
Self-Calibration: Enabling Self-Management in Autonomous Systems by Preserving
Model Fidelity

Fahad Javed, Malik Tahir Hassan, Khurum Nazir Junejo, Naveed Arshad, and Asim Karim
Dept. of Computer Science,

LUMS School of Science and Engineering
Lahore, Pakistan

{fahadjaved, mhassan, junejo, naveedarshad, akarim } @lums.edu.pk

Abstract—Autonomic and autonomous systems exist within
a world view of their own. This world view is created from
the training data and assumptions that were available at their
inception. In most of these systems this world view becomes
obsolete over time due to changes in the environment. This
brings a level of inaccuracy in the autonomic behavior of the
system. When this degradation reaches a certain threshold self-
healing or self-optimizing systems generally recreate the world
view using current data and assumptions. However, the self-
optimization process is akin to kill a fly with a hammer for
minor tuning of the world view. Instead we propose the idea
of self-calibration for self-managing these systems. We define
self-calibration as the ability of the system to perceive the need
for and the ability to execute minimal tuning to bridge the
gap between system’s world view and incoming information
about the outside world. In this paper we present a case for
considering self-calibration as a self-* enabling property of
systems specifