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Abstract: Automatic freeway incident detection is an important component of advanced transportation management(Ay#i&ns

that provides information for emergency relief and traffic control and management purposes. Earlier algorithms for freeway incident
problems have produced less reliable results, especially in recurrent congestion and compression wave traffic conditions. This articl
presents a new two-stage single-station freeway incident detection model based on advanced wavelet analysis and pattern recogniti
techniques. Wavelet analysis is used to denoise, cluster, and enhance the raw traffic data, which is then classified by a radial basis functi
neural network. An energy representation of the traffic pattern in the wavelet domain is found to best characterize incident and noninciden
traffic conditions. False alarm during recurrent congestion and compression waves is eliminated by normalization of a sufficiently long
time-series pattern. The model is tested under several traffic flow scenarios including compression wave conditions. It produced exceller
detection and false alarms characteristics. The model is computationally efficient and can readily be implemented online in any ATMS
without any need for recalibration.
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Introduction terns may also be produced by nonincident conditions such as
recurrent congestion during rush hours and banding of vehicles or
An important component of any advanced transportation manage-compression waves. Traffic incident detection algorithms also
ment system(ATMS) is the reliable and efficient detection of have to be able to deal effectively with erroneous data from mal-
traffic incidents. Traffic incidents on heavy demand freeways can functioning traffic sensors.
seriously disrupt the performance of the entire highway network.  Over the years, researchers have developed numerous algo-
From an engineering point of view, the challenge is to localize the rithms for the traffic incident detectiofiD) problem(Cook and
disruptive effects of an incident. The key to this problem is the Cleveland 1974; Payne and Tignor 1978; Ahmed and Cook 1982;
development of an automatic algorithm that immediately recog- Persaud and Hall 1989; Chassiakos and Stephanedes 1993; Hsiao
nizes the presence of a congestion-inducing incident so that ef-et al. 1994; Cheu and Ritchie 1995; Dia and Rose 1997; Lin and
fective control measures can be taken to prevent the spread of thddaganzo 1997; Ishak and Al-Deek 1998; Lin and Chang 1998;
congestion. A typical urban highway network often has excess Xu et al. 1998. These algorithms range from earlier simple com-
capacity at any given time. The goal is to effectively utilize this parative approaches to more recent pattern recognition and
extra capacity when a bottleneck occurs. decision-making techniques. The results, in general, have not
Traffic incident detection algorithms must rely on data ob- been very satisfactory, and few freeway management systems
tained at periodic time intervals from traffic sensors or detectors. today employ an automatic ID algorithm. The complexity arises
The common traffic data available for use in incident detection from both the dynamic and unpredictable nature of traffic flow
algorithms are the lane occupancy, speed, and flow rate obtainedand the unreliability of the installed traffic sensors, which in turn
from road sensors located every 500 m to 2 km at usually 20- or make simple approaches unreliable.
30-s time intervals. Incident detection algorithms must be able to  When a traffic incident reduces the capacity below the prevail-
process this information to determine changes in patterns thating flow rate a queue will form on the upstream direction produc-
may indicate an incident condition. However, incident-like pat- ing a significant reduction in lane speed and a significant increase
in lane occupancy. This change in pattern is well pronounced. The
!Graduate Research Associate, Dept. of Civil and Environmental queue, however, may develop slowly, depending on the prevailing
Engineering and Geodetic Science, Ohio State Univ., 2070 Neil Ave., flow conditions and the number of lanes closed. Hence the detec-
Columbus, OH 43210. tion time can be large. On the other hand, the change in the flow
“Professor, Dept. of Civil and Environmental Engineering and Geo- pattern downstream of a capacity-reducing incident can take place
detic Science, Ohio State Univ., 470 Hitchcock Hall, 2070 Neil Ave., wjithin seconds, independent of the prevailing flow rate before the
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Note. Discussion open until October 1, 2002. Separate diSCUSSIONS,n g occupangy however, is not as significant compared with that
must be submitted for individual papers. To extend the closing date by occurring on the upstream direction of the incident. It has been

one month, a written request must be filed with the ASCE Managing d that lqorithm that v the d t di
Editor. The manuscript for this paper was submitted for review and pos- argue at an aigorithm that uses only the downstream readings

sible publication on August 22, 2000; approved on September 18, 2001.Produces a high false alarm rate and has difficulty in distinguish-

This paper is part of thdournal of Transportation Engineering Vol. ing compression waves from incident producing pattegil,
128, No. 3, May 1, 2002. ©ASCE, ISSN 0733-947X/2002/3- etal. 1998. This argument, however, is often based on using
232-242/$8.08$.50 per page. algorithms incapable of reliably distinguishing the patterns.

