditions such
recurrent congestion during rush hours and banding of vehicle
compression waves. Traffic incident detection algorithms a
have to be able to deal effectively with erroneous data from m
functioning traffic sensors.

Over the years, researchers have developed numerous
rithms for the traffic incident detection~ID! problem~Cook and
Cleveland 1974; Payne and Tignor 1978; Ahmed and Cook 19
Persaud and Hall 1989; Chassiakos and Stephanedes 1993;
et al. 1994; Cheu and Ritchie 1995; Dia and Rose 1997; Lin
Daganzo 1997; Ishak and Al-Deek 1998; Lin and Chang 19
Xu et al. 1998!. These algorithms range from earlier simple co
parative approaches to more recent pattern recognition
decision-making techniques. The results, in general, have
been very satisfactory, and few freeway management syst
today employ an automatic ID algorithm. The complexity aris
from both the dynamic and unpredictable nature of traffic flo
and the unreliability of the installed traffic sensors, which in tu
make simple approaches unreliable.

When a traffic incident reduces the capacity below the prev
ing flow rate a queue will form on the upstream direction produ
ing a significant reduction in lane speed and a significant incre
in lane occupancy. This change in pattern is well pronounced.
queue, however, may develop slowly, depending on the preva
flow conditions and the number of lanes closed. Hence the de
tion time can be large. On the other hand, the change in the
pattern downstream of a capacity-reducing incident can take p
within seconds, independent of the prevailing flow rate before
occurrence of the incident. This change~decrease in lane flow rate
and occupancy!, however, is not as significant compared with th
occurring on the upstream direction of the incident. It has b
argued that an algorithm that uses only the downstream read
produces a high false alarm rate and has difficulty in distingui
ing compression waves from incident producing patterns~Weil,
et al. 1998!. This argument, however, is often based on us
algorithms incapable of reliably distinguishing the patterns.
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Recently, Adeli and Karim~2000! presented a computationa
model for automatic traffic incident detection using discre
wavelet transform, fuzzy logic, and neural networks. In th
model, upstream lane occupancy and speed time series dat
adopted as the characterizing pattern for traffic state classifica
The raw data is first denoised by soft thresholding in the wav
domain. Subsequently, the denoised data is clustered by the f
c-means technique to reduce data dimensionality and enh
feature separation. Finally, a radial basis function neural netw
is developed to reliably classify the denoised and clustered
tern. The model is tested with both simulated and real traffic d
producing excellent incident detection and false alarm charac
istics. However, the time to detection for the model is long, a
depending on traffic and incident characteristics, can be as l
as 5 min.

In this work, a new traffic incident detection algorithm is pr
sented that distinguishes effectively patterns produced by cap
reducing incidents from those produced by compression wa
and recurrent congestion. Furthermore, in most traffic and i
dent conditions, it signals the presence of an incident withi
minute of its occurrence. Only data available locally at each
tector station are used for processing. Computationally, the a
rithm is based on an advanced energy representation of the
series pattern developed using wavelet theory. This appro
effectively enhances the desirable features and denoises the t
patterns, which are then classified using a radial basis func
~RBF! neural network. The new algorithm is developed, d
scribed, and evaluated in subsequent sections.

Freeway Incident Detection and Patterns in Traffic
Flow

A freeway incident detection algorithm determines the prese
or absence of an incident condition based on patterns in tra
flow. Therefore, the selection of the number, type, and forma
the traffic data to be used is essential to the reliability of
algorithm. Currently, most advanced transportation managem
systems can provide lane occupancy, speed, and flow rate
from irregularly spaced sensors at regular time intervals. Henc
reliable incident detection algorithm must be based on the us
such data only. When selecting appropriate patterns for an e
tive incident detection algorithm three goals were set.
• First, the selected patterns must consistently characterize

fic incident conditions and, at the same time, be distingui
able from other flow conditions such as compression wave

• Second, the selected patterns by and large should be inde
dent of prevailing roadway and traffic conditions to avoid ca
bration problems; and

• Third, the patterns should indicate an incident condition in l
than 1 min after the occurrence of incidence.
In this section, patterns in traffic data before, during, and a

an incident are investigated to determine the most approp
input for the incident detection algorithm. Note that raw traf
data are analyzed. The pattern identified from this analysis wil
processed further to enhance desirable features. The data
sented in this section are obtained from TSIS~http://www.fhwa-
tsis.com!, a traffic simulation software.

Single-Station versus Two-Station Incident Detection
Approaches

A capacity-reducing traffic incident will produce observab
changes in flow conditions at the detector stations immedia
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upstream and downstream of the incident. In general, th
changes consist of an increase in traffic congestion upstream
a decrease in traffic congestion downstream of the incident. Ba
on these observations, two different approaches—called t
station comparative and single-station approaches—have
used to develop traffic incident detection algorithms. The sing
station approach relies on data obtained from only one stat
whereas, the two-station approach makes use of data from
adjacent stations.