232 / JOURNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002



Recently, Adeli and Karin{2000 presented a computational upstream and downstream of the incident. In general, these
model for automatic traffic incident detection using discrete changes consist of an increase in traffic congestion upstream and
wavelet transform, fuzzy logic, and neural networks. In their a decrease in traffic congestion downstream of the incident. Based
model, upstream lane occupancy and speed time series data aren these observations, two different approaches—called two-
adopted as the characterizing pattern for traffic state classification.station comparative and single-station approaches—have been
The raw data is first denoised by soft thresholding in the wavelet used to develop traffic incident detection algorithms. The single-
domain. Subsequently, the denoised data is clustered by the fuzzystation approach relies on data obtained from only one station;
c-means technique to reduce data dimensionality and enhancavhereas, the two-station approach makes use of data from two
feature separation. Finally, a radial basis function neural network adjacent stations.
is developed to reliably classify the denoised and clustered pat- The two-station comparative approach, exemplified by the
tern. The model is tested with both simulated and real traffic data, California algorithm(Payne and Tignor 1978employs both spa-
producing excellent incident detection and false alarm character-tial and temporal data in its algorithm logic. The premise is that
istics. However, the time to detection for the model is long, and using spatial data will reduce false alarms that are produced as a
depending on traffic and incident characteristics, can be as largeresult of changing roadway and traffic conditions because of the
as 5 min. natural canceling effect of comparative analy$ieil et al. 1998;

In this work, a new traffic incident detection algorithm is pre- Persaud and Hall 1989; Payne and Tignor 197®e California
sented that distinguishes effectively patterns produced by capacityalgorithm is a simple threshold-based algorithm that uses only
reducing incidents from those produced by compression wavesone flow parameteoccupancy. Also, because of its comparative
and recurrent Congestion. Furthermore, in most traffic and inci- approach it has to be calibrated at each station to Optimize it for
dent conditions, it signals the presence of an incident within a the particular roadway geometry.
minute of its occurrence. Only data available locally at each de-  The two-station comparative approach, in general, has several
tector station are used for processing. Computationally, the algo-disadvantages even when advanced pattern recognition tech-
rithm is based on an advanced energy representation of the timenjques are employed. Traffic incidents are temporal events whose
series pattern developed using wavelet theory. This approacheffects develop over time both in the upstream and downstream
effectively enhances the desirable features and denoises the traffigjirections. However, the characteristics of the traffic patterns de-
patterns, which are then classified using a radial basis functionyeloped in the upstream and downstream directions are different.
(RBF) neural network. The new algorithm is developed, de- Therefore, combining data from both stations is likely to produce
scribed, and evaluated in subsequent sections. less reliable detection of incidents because of the mixing of two
different temporal patterns. Two-station comparative algorithms
are also more difficult to calibrate because they are affected by
the geometry of the roadway, the distance between the stations,
the presence of on-ramps and off-ramps, and the prevailing flow
A freeway incident detection algorithm determines the presence conditions.
or absence of an incident condition based on patterns in traffic ~ Figs. 1 and 2 show typical time-series plots of lane occupancy,
flow. Therefore, the selection of the number, type, and format of lane speed, and lane flow rate at a station upstream and down-
the traffic data to be used is essential to the reliability of the stream, respectively, of a lane-blocking incident on a two-lane
algorithm. Currently, most advanced transportation managementfreeway. Three time-series plots are displayed for three different
systems can provide lane occupancy, speed, and flow rate datdraffic flow rates of 1,000, 1,250, and 1,500 vehicles per hour
from irregularly spaced sensors at regular time intervals. Hence, a(vph) per lane. The incident occurs at time 400 s. Note that the
reliable incident detection algorithm must be based on the use oftime at which the upstream traffic occupancy and speed change
such data only. When selecting appropriate patterns for an effec-{Figs. 1a and B] depends on the preincident flow rate. The for-
tive incident detection algorithm three goals were set. mation of a queue, which produces significant changes in traffic
 First, the selected patterns must consistently characterize traf-occupancy and speed patterns, also depends on the reduction in

fic incident conditions and, at the same time, be distinguish- the capacity and roadway conditioiisot presented in the fig-

able from other flow conditions such as compression waves; ures. Fig. 1(c) indicates that there is no significant change in the
» Second, the selected patterns by and large should be indepentraffic flow on the upstream side. On the other hand, on the down-
dent of prevailing roadway and traffic conditions to avoid cali- stream side, there are significant changes in traffic occupancy and

Freeway Incident Detection and Patterns in Traffic
Flow

bration problems; and flow rate [Figs. 2a and ¢] but no significant change in traffic
 Third, the patterns should indicate an incident condition in less speed[Fig. 2(b)]. As a result, the two-station comparative algo-
than 1 min after the occurrence of incidence. rithms that employ upstream and downstream data together are

In this section, patterns in traffic data before, during, and after difficult to calibrate and are likely to produce unreliable detection.
an incident are investigated to determine the most appropriate  Single-station approachéSook and Cleveland 1974; Persaud
input for the incident detection algorithm. Note that raw traffic and Hall 1989 do not require data from more than one station to
data are analyzed. The pattern identified from this analysis will be make a decision on the presence or absence of an incident condi-
processed further to enhance desirable features. The data pretion. As such, their on-line implementation does not require ex-
sented in this section are obtained from T$&p://www.fhwa- pensive continuous communication between different detector
tsis.com, a traffic simulation software. stations. Furthermore, single-station patterns are not affected by
the freeway layout and geometry. Recurring changes in traffic
flow such as those produced by daily rush time traffic and bad
weather can be handled effectively by using a normalization tech-
nique, as explained later.

A capacity-reducing traffic incident will produce observable In this research, the computational model relies on single-
changes in flow conditions at the detector stations immediately station patterns. This model can handle patterns from both up-

Single-Station versus Two-Station Incident Detection
Approaches

JOURNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002 / 233



60 T T T T T T T 12 y T T T T T T
—— 1000 vph A —— 1000 vph
— -~ 1250 vph R - —- 1250 vph
50F 1500 vph ~ 10 ) 1500 vph |1
40r 8
F) )
2 Z
g 301 86
= Time of incident g'
3 o4
[} =}
201 b 4
10 .. 1 2
0 1 L L 1 L L L - 0 1 1 1 1 1 1 1 d
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
(a) Time (x20 seconds) (a) Time (x20 seconds)
80 T T T T T T T 80 . . . . . . .
—— 1000 vph
01 1 70 - - - 1250 vph |
. 1500 vph
60 a 7 60
| _ - NG,
£ 50 <50 \ ]
=2 fiv]
Ayl
= 40F 1 g
¢ 24 -
= R
3 ]
> | ] Q
un). 30 ‘. [% 30 i
Time of incident - Time of incident
20t g 1 .
v N . 20
—— 1000 vph Loy, S
107| - ~ - 1250 vph V- A 10 1
...... 1500 Vph ‘Il' . B \ N
% s 10 15 20 TR 35 40 0 : ' ' ' . ‘
? 0 5 10 15 20 25 30 35 40
(b) Time (x20 seconds) (b) Time (x20 seconds)
2000 T i T ! j ! 2000 - ! T T T T T
1800 » 1 - —— 1000 vph |
1800 . - —- 1250 vph
1600 At A IR 1500 vph
1600 D
(AN [
1400 1400 I L S R

1200

Flow rate (vph)
© o
S 3
S 3

1200

Flow rate (vph)
g 3
SRS

600
600
00k Time of incident ‘* . f incid
——— 1000 vph 400+ Time of incident

| ——- 1250 vph i

200 e 1500 Vph 200F
0 ; : \ A . .
0 5 10 15 20 25 30 35 40 0 . L L L 1 .
©) Time (x20 seconds) 0 5 10 15 20 25 30 35 40
(c) Time (x20 seconds)

Fig. 1. Time-series plots of upstream traffic data on two-lane free- Fig. 2. Time-series plots of downstream traffic data on two-lane
way with three prevailing flow rates of 1,000, 1,250, and 1,500 vph freeway with three prevailing flow rates of 1,000, 1,250, and 1,500
per lane before and after incide®) lane occupancy plot,b) lane vph per lane before and after incidef@ lane occupancy plotib)
speed plotjc) lane flow rate plot lane speed plotc) lane flow rate plot
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Fig. 3. Scatter plot of upstream lane occupancy and speed before and '9- 4. Scatter plot of upstream lane occupancy and flow rate before
after incidents and after incidents

stream and downstream stations, but there is no comparison ofyancy and flow ratéFig. 6) for data from a location downstream
patterns from the upstream and downstream stations. Rather, eacgf an incident show that there are no discernable and separable

set of patterns are processed independently. regions for before and after incident flow conditions. Because of
this, the development of a reliable algorithm for incident detec-
Upstream and Downstream Flow Patterns tion based on data from the downstream side has proven to be

. more difficult. Using the downstream data poses two additional
From Figs. 1 and 2, the pattern formed on the upstream or thechajlenges. First, there is the risk of false alarms as a result of
downstream side of a capacity-reducing incident each can be Use%ompression waves because a compression wave’s occupancy and
as the basis for an incident detection algorithm. On the upstreamy o, rate downstream patterns resemble those of an incident. Sec-
side, the domi_nant flow pattern is the increase in occupancy a”dond, the magnitudes of the flow rate on the downstream side may
the decrease in speed. The flow rate, however, does not show g4y hecause of weather conditions, the severity of the capacity

consistent and significant change as compared to occupancy andaqyction as a result of the incident, and other daily changes in the
the speed. A pattern based on the upstream time histories of lang|q\y rate. On the other hand the major advantage of using the

occupancy and speed is therefore most appropriate for reliablegownstream data is that the change in pattern after an incident is

incident detection purposes. This conclusion is confirmed by Fig. 3imost immediate and independent of the prevailing flow rate.
3, which shows a scatter plot of occupancies and speeds before

and after an incident. In this figure, regions of congested and
normal flow are generally distinguishabl@hey can be clearly
separated after data denoising and feature enhancer@anthe 140 : ' : '
other hand, the scatter plot of occupancy and flow (&ig. 4)
does not indicate a clear demarcation between normal and con- gl
gested flow conditions. One limitation of using only the upstream x
data for an incident detection algorithm is that the detection time
may be unacceptably large under low flow rate conditions. The
detection time is also dependent on other factors such as distance
between detector stations and weather conditions.

Three observations can be made from the time series plots of
traffic data on the downstream side of an incidgfigs. Za—9].
First, the occupancy and the flow rate decrease rapidly after the
occurrence of the inciderfin about 20 s or one time interval
reported by sensors in the examples of Figa and ¢]. This 401 ]
change, however, is less marked as compared to the increase in
lane occupancy and decrease in lane speed seen on the upstrean 541
side. Second, the speed downstream of an incident is not a good o Before inci
. L L . . ore incident
indicator of an incident condition, as observed in Figh)2After . . ‘ .
passing through an incident region, vehicles will accelerate and 00 2 4 6 8 10
reach free flow speeds rather quickly. Third, the times at which Occupancy (%)
the occupancy and the flow rate decrease appreciably are about.
the same and relatively independent of the flow rate. Fig. 5. Scatter plot of downstream lane occupancy and speed before