The two-station comparative approach, exemplified by
California algorithm~Payne and Tignor 1978!, employs both spa-
tial and temporal data in its algorithm logic. The premise is t
using spatial data will reduce false alarms that are produced
result of changing roadway and traffic conditions because of
natural canceling effect of comparative analysis~Weil et al. 1998;
Persaud and Hall 1989; Payne and Tignor 1978!. The California
algorithm is a simple threshold-based algorithm that uses o
one flow parameter~occupancy!. Also, because of its comparativ
approach it has to be calibrated at each station to optimize it
the particular roadway geometry.

The two-station comparative approach, in general, has sev
disadvantages even when advanced pattern recognition t
niques are employed. Traffic incidents are temporal events wh
effects develop over time both in the upstream and downstre
directions. However, the characteristics of the traffic patterns
veloped in the upstream and downstream directions are differ
Therefore, combining data from both stations is likely to produ
less reliable detection of incidents because of the mixing of t
different temporal patterns. Two-station comparative algorith
are also more difficult to calibrate because they are affected
the geometry of the roadway, the distance between the stat
the presence of on-ramps and off-ramps, and the prevailing
conditions.

Figs. 1 and 2 show typical time-series plots of lane occupan
lane speed, and lane flow rate at a station upstream and d
stream, respectively, of a lane-blocking incident on a two-la
freeway. Three time-series plots are displayed for three diffe
traffic flow rates of 1,000, 1,250, and 1,500 vehicles per h
~vph! per lane. The incident occurs at time 400 s. Note that
time at which the upstream traffic occupancy and speed cha
@Figs. 1~a and b!# depends on the preincident flow rate. The fo
mation of a queue, which produces significant changes in tra
occupancy and speed patterns, also depends on the reducti
the capacity and roadway conditions~not presented in the fig-
ures!. Fig. 1~c! indicates that there is no significant change in t
traffic flow on the upstream side. On the other hand, on the do
stream side, there are significant changes in traffic occupancy
flow rate @Figs. 2~a and c!# but no significant change in traffic
speed@Fig. 2~b!#. As a result, the two-station comparative alg
rithms that employ upstream and downstream data together
difficult to calibrate and are likely to produce unreliable detectio

Single-station approaches~Cook and Cleveland 1974; Persau
and Hall 1989! do not require data from more than one station
make a decision on the presence or absence of an incident c
tion. As such, their on-line implementation does not require
pensive continuous communication between different dete
stations. Furthermore, single-station patterns are not affecte
the freeway layout and geometry. Recurring changes in tra
flow such as those produced by daily rush time traffic and b
weather can be handled effectively by using a normalization te
nique, as explained later.

In this research, the computational model relies on sing
station patterns. This model can handle patterns from both
RNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002 / 233
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Fig. 1. Time-series plots of upstream traffic data on two-lane fr
way with three prevailing flow rates of 1,000, 1,250, and 1,500 v
per lane before and after incident~a! lane occupancy plot;~b! lane
speed plot;~c! lane flow rate plot
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Fig. 2. Time-series plots of downstream traffic data on two-la
freeway with three prevailing flow rates of 1,000, 1,250, and 1,5
vph per lane before and after incident~a! lane occupancy plot;~b!
lane speed plot;~c! lane flow rate plot



n o
ea

the
use
eam
and
ow

an
lan
abl
Fig.
efor
and

con
am
ime
he

anc

ts o

the
l

se
tre

goo

and
ich
bo

able
of

ec-
o be
nal
lt of
y and
Sec-
may
city
the
the
nt is
.

an
fore

fore
stream and downstream stations, but there is no compariso
patterns from the upstream and downstream stations. Rather,
set of patterns are processed independently.

Upstream and Downstream Flow Patterns

From Figs. 1 and 2, the pattern formed on the upstream or
downstream side of a capacity-reducing incident each can be
as the basis for an incident detection algorithm. On the upstr
side, the dominant flow pattern is the increase in occupancy
the decrease in speed. The flow rate, however, does not sh
consistent and significant change as compared to occupancy
the speed. A pattern based on the upstream time histories of
occupancy and speed is therefore most appropriate for reli
incident detection purposes. This conclusion is confirmed by
3, which shows a scatter plot of occupancies and speeds b
and after an incident. In this figure, regions of congested
normal flow are generally distinguishable.~They can be clearly
separated after data denoising and feature enhancement.! On the
other hand, the scatter plot of occupancy and flow rate~Fig. 4!
does not indicate a clear demarcation between normal and
gested flow conditions. One limitation of using only the upstre
data for an incident detection algorithm is that the detection t
may be unacceptably large under low flow rate conditions. T
detection time is also dependent on other factors such as dist
between detector stations and weather conditions.