The scatter plots of occupancy and spéEi). 5 and occu- and after incidents
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1800F ‘ ‘ ‘ ' o sents the lowest resolution that is decomposed by the DWT. The
functionse; \(t) (j,ke Z) andys; (t) (j,ke Z) (Zis the space of
1600} X0 OOED T integers, each forming a basis df?(R), are defined by the fol-
lowing equations:
1400 _ _
¢j (1) =21"2¢(2it—k) 2)
- 12008 1
2 owol o Comm—00 © | ¢(1)=2% ho[k]v2e(2t—k) keZ 3)
£ 800f 1
2 SNp— $()= > hy[k]V2e(2t—k) keZ (4)
600} N ] K
whereh, andh, =filter coefficients and the constavfz maintains
400r HoROK | the unity norm of the functions. In this work, the Daubechies
2000 e x  Afterincident || wavelet system of order eighDaubechies 1992 defined by
©  Before incident eighth; andh, coefficients, is used. This wavelet basis system is
0 s , . . selected because of its orthonormality property and compact sup-
0 2 (‘)‘ccupamy (%?) 8 10 port, providing a DWT with a finite length and a finite number of

wavelet coefficients.

Fig. 6. Scatter plot of downstream lane occupancy and flow rate ~ When an orthonormal basis is used, the coefficienisand
before and after incidents d; « are given by the inner product of the signal with the appro-
priate function

On the basis of these observations, a new incident detection Cj,k:Cj[k]:f f(De;k(t)dt  Vjk (5)
logic and computational model is developed that utilizes both
upstream and downstream traffic patterns independently. A two-
stage logic is employed. In the first stage, the presence or absence dj,k=dj[k]:f f(OY; k(tdt  Vjk (6)
of an incident condition is determined from the downstream oc-
cupancy and flow rate time-series data. The second stage confirmgvhich can be reduced to the following recursive equati@s-
the presence or the absence of an incident condition by using the'us et al. 1998
upstream occupancy and speed time-series data. To minimize the
possibility of a missed detection and eliminate false alarms, an cj[k]zE holm—2K]c;; 1[m] (7)
advanced wavelet-based feature enhancement and denoising ap- m
proach is adopted to process the data. False alarms from compres-
sion waves are avoided by using a sufficiently long time series dj[k]:E hy[m—2kK]c;, 1[m] (8)
(>5 min) as input. Recurrent congestion is handled by a normal- m
ization technique. These models are developed in detail in subseqn these equations, it is assumed that the scaling coefficients of
guent sections. the signal at the highest resolution are known.

Traffic data are available as a discrete sequdiké of finite

lengthL =27 whereJ is an integer. The highest resolution part of
Discrete Wavelet Transform and Signal Energy the scaling functionp; (), ¢,(t) will approach a Dirac delta
function and Eq(5) will represent a sampling df k]. Therefore,

The discrete wavelet transfor®WT) provides a powerful and ¢,[K] can be approximated bifk]. The use of recursive EqE7)
efficient technique for analyzing, decomposing, denoising, and and (8) for calculating the DWT coefficients requires ttiak] be

compressing signals. In particular, the DWT of a signal breaks it extended periodically. In other words, the following equation
down into several time-frequency components that enables theghgouid hold

extraction of features desirable for signal identification and rec-
ognition. The DWT and wavelet theory in general have been de- flk]=f[k+Ln] n=1.23,.. 9)
veloped rapidly in the past 10 yeaf®aubechies 1992, Burrus o wever, traffic time-series data, such as those shown in Fig. 1
etal. 1998. In this section, the basic concepts of DWT and its anq 2 are not periodic. In other words, generally, the end values
energy representation employed in this research are presenteql[l] andf[L] are not equal. As a result of the incompatibility of
briefly. Additional details of DWT and its application in ITS prob-  {he traffic data with the periodic boundary condition, the wavelet
lems can be found in ZSamant and Ad@D00. _ representation can distort the shape of the original traffic pattern.
A 1D signal f(t) e L°(R) can be decomposed into multireso- 14 gyercome this problem, the traffic pattern is extended on either
lution components that are indexed by the sgalédicator of ends before its DWT is found. This procedure is explained in
frequency and the translatiok (indicator of time detail in the next section.
An advantage of using an orthonormal basis to find the DWT
(=2, Cjo,k‘PjO,k(t)+z E dj kb k() (1) of a signal is that the energy of the signal can be partitioned into
. K 1=lo its various time-frequency components. The energy contribution
whereL?(R) is the space of all square integrable functions de- from each component is expressed as a function of the wavelet
fined in the 1D real spac®; c;  is the scaling coefficient corre-  and scaling coefficients. This is known as Parseval's theorem and
sponding to the scaling functiog; ((t); andd; y is the wavelet is expressed mathematically in the form of the following energy
coefficient corresponding to wavelt ((t). The indexj, repre- functional (Burrus et al. 1998
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f |f(t)|2dt=2k |Cjo,k|2+2k ij |dj,k|2 (10) ———  Original signal
=lo