Three observations can be made from the time series plo
traffic data on the downstream side of an incident@Figs. 2~a–c!#.
First, the occupancy and the flow rate decrease rapidly after
occurrence of the incident@in about 20 s or one time interva
reported by sensors in the examples of Figs. 2~a and c!#. This
change, however, is less marked as compared to the increa
lane occupancy and decrease in lane speed seen on the ups
side. Second, the speed downstream of an incident is not a
indicator of an incident condition, as observed in Fig. 2~b!. After
passing through an incident region, vehicles will accelerate
reach free flow speeds rather quickly. Third, the times at wh
the occupancy and the flow rate decrease appreciably are a
the same and relatively independent of the flow rate.

The scatter plots of occupancy and speed~Fig. 5! and occu-

Fig. 3. Scatter plot of upstream lane occupancy and speed before
after incidents
JOU
f
ch

d

a
d
e
e

e

-

e

f

in
am
d

ut

pancy and flow rate~Fig. 6! for data from a location downstream
of an incident show that there are no discernable and separ
regions for before and after incident flow conditions. Because
this, the development of a reliable algorithm for incident det
tion based on data from the downstream side has proven t
more difficult. Using the downstream data poses two additio
challenges. First, there is the risk of false alarms as a resu
compression waves because a compression wave’s occupanc
flow rate downstream patterns resemble those of an incident.
ond, the magnitudes of the flow rate on the downstream side
vary because of weather conditions, the severity of the capa
reduction as a result of the incident, and other daily changes in
flow rate. On the other hand the major advantage of using
downstream data is that the change in pattern after an incide
almost immediate and independent of the prevailing flow rate

d
Fig. 4. Scatter plot of upstream lane occupancy and flow rate be
and after incidents

Fig. 5. Scatter plot of downstream lane occupancy and speed be
and after incidents
RNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002 / 235



tion
oth
wo
enc
oc-
firm
th

e th
an

g a
pre
ries
al-
bse

and
s it
th

ec-
de-
s
its
nte
-

o-

e-
-

The

es

is
sup-
of

ro-

s of

of

on

g. 1
lues
f
let
ern.
ther
in

T
into
tion
elet
and

rgy

ate
On the basis of these observations, a new incident detec
logic and computational model is developed that utilizes b
upstream and downstream traffic patterns independently. A t
stage logic is employed. In the first stage, the presence or abs
of an incident condition is determined from the downstream
cupancy and flow rate time-series data. The second stage con
the presence or the absence of an incident condition by using
upstream occupancy and speed time-series data. To minimiz
possibility of a missed detection and eliminate false alarms,
advanced wavelet-based feature enhancement and denoisin
proach is adopted to process the data. False alarms from com
sion waves are avoided by using a sufficiently long time se
~.5 min! as input. Recurrent congestion is handled by a norm
ization technique. These models are developed in detail in su
quent sections.

Discrete Wavelet Transform and Signal Energy

The discrete wavelet transform~DWT! provides a powerful and
efficient technique for analyzing, decomposing, denoising,
compressing signals. In particular, the DWT of a signal break
down into several time-frequency components that enables
extraction of features desirable for signal identification and r
ognition. The DWT and wavelet theory in general have been
veloped rapidly in the past 10 years~Daubechies 1992, Burru
et al. 1998!. In this section, the basic concepts of DWT and
energy representation employed in this research are prese
briefly. Additional details of DWT and its application in ITS prob
lems can be found in Samant and Adeli~2000!.

A 1D signal f (t)PL2(R) can be decomposed into multires
lution components that are indexed by the scalej ~indicator of
frequency! and the translationk ~indicator of time!

f ~ t !5(
k

cj 0 ,kw j 0 ,k~ t !1(
k

(
j 5 j 0

dj ,kc j ,k~ t ! (1)

whereL2(R) is the space of all square integrable functions d
fined in the 1D real spaceR; cj ,k is the scaling coefficient corre
sponding to the scaling functionw j ,k(t); and dj ,k is the wavelet
coefficient corresponding to waveletc j ,k(t). The indexj 0 repre-

Fig. 6. Scatter plot of downstream lane occupancy and flow r
before and after incidents
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sents the lowest resolution that is decomposed by the DWT.
functionsw j ,k(t) ( j ,kPZ) andc j ,k(t) ( j ,kPZ) ~Z is the space of
integers!, each forming a basis ofL2(R), are defined by the fol-
lowing equations:

w j ,k~ t !52 j /2w~2 j t2k! (2)

w~ t !5(
k

h0@k#&w~2t2k! kPZ (3)

c~ t !5(
k

h1@k#&w~2t2k! kPZ (4)

whereh0 andh15filter coefficients and the constant& maintains
the unity norm of the functions. In this work, the Daubechi
wavelet system of order eight~Daubechies 1992!, defined by
eighth1 andh0 coefficients, is used. This wavelet basis system
selected because of its orthonormality property and compact
port, providing a DWT with a finite length and a finite number
wavelet coefficients.