— — - Signal after DWT

We use this functional to enhance the traffic data streams for the 12

purpose of pronouncing the traffic incident patterns, as explained

in the next section. . ir
g
Zost

Traffic Pattern Feature Enhancement and Denoising §

In this traffic incident detection model, we process the time-series % 06

traffic data(lane occupancy, speed, and flow jatbtained at z

each detector station, with the objectives of reducing noise and 041
enhancing the desirable features. This processing is essential to
ensure that no incidents go undetected and no false alarms are  ¢,|
triggered. Upstream lane occupancy[(i]) and speed f({i])
form one pattern for identifying incident conditions. Downstream . . . . .
lane occupancyf[i]) and flow rate {[i]) form another pat- 00 2 4 6 3 10 12 14 16
tern for identifying incident conditions. (a) Time (x20 seconds)
Sixteen data points are selected for each one of the three traffic
parameters. That is, the sequentgls |, f[i], andfdi] consist ' ' ' ' i T
of 16 values indexed from 1 to 16. There are two reasons for ——  Original signal
selecting this length for each time series. The DWT used in this || -~ Signalafler DWT ||
work (and in fact in most casgsequires that the number of data
points to be equal to some power of(2 8, 16, etg. For algo-
rithmic efficiency, the smallest number is preferred. We found 16
to be the minimum number needed to avoid false alarms that may
be caused by compression waves. We found this necessary for the
downstream patter(f[i] andfg[i]), which may exhibit similar
patterns for both compression waves and incident conditions.
When the time interval between successive readings is 20 s
(which is the minimum available from current detector statipns
16 data points constitute 5 min and 20 s of data. Compression 04}
waves are usually temporary conditions and not very likely to
exist for as long as 5 min. In other words, it is unlikely that a 02t
pattern in which the values dfg[i] and f¢[i] (i=15,16) are
much smaller than the values ©f[i] andfg[i] (i=1,2,...,14) is
caused by a compression wave. This data sampling strategy pre- 00 5 10 15 20 25 30
vents the downstream pattern from signaling an incident condi- (b) Time (x20 seconds)
tion erroneously whenever a compression wave passes by.
Traffic time-series data are normalized by dividing them by the
average of the highest two values in each series. Normalization
reduces the significance of magnitude in the pattern recognition
process and the undesirable domination of a single large value.
Patterns are distinguished primarily on the basis of their shape
and form and not on the basis of magnitude. As a result, the The lengthL of each data series now becomes(B&,L=2° and
normalization technique also eliminates the need for recalibration J=5). The need for extending the data series is shown in Fig. 7.
whenever the flow condition changes. Flow variations caused by Fig. 7(a) shows a typical flow rate data serigi] (solid line) on
daily rush time traffic, weather conditions, geometry, and other the downstream side of an incident and its scalé.&, j=3)
situations can therefore be handled automatically and transparwavelet approximatiofdashed ling Notice how the shape of the
ently. The normalized occupancy, speed, and flow rate sequencesvavelet approximation is distorted at the left edge because of the
are represented dg[i], fdi], andfg[i], respectively. periodic boundary condition assumption. Figb)7 shows the
The normalized data series are extended by eight points atsame data series extended using @d) (solid line) and its scale
each end before their DWT’s are calculated. All eight data points 3 wavelet approximatiofdashed ling In this figure, the wavelet
in the extension have a magnitude equal to the average of thedistortion has been pushed aside to the outer edges, outside the
previous two(first two for the extension on one end and last two usable region of data, the segment from data points 9 to 24. In this
for the extension on the other endalues in the series. The ex- segment, the basic shape of the original data series is preserved

@
o —
T T

Normalized flow rate
g
o

Fig. 7. (a) Discrete wavelet transforfDWT) of 16-point flow rate
traffic pattern;(b) DWT of an extended 32-point flow rate traffic
pattern[based on the data if@)]

tended normalized data series are given by without distortions.
. . In the new traffic incident detection model, the DWT is em-
0.5f[1]+f[2]) 1=i<8 ployed to reduce the dimensionality of input data for the neural
f[i]= f_[i 8] 9<i<24 (11) network pattern classifier, eliminate the traffic noise, and enhance
. - the desirable features in each data series. The extended data series
0.5(f[15]+f[16]) 25<i=<32 has a length of 2and is represented by scale5 in Eq.(5). Eq.

JOURNAL OF TRANSPORTATION ENGINEERING / MAY/JUNE 2002 / 237



5 T T T T T T T 4 T T T T T
o
x  After incident | o
O Before incident 3.5k %5 1
] %00
e} (9 8 X
o o 3 o i $ o] E
x 1 © O X
50y x O
§ L 257 < X |
ép % ° 4
* o0& § o
R 5L - % E
2 e
X x ] %
) * L5t x Ox ]
X -
X X 1k (5(XX x X ]
X i X x X
X % X X %;%x )
’ X O><OXO 3 XX x 1 0.51 g%ﬁ % Afterincident |
X Xy ox x o
x X x % O  Before incident
of RO o B L
0 05 1 1.5 > 25 3 35 4 0 0.5 1 1.5 . 2 2.5 3 3.5
¢y o

Fig. 8. Scatter plot of upstream lane occupancy and speed waveletFig- 9. Scatter plot of downstream lane occupancy and flow rate
energy coefficients before and after incidents wavelet energy coefficients before and after incidents