When an orthonormal basis is used, the coefficientscj ,k and
dj ,k are given by the inner product of the signal with the app
priate function

cj ,k5cj@k#5E f ~ t !w j ,k~ t !dt ; j ,k (5)

dj ,k5dj@k#5E f ~ t !c j ,k~ t !dt V j,k (6)

which can be reduced to the following recursive equations~Bur-
rus et al. 1998!:

cj@k#5(
m

h0@m22k#cj 11@m# (7)

dj@k#5(
m

h1@m22k#cj 11@m# (8)

In these equations, it is assumed that the scaling coefficient
the signal at the highest resolution are known.

Traffic data are available as a discrete sequencef @k# of finite
lengthL52J whereJ is an integer. The highest resolution part
the scaling functionw j ,k(t), wJ,k(t) will approach a Dirac delta
function and Eq.~5! will represent a sampling off @k#. Therefore,
cJ@k# can be approximated byf @k#. The use of recursive Eqs.~7!
and~8! for calculating the DWT coefficients requires thatf @k# be
extended periodically. In other words, the following equati
should hold

f @k#5 f @k1Ln# n51,2,3,... (9)

However, traffic time-series data, such as those shown in Fi
and 2, are not periodic. In other words, generally, the end va
f @1# and f @L# are not equal. As a result of the incompatibility o
the traffic data with the periodic boundary condition, the wave
representation can distort the shape of the original traffic patt
To overcome this problem, the traffic pattern is extended on ei
ends before its DWT is found. This procedure is explained
detail in the next section.

An advantage of using an orthonormal basis to find the DW
of a signal is that the energy of the signal can be partitioned
its various time-frequency components. The energy contribu
from each component is expressed as a function of the wav
and scaling coefficients. This is known as Parseval’s theorem
is expressed mathematically in the form of the following ene
functional ~Burrus et al. 1998!:
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E u f ~ t !u2dt5(
k

ucj 0 ,ku21(
k

(
j 5 j 0

udj ,ku2 (10)

We use this functional to enhance the traffic data streams for
purpose of pronouncing the traffic incident patterns, as expla
in the next section.

Traffic Pattern Feature Enhancement and Denoising

In this traffic incident detection model, we process the time-se
traffic data ~lane occupancy, speed, and flow rate! obtained at
each detector station, with the objectives of reducing noise
enhancing the desirable features. This processing is essent
ensure that no incidents go undetected and no false alarm
triggered. Upstream lane occupancy (f O@ i #) and speed (f S@ i #)
form one pattern for identifying incident conditions. Downstrea
lane occupancy (f O@ i #) and flow rate (f F@ i #) form another pat-
tern for identifying incident conditions.

Sixteen data points are selected for each one of the three tr
parameters. That is, the sequencesf O@ i #, f F@ i #, and f S@ i # consist
of 16 values indexed from 1 to 16. There are two reasons
selecting this length for each time series. The DWT used in
work ~and in fact in most cases! requires that the number of dat
points to be equal to some power of 2~4, 8, 16, etc.!. For algo-
rithmic efficiency, the smallest number is preferred. We found
to be the minimum number needed to avoid false alarms that
be caused by compression waves. We found this necessary fo
downstream pattern~f O@ i # and f F@ i #!, which may exhibit similar
patterns for both compression waves and incident conditions

When the time interval between successive readings is 2
~which is the minimum available from current detector station!,
16 data points constitute 5 min and 20 s of data. Compres
waves are usually temporary conditions and not very likely
exist for as long as 5 min. In other words, it is unlikely that
pattern in which the values off O@ i # and f F@ i # ( i 515,16) are
much smaller than the values off O@ i # and f F@ i # ( i 51,2,...,14) is
caused by a compression wave. This data sampling strategy
vents the downstream pattern from signaling an incident co
tion erroneously whenever a compression wave passes by.

Traffic time-series data are normalized by dividing them by
average of the highest two values in each series. Normaliza
reduces the significance of magnitude in the pattern recogn
process and the undesirable domination of a single large va
Patterns are distinguished primarily on the basis of their sh
and form and not on the basis of magnitude. As a result,
normalization technique also eliminates the need for recalibra
whenever the flow condition changes. Flow variations caused
daily rush time traffic, weather conditions, geometry, and ot
situations can therefore be handled automatically and trans
ently. The normalized occupancy, speed, and flow rate seque
are represented asf̄ O@ i #, f̄ S@ i #, and f̄ F@ i #, respectively.

The normalized data series are extended by eight point
each end before their DWT’s are calculated. All eight data po
in the extension have a magnitude equal to the average o
previous two~first two for the extension on one end and last tw
for the extension on the other end! values in the series. The ex
tended normalized data series are given by

f̂ @ i #5H 0.5~ f̄ @1#1 f̄ @2# ! 1< i<8

f̄ @ i 28# 9< i<24

0.5~ f̄ @15#1 f̄ @16# ! 25< i<32

(11)
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The lengthL of each data series now becomes 32~i.e.,L525 and
J55!. The need for extending the data series is shown in Fig
Fig. 7~a! shows a typical flow rate data seriesf̄ F@ i # ~solid line! on
the downstream side of an incident and its scale 3~i.e., j 53!
wavelet approximation~dashed line!. Notice how the shape of the
wavelet approximation is distorted at the left edge because of
periodic boundary condition assumption. Fig. 7~b! shows the
same data series extended using Eq.~11! ~solid line! and its scale
3 wavelet approximation~dashed line!. In this figure, the wavelet
distortion has been pushed aside to the outer edges, outsid
usable region of data, the segment from data points 9 to 24. In
segment, the basic shape of the original data series is prese
without distortions.

In the new traffic incident detection model, the DWT is em
ployed to reduce the dimensionality of input data for the neu
network pattern classifier, eliminate the traffic noise, and enha
the desirable features in each data series. The extended data
has a length of 25 and is represented by scaleJ55 in Eq.~5!. Eq.

Fig. 7. ~a! Discrete wavelet transform~DWT! of 16-point flow rate
traffic pattern;~b! DWT of an extended 32-point flow rate traffi
pattern@based on the data in~a!#
RNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002 / 237
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~7! is applied two times recursively to calculate the scaling co
ficients at scalej 53. This operation corresponds to a two-sta
low-pass filtering ofcJ@k# with h0 ~Samant and Adeli 2000!. At
this reduced resolution, the higher frequency noise-like com
nents are eliminated leaving a smoother denoised shape or f
Also, through the two-stage low-pass filtering the 32-point ti
series is now reduced to an eight-coefficient representation. H
ever, this DWT is for the extended 32-point data series. The D
of the original 16-point data series is given by the middle fo
values of the eight coefficients~c3@k#, k53,4,5,6!. Let these re-
duced sets of coefficients be defined ascO@ i #, cS@ i #, andcF@ i #
for occupancy, speed, and flow rate, respectively, wheri
51,2,3,4.

Notice from Figs. 1 and 2 that an incident condition patte
exhibits either a sudden decrease or a sudden increase in m
tude of data values that occur in the last few data points. T
feature, which distinguishes an incident condition from a non
cident condition, can be enhanced by using the energy repre
tation capability of wavelet transforms~Eq. 10!. The squares of
the absolute values of the coefficientsc@ i # represent the energy o
the denoised time-series data at each time location define
index i. The energy~or the area under a squared time-series p!
enhances incident condition patterns and distinguishes them
nonincident condition patterns. Thus, the scaling coefficients
modified as follows:

ĉ@ i #5uc@ i #u2 ; i (12)

The benefit of DWT-based denoising and feature enhancem
is demonstrated in Figs. 8 and 9. Fig. 8 is a scatter plot ofĉO@ i #
andĉS@ i # based on the same data used in Fig. 3. Fig. 9 is a sc
plot of ĉO@ i # and ĉF@ i # based on the same data used in Fig.
Comparisons of Fig. 3 with Fig. 8 and Fig. 6 with Fig. 9 indica
the improvement in pattern separation achieved by wavelet-b
denoising and feature enhancement. The points between cl
regions seen in these figures are intermediate conditions that
move to one of the clusters as the time-series pattern beco
more defined with time.

The enhanced traffic pattern at the upstream side,xU@ i #, is
then formed by concatenating the four coefficients from the
cupancy and the speed data series. Similarly, the enhanced t

Fig. 8. Scatter plot of upstream lane occupancy and speed wav
energy coefficients before and after incidents
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pattern on the downstream side,xD@ i #, is formed by concatenat
ing the occupancy and flow rate data series coefficients. M
ematically, the patterns are given by

xU5$ĉO@ i #,ĉS@ i #% i 51,2,3,4 (13)

xD5$ĉO@ i #,ĉF@ i #%, i 51,2,3,4 (14)

Pattern Classification using Radial-Basis Function
Neural Network

Neural networks are powerful model-free pattern classifi
~Adeli and Hung 1995!. However, they can be computational
very expensive when the size or dimensionality of the input d
is large, requiring a very large number of training instanc
Training instances of the traffic patterns defined by Eqs.~13! and
~14! are used to develop a mapping from an 8D space to a
space. For this purpose, the radial basis function neural netwo
adopted. The RBF neural network is an efficient universal cla
fier ~Moody and Darken 1989! that has a simple topology con
sisting of a hidden layer of nodes with nonlinear transfer fun
tions and an output layer of nodes with linear transfer functio