(7) is applied two times recursively to calculate the scaling coef- pattern on the downstream sidey[i], is formed by concatenat-
ficients at scalg =3. This operation corresponds to a two-stage ing the occupancy and flow rate data series coefficients. Math-
low-pass filtering ofc;[k] with hy (Samant and Adeli 2000At ematically, the patterns are given by

this reducec! r_esolution, the higher frequency_noise-like compo- xo=1{eo[il,edil} 1=1,2,34 (13)
nents are eliminated leaving a smoother denoised shape or form.
Also, through the two-stage low-pass filtering the 32-point time xp={Coli],Celi]}, i=1,2,3,4 (14)

series is now reduced to an eight-coefficient representation. How-
ever, this DWT is for the extended 32-point data series. The DWT
of the original 16-point data series is given by the middle four Pattern Classification using Radial-Basis Function
values of the eight coefficientg;[ k], k=3,4,5,6. Let these re- Neural Network
duced sets of coefficients be definedcagi], cqi], andcg[i]
for occupancy, speed, and flow rate, respectively, whiere Neural networks are powerful model-free pattern classifiers
=1,2,3,4. (Adeli and Hung 1995 However, they can be computationally
Notice from Figs. 1 and 2 that an incident condition pattern very expensive when the size or dimensionality of the input data
exhibits either a sudden decrease or a sudden increase in magnis large, requiring a very large number of training instances.
tude of data values that occur in the last few data points. This Training instances of the traffic patterns defined by E#3) and
feature, which distinguishes an incident condition from a nonin- (14) are used to develop a mapping from an 8D space to a 1D
cident condition, can be enhanced by using the energy represenspace. For this purpose, the radial basis function neural network is
tation capability of wavelet transform&g. 10. The squares of  adopted. The RBF neural network is an efficient universal classi-
the absolute values of the coefficienfs] represent the energy of  fier (Moody and Darken 1989that has a simple topology con-
the denoised time-series data at each time location defined bysisting of a hidden layer of nodes with nonlinear transfer func-
indexi. The energyor the area under a squared time-series)plot tions and an output layer of nodes with linear transfer functions.
enhances incident condition patterns and distinguishes them from The topology of the RBF neural network developed for the
nonincident condition patterns. Thus, the scaling coefficients aretraffic pattern classification is shown in Fig. 10. The input layer
modified as follows: has eight nodes corresponding to the eight data points in each
&i1=|c[i]|? Vi (12) pattern(xy[i] or xp[i], henceforth called vectos). The number
of nodes in the hidden layét,, is equal to the number of cluster
The benefit of DWT-based denoising and feature enhancementcenters used to characterize the input training space. The output
is demonstrated in Figs. 8 and 9. Fig. 8 is a scatter pl@pf] layer has one nodgy). The number of nodes in the hidden layer
andtdi] based on the same data used in Fig. 3. Fig. 9 is a scatteris chosen as a fraction of the total number of training instances.
plot of €o[i] andCg[i] based on the same data used in Fig. 6. This choice is based on numerical experimentation to determine
Comparisons of Fig. 3 with Fig. 8 and Fig. 6 with Fig. 9 indicate which number adequately covers the input space and produces the
the improvement in pattern separation achieved by wavelet-basedest mapping. We found a number within the range of 10 to 30%
denoising and feature enhancement. The points between clusteof the number of training instances to provide satisfactory results.
regions seen in these figures are intermediate conditions that willThe cluster centerg; (1<i<N,) is obtained using the fuzzy
move to one of the clusters as the time-series pattern becomes-means algorithniBezdek 1981; Cannon et al. 1986
more defined with time. The connection from the input noddo the hidden nodg is
The enhanced traffic pattern at the upstream sigéi], is assigned the weight;; corresponding to theth component of the
then formed by concatenating the four coefficients from the oc- vectorp;. The output of a hidden nodeis given by the follow-
cupancy and the speed data series. Similarly, the enhanced traffitng Gaussian transfer function:
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like conditions on two- and three-lane freeways. This is an advan-
tage of employing a simulation software for testing purposes, as
sufficient quantities of reliable real data with traffic incidents are

not readily available. Furthermore, with a data generating soft-
ware it is possible to study the performance of the model under
various traffic flow scenarios. The real data is used for further
validation of the model.

1]
x[2]
x[3]

x[8] Training

The model is trained using a sample of 30 incident and 30 non-
incident patterns extracted from the simulated data. This sample is
not reused for testing. Two RBF neural networks are trained: one
Ow, for the upstream detector station and the other for the downstream
detector station. Training is done only once, and no recalibration
or retraining is needed. The RBF classifier can therefore be imple-
mented on-line on all stations after the training is done off-line.

Fig. 10. Topology of radial basis function neural network for traffic
pattern classification

First Test using Simulated Data: Two-Lane Freeway

X— il
¢j=ex;{ - ”T:ZL) (15) The performance of the incident detection model on a two-lane
j freeway (in each directiopis shown in Table 1. In the simula-

where]-|| represents the Euclidean norm of a vector. The fagfor  tions, the network entry flow rate per lane is varied from 1,000 to
controls the spread or range of influence of the Gaussian function2,000 vph. The actual flow rate at detector stations, however,
centered aj; . In this worko; is calculated as ranged from 480 to 2,640 vph per lane. The traffic incident con-
sists of the blockage of one larfthe blockages are distributed