The topology of the RBF neural network developed for t
traffic pattern classification is shown in Fig. 10. The input lay
has eight nodes corresponding to the eight data points in e
pattern~xU@ i # or xD@ i #, henceforth called vectorx!. The number
of nodes in the hidden layerNh is equal to the number of cluste
centers used to characterize the input training space. The ou
layer has one node~y!. The number of nodes in the hidden lay
is chosen as a fraction of the total number of training instanc
This choice is based on numerical experimentation to determ
which number adequately covers the input space and produce
best mapping. We found a number within the range of 10 to 3
of the number of training instances to provide satisfactory resu
The cluster centersmi (1< i<Nh) is obtained using the fuzzy
c-means algorithm~Bezdek 1981; Cannon et al. 1986!.

The connection from the input nodei to the hidden nodej is
assigned the weightm j i corresponding to thei th component of the
vectormj . The output of a hidden nodej is given by the follow-
ing Gaussian transfer function:

tFig. 9. Scatter plot of downstream lane occupancy and flow r
wavelet energy coefficients before and after incidents
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f j5expS 2
ix2mj i2

2s j
2 D (15)

wherei•i represents the Euclidean norm of a vector. The factos j

controls the spread or range of influence of the Gaussian func
centered atmj . In this works j is calculated as

s j5
1

48(i 51

N

imj2mi i 1< j <Nh (16)

whereN is the total number of training instances. Eq.~16! ap-
proximates the spread parameters j as one third of the mean
distance between cluster centers. The connection from the hi
nodej to the output node is assigned the weightl j . The outputy
of the network is then given by

y5(
j 51

Nh

f jl j (17)

Theoretically an output value of 1 corresponds to an incid
classification while an output value of21 corresponds to a no
incident classification. Practically, however, one has to choos
threshold value for distinguishing between the two classes, as
output from Eq.~17! can take any value in the range21 and 1.

The weightsl j are calculated by minimizing the error betwee
the network computed outputy and the desired outputyd based on
training examples. In other words, to train the network for valu
of l j we solve the following unconstrained optimization proble

Minimize E~l!5(
i 51

N

uyi2yd
i u (18)

The gradient descent optimization algorithm is used to solve
optimization problem.

Model Testing

Introduction

The new computational model for freeway incident detection
tested using both real and simulated traffic data. More than 4
of simulated traffic data is generated from the traffic simulat
software TSIS/CORSIM, while real traffic data is obtained fro
the freeway service patrol~FSP! project’s I-880 database. A larg
portion of the simulated data is made up of incident or incide

Fig. 10. Topology of radial basis function neural network for traffi
pattern classification
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e

like conditions on two- and three-lane freeways. This is an adv
tage of employing a simulation software for testing purposes
sufficient quantities of reliable real data with traffic incidents a
not readily available. Furthermore, with a data generating s
ware it is possible to study the performance of the model un
various traffic flow scenarios. The real data is used for furt
validation of the model.

Training

The model is trained using a sample of 30 incident and 30 n
incident patterns extracted from the simulated data. This samp
not reused for testing. Two RBF neural networks are trained:
for the upstream detector station and the other for the downstr
detector station. Training is done only once, and no recalibra
or retraining is needed. The RBF classifier can therefore be im
mented on-line on all stations after the training is done off-lin

First Test using Simulated Data: Two-Lane Freeway

The performance of the incident detection model on a two-la
freeway ~in each direction! is shown in Table 1. In the simula
tions, the network entry flow rate per lane is varied from 1,000
2,000 vph. The actual flow rate at detector stations, howe
ranged from 480 to 2,640 vph per lane. The traffic incident c
sists of the blockage of one lane~the blockages are distribute
evenly between the lanes! and a 50% reduction in capacity of th
adjacent lane. In 600 different simulations, the algorithm dete
all incidents both at the downstream and the upstream dete
stations. One false alarm is produced at the downstream sta
when the demand is a low 1,000 vph per lane. The data
caused this false alarm exhibited a pattern similar to that of
incident condition pattern. This situation will occur rarely in pra
tice and only in low flow conditions. A sensor malfunction ma
also cause a false alarm. But this can be handled easily in
preprocessing logic as most sensors report their operation s
regularly. False alarms can be eliminated completely by usin
slightly higher transition threshold from nonincident to incide
condition on the RBF classifier output. In this first test scena
the threshold was kept at zero to validate the pattern recogn
properties of the model.

The average incident detection time for the downstream de
tor station is 46.5 s, with a range varying from 40 to 54 s. This
an acceptable delay for practically all emergency and control p
poses. Also, there is practically no variation of this time with a
change in flow rate and location of the incident. This result
significantly better than that reported by Adeli and Karim~2000!
where the detection time is as large as 5 min. The time to de
tion for the upstream detector station, on the other hand, d
vary significantly with the flow rate and the distance of the in
dent from the detector station. It varies from 70 to 228 s. T
upstream pattern is based on the formation of a queue that tak
rather long time to develop~on the order of 1 to 4 min!.

In subsequent test scenarios, the threshold value was take
0.2 where an output greater or equal to 0.2 was signaled a
incident while a value less than 0.2 was labeled as a nonincid
This was intended to eliminate false alarms but at the expens
slightly more detection times.

Second Test using Simulated Data: Three-Lane
Freeway

Table 2 shows the performance of the model on a three-lane f
way for entry flow rates ranging from 1,250 vph to 2,000 vph p
RNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002 / 239



Table 1. Performance of New Incident Detection Model on Two-Lane Freeway

Flow
rate
~vph
per
lane!

Location
~m!a

Downstream stationb Upstream stationb

Detections
False

Alarms

Detection
Time
~s! Detections

False
Alarms

Detection
Time
~s!

1,000 244 10/10 1/40 50 10/10 0/40 192
1,000 122 10/10 0/40 40 10/10 0/40 142
1,100 244 10/10 0/40 40 10/10 0/40 228
1,100 122 10/10 0/40 40 10/10 0/40 126
1,250 244 10/10 0/40 48 10/10 0/40 172
1,250 122 10/10 0/40 46 10/10 0/40 110
1,500 244 10/10 0/40 48 10/10 0/40 130
1,500 122 10/10 0/40 48 10/10 0/40 82
1,750 244 10/10 0/40 44 10/10 0/40 114
1,750 122 10/10 0/40 48 10/10 0/40 70
2,000 244 10/10 0/40 54 10/10 0/40 88
2,000 122 10/10 0/40 52 10/10 0/40 70
Totals 120/120

~100%!
1/480
~0.2%!

120/120
~100%!

0/480
~0%!

aDistance of the traffic incident from the upstream station. Distance between stations is 460 m.
bNumbers after indicate the total number of simulations.
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lane. Only one lane~either the lane adjacent to the shoulder or t
median! is blocked in this scenario, with no reduction in capac
of the other lanes. This scenario simulates a shoulder or me
obstruction that also requires the closure of the adjacent tra
lane. Under this scenario in 600 different traffic simulations,
downstream detector station produced perfect results while
upstream detector station missed four incidents during low
mand conditions. The missed detections by the upstream d
tion station are understandable because the remaining cap
~about 4,000 vph! is still able to handle the demand~3,750 vph!
without the development of significant congestion on the
stream side. On the other hand, the downstream detector stat
able to detect all incidents within about 1 min of its occurren
This test scenario illustrates the capability of the model under
demand conditions and minor obstructions, situations in wh
many algorithms produce poor detection and numerous f
alarms.

Third Test using Simulated Data: Compression Waves

A compression wave in a traffic stream is characterized b
pattern of increased occupancy and flow rate that moves in
240 / JOURNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002
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direction of flow and lasts for a few minutes at any given locati
~usually less than 5 min!. Compression waves appear as a clu
tering of vehicles within the traffic stream. They are a ma
source of false alarms generated by automated incident dete
algorithms. To test the model’s performance under compres
wave-like conditions, 100 min of data are generated for a tw
lane freeway with a moderate flow rate of 1,500 vph per lane
with several periods of increased flow rate up to 500 vph. T
periods of increased flow rate are limited to 5 min or less ba
on the assumption that compression waves are temporary co
tions. A typical 25-min plot of lane occupancy is shown in Fi
11. The higher flow rate period lasts from 600 to 900 s. In
there are 374 patterns in this 100-min of data. The model c
rectly identified all of them as nonincident conditions.

Fourth Test using Real Data: FSP Project’s I-880
Database

The freeway service patrol project’s database contains traffic
for a 14.8 km~9.2 mile! long segment of the I-880 freeway be
tween Oakland and San Jose, California. This segment has a
ied geometry of 3 to 5 lanes~in each direction!, single and mul-
Table 2. Performance of New Incident Detection Model on Three-Lane Freeway

Flow
rate
~vph
per
lane!

Location
~m!a

Downstream stationb Upstream stationb

Detections
False

Alarms

Detection
Time
~s! Detections

False
Alarms

Detection
Time
~s!

1250 244 10/10 0/140 40 6/10 0/140 435
1500 244 10/10 1/140 42 10/10 0/140 320
1833 244 10/10 0/140 48 10/10 0/140 292
2000 244 10/10 0/140 66 10/10 0/140 248
Totals 40/40

~100%!
1/560

~0.18%!
36/40
~90%!