N
_* _ . evenly between the laneand a 50% reduction in capacity of the
01_4821 Imj=wall - 1=<j<Np (16) adjacent lane. In 600 different simulations, the algorithm detects
. . all incidents both at the downstream and the upstream detector
whereN is the total number of training instances. EG6) ap- stations. One false alarm is produced at the downstream station

proximates the spread parametey as one third of the mean \\hen the demand is a low 1,000 vph per lane. The data that
distance between cluster centers. The connection from the hidden., ,sed this false alarm exhibited a pattern similar to that of an

nodej to the output node is assigned the weigt The outputy incident condition pattern. This situation will occur rarely in prac-
of the network is then given by tice and only in low flow conditions. A sensor malfunction may
Np also cause a false alarm. But this can be handled easily in the
y= 21 bjN; @an preprocessing logic as most sensors report their operation status
i=

regularly. False alarms can be eliminated completely by using a

Theoretically an output value of 1 corresponds to an incident slightly higher transition threshold from nonincident to incident
classification while an output value of1 corresponds to a no condition on the RBF classifier output. In this first test scenario,
incident classification. Practically, however, one has to choose athe threshold was kept at zero to validate the pattern recognition
threshold value for distinguishing between the two classes, as theProperties of the model.
output from Eq.(17) can take any value in the rangel and 1. The average incident detection time for the downstream detec-
The weights\; are calculated by minimizing the error between tOr station is 46.5 s, with a range varying from 40 to 54 s. This is
the network computed outpytand the desired outpyt; based on ~ an acceptable delay for practically all emergency and control pur-
training examples. In other words, to train the network for values Poses. Also, there is practically no variation of this time with any

of \; we solve the following unconstrained optimization problem: change in flow rate and location of the incident. This result is
N significantly better than that reported by Adeli and Ka@000
. _ P where the detection time is as large as 5 min. The time to detec-
Minimize E(}‘)_zl V' =y (18) tion for the upstream detector station, on the other hand, does
) o ] ) ~ vary significantly with the flow rate and the distance of the inci-
The gradient descent optimization algorithm is used to solve this gent from the detector station. It varies from 70 to 228 s. The
optimization problem. upstream pattern is based on the formation of a queue that takes a
rather long time to develofon the order of 1 to 4 min

In subsequent test scenarios, the threshold value was taken as

Model Testing 0.2 where an output greater or equal to 0.2 was signaled as an
incident while a value less than 0.2 was labeled as a nonincident.
Introduction This was intended to eliminate false alarms but at the expense of

] o ~_ slightly more detection times.
The new computational model for freeway incident detection is

tested using both real and simulated traffic data. More than 40 h
of simulated traffic data is generated from the traffic simulation
software TSIS/CORSIM, while real traffic data is obtained from
the freeway service patr¢FSP project’s 1-880 database. Alarge  Table 2 shows the performance of the model on a three-lane free-
portion of the simulated data is made up of incident or incident- way for entry flow rates ranging from 1,250 vph to 2,000 vph per

Second Test using Simulated Data: Three-Lane
Freeway
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Table 1. Performance of New Incident Detection Model on Two-Lane Freeway

'r:al?(\aN Downstream statidh Upstream statidh
(vph Detection Detection
per Location False Time False Time
lane (m)@ Detections Alarms (9 Detections Alarms (s)
1,000 244 10/10 1/40 50 10/10 0/40 192
1,000 122 10/10 0/40 40 10/10 0/40 142
1,100 244 10/10 0/40 40 10/10 0/40 228
1,100 122 10/10 0/40 40 10/10 0/40 126
1,250 244 10/10 0/40 48 10/10 0/40 172
1,250 122 10/10 0/40 46 10/10 0/40 110
1,500 244 10/10 0/40 48 10/10 0/40 130
1,500 122 10/10 0/40 48 10/10 0/40 82
1,750 244 10/10 0/40 44 10/10 0/40 114
1,750 122 10/10 0/40 48 10/10 0/40 70
2,000 244 10/10 0/40 54 10/10 0/40 88
2,000 122 10/10 0/40 52 10/10 0/40 70
Totals 120/120 1/480 120/120 0/480

(100% (0.2% (100% (0%)

@Distance of the traffic incident from the upstream station. Distance between stations is 460 m.
PNumbers after indicate the total number of simulations.

lane. Only one lanéeither the lane adjacent to the shoulder or the direction of flow and lasts for a few minutes at any given location
median is blocked in this scenario, with no reduction in capacity (usually less than 5 mjn Compression waves appear as a clus-
of the other lanes. This scenario simulates a shoulder or mediarntering of vehicles within the traffic stream. They are a major
obstruction that also requires the closure of the adjacent traffic source of false alarms generated by automated incident detection
lane. Under this scenario in 600 different traffic simulations, the algorithms. To test the model's performance under compression
downstream detector station produced perfect results while thewave-like conditions, 100 min of data are generated for a two-
upstream detector station missed four incidents during low de- lane freeway with a moderate flow rate of 1,500 vph per lane and
mand conditions. The missed detections by the upstream detecwith several periods of increased flow rate up to 500 vph. The
tion station are understandable because the remaining capacityperiods of increased flow rate are limited to 5 min or less based
(about 4,000 vphis still able to handle the demarid,750 vph on the assumption that compression waves are temporary condi-
without the development of significant congestion on the up- tions. A typical 25-min plot of lane occupancy is shown in Fig.
stream side. On the other hand, the downstream detector station id1. The higher flow rate period lasts from 600 to 900 s. In all,
able to detect all incidents within about 1 min of its occurrence. there are 374 patterns in this 100-min of data. The model cor-
This test scenario illustrates the capability of the model under low rectly identified all of them as nonincident conditions.

demand conditions and minor obstructions, situations in which
many algorithms produce poor detection and numerous false

Fourth Test using Real Data: FSP Project’s I-880
alarms.

Database

The freeway service patrol project’'s database contains traffic data
for a 14.8 km(9.2 mile) long segment of the 1-880 freeway be-

A compression wave in a traffic stream is characterized by a tween Oakland and San Jose, California. This segment has a var-
pattern of increased occupancy and flow rate that moves in theied geometry of 3 to 5 lane@n each directiojy single and mul-

Third Test using Simulated Data: Compression Waves

Table 2. Performance of New Incident Detection Model on Three-Lane Freeway

'r:al(t)gv Downstream statidh Upstream statich
(vph Detection Detection
per Location False Time False Time
lang (m)2 Detections Alarms () Detections Alarms (s
1250 244 10/10 0/140 40 6/10 0/140 435
1500 244 10/10 1/140 42 10/10 0/140 320
1833 244 10/10 0/140 48 10/10 0/140 292
2000 244 10/10 0/140 66 10/10 0/140 248
Totals 40/40 1/560 36/40 0/560

(10099 (0.18% (90%) (0%)

@Distance of the traffic incident from the upstream station. Distance between stations is 460 m.
PNumbers after / indicate the total number of simulations.
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Fig. 11. Typical lane occupancy time-series plot for compression
wave traffic condition

tion logic will signal an incident before it is signaled by the up-
stream station logic, thus making the upstream logic a backup in
situations where a detector failure has occurred. The results also
show the calibration free transferability of the model where the
model trained using simulated data performs reliably when tested
using both real and simulated data. As compared to the fuzzy-
wavelet RB-FNN model presented by Adeli and Kar{g000,

the new model produces significantly shorter detection times
without any loss in detection and false alarm rate performance.
Furthermore, the new model is computationally more efficient
because it does not require the computation of the inverse wavelet
transform and the fuzzg-mean at each time interval.

Conclusion

A new traffic incident detection logic and computational model is

presented that overcomes several shortcomings of earlier algo-
rithms. The model uses a two-stage single-station detection logic.
In the first stage, a decision is made based on data obtained from
the downstream detector station only, while in the second stage,
the decision is verified based on data obtained from the upstream
detector station only. Wavelet domain processing is used to de-

tiple lane on- and off-ramps, and mild horizontal and vertical noise, compress, and enhance the raw traffic data for classifica-
curvatures. Over the duration of the project, observers in patrol ion- It is found that an energy representation of the data best
vehicles traversed this freeway segment and recorded the occuréharacterizes incident and nonincident conditions. The model de-
rence of incidents by noting down key incident characteristics termines the state of the traffic flow from the shape of the time-

such as location, time, and type of incident. By correlating this Series data rather than the magnitude. A radial basis function neu-

information with data obtained from sensors, samples for 21 lane "al network is developed to classify the processed traffic data into

blocking incidents are extracted from the database. To test thein€ident and nonincident states.

false alarm rate performancd h of incident free data are also

The new model has the following five advantages and desir-

extracted. Table 3 shows the performance of the new incident@Ple characteristics. No other existing incident detection algo-
detection model using real data. Both downstream and upstreanfithm can provide all of them simultaneously.

stations produced a detection rate of 95.2% and a false alarm raté
of zero. This result is identical to that reported by Adeli and
Karim (2000. Accurate information for the time of occurrence of
incidents is not available from the database. The times recorded in
the database are the times at which a patrol vehicle first encoun-
tered the incident, and in most cases, this time is after the effects
of the incident became visible in data recorded at the nearest
detector station. Thus, the detection times—which by definition *
requires the exact time at which an incident occurred—cannot be
computed for the model.

Result Summary and Comparison

The results of the new incident detection model indicate that the
downstream detector station data and logic by themselves provide
satisfactory results. In an ATMS that does not provide speed data,
the upstream station logic can be eliminated. However, in situa-
tions where speed data are available, the upstream detector station
logic provides an additional level of reliability without any sig-
nificant increase in computation. In general, the downstream sta-

Table 3. Performance of New Incident Detection Model using Real
Data from Freeway Service Patri@tSP Project’s Database

Downstream station Upstream station

False False
Detections Alarms Detections Alarms
20/21(95.2% 0/480(0%) 20/21(95.2% 0/480 (0%)

Note: Numbers after “/” indicate the total number of tests.

The new model is capable of detecting incidents even when
the reduced freeway capacity after the incident is greater than
the prevailing flow ratglnormally occurring under low flow
rate conditions

The model can reliably identify recurrent congestion and com-
pression waves for nonincident conditions without triggering a
false alarm;

The model signals the presence of an incident within 1 min of
its occurrence, to a great extent independent of the prevailing
traffic and roadway conditions;

The model does not require recalibration for its on-line imple-
mentation and thus is readily transferable; and

The model is computationally highly efficient because DWT
operations require a small number of multiplications and ad-
ditions in every sensor reporting interveday, 20 $ and we
have reduced the dimensionality of the RBF neural network
through wavelet-based energy representation of input.

These characteristics make this new traffic incident detection

model ideal for widespread practical adoption in urban ATMS.
The model was tested under several traffic flow scenarios. In gen-
eral, it produced excellent results across a wide range of prevail-
ing flow conditions. The model also correctly identified compres-
sion wave conditions and none of them were signaled as false
alarms.
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