0/560
~0%!

aDistance of the traffic incident from the upstream station. Distance between stations is 460 m.
bNumbers after / indicate the total number of simulations.



cal
tro

ccu
tics
his
ane
the

o
en
eam
rat

nd
of
d i

oun
ect
res
ion
t be

the
vid
ata

tua-
tatio
-
sta

p-
p in
also
the
ted
zy-

es
ce.

ent
elet

l is
lgo-
gic.
from
age,
eam
de-
fica-
est
de-
e-

neu-
into

sir-
go-

hen
han

m-
a

of
iling

le-

T
ad-

ork

tion
S.
en-

vail-
s-

alse

Ohio
on.

ion

al
tiple lane on- and off-ramps, and mild horizontal and verti
curvatures. Over the duration of the project, observers in pa
vehicles traversed this freeway segment and recorded the o
rence of incidents by noting down key incident characteris
such as location, time, and type of incident. By correlating t
information with data obtained from sensors, samples for 21 l
blocking incidents are extracted from the database. To test
false alarm rate performance, 4 h of incident free data are als
extracted. Table 3 shows the performance of the new incid
detection model using real data. Both downstream and upstr
stations produced a detection rate of 95.2% and a false alarm
of zero. This result is identical to that reported by Adeli a
Karim ~2000!. Accurate information for the time of occurrence
incidents is not available from the database. The times recorde
the database are the times at which a patrol vehicle first enc
tered the incident, and in most cases, this time is after the eff
of the incident became visible in data recorded at the nea
detector station. Thus, the detection times—which by definit
requires the exact time at which an incident occurred—canno
computed for the model.

Result Summary and Comparison

The results of the new incident detection model indicate that
downstream detector station data and logic by themselves pro
satisfactory results. In an ATMS that does not provide speed d
the upstream station logic can be eliminated. However, in si
tions where speed data are available, the upstream detector s
logic provides an additional level of reliability without any sig
nificant increase in computation. In general, the downstream

Fig. 11. Typical lane occupancy time-series plot for compress
wave traffic condition

Table 3. Performance of New Incident Detection Model using Re
Data from Freeway Service Patrol~FSP! Project’s Database

Downstream station Upstream station

Detections
False

Alarms Detections
False

Alarms

20/21 ~95.2%! 0/480 ~0%! 20/21 ~95.2%! 0/480 ~0%!

Note: Numbers after ‘‘/’’ indicate the total number of tests.
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tion logic will signal an incident before it is signaled by the u
stream station logic, thus making the upstream logic a backu
situations where a detector failure has occurred. The results
show the calibration free transferability of the model where
model trained using simulated data performs reliably when tes
using both real and simulated data. As compared to the fuz
wavelet RB-FNN model presented by Adeli and Karim~2000!,
the new model produces significantly shorter detection tim
without any loss in detection and false alarm rate performan
Furthermore, the new model is computationally more effici
because it does not require the computation of the inverse wav
transform and the fuzzyc-mean at each time interval.

Conclusion

A new traffic incident detection logic and computational mode
presented that overcomes several shortcomings of earlier a
rithms. The model uses a two-stage single-station detection lo
In the first stage, a decision is made based on data obtained
the downstream detector station only, while in the second st
the decision is verified based on data obtained from the upstr
detector station only. Wavelet domain processing is used to
noise, compress, and enhance the raw traffic data for classi
tion. It is found that an energy representation of the data b
characterizes incident and nonincident conditions. The model
termines the state of the traffic flow from the shape of the tim
series data rather than the magnitude. A radial basis function
ral network is developed to classify the processed traffic data
incident and nonincident states.

The new model has the following five advantages and de
able characteristics. No other existing incident detection al
rithm can provide all of them simultaneously.
• The new model is capable of detecting incidents even w

the reduced freeway capacity after the incident is greater t
the prevailing flow rate~normally occurring under low flow
rate conditions!;

• The model can reliably identify recurrent congestion and co
pression waves for nonincident conditions without triggering
false alarm;

• The model signals the presence of an incident within 1 min
its occurrence, to a great extent independent of the preva
traffic and roadway conditions;

• The model does not require recalibration for its on-line imp
mentation and thus is readily transferable; and

• The model is computationally highly efficient because DW
operations require a small number of multiplications and
ditions in every sensor reporting interval~say, 20 s! and we
have reduced the dimensionality of the RBF neural netw
through wavelet-based energy representation of input.
These characteristics make this new traffic incident detec

model ideal for widespread practical adoption in urban ATM
The model was tested under several traffic flow scenarios. In g
eral, it produced excellent results across a wide range of pre
ing flow conditions. The model also correctly identified compre
sion wave conditions and none of them were signaled as f
alarms.
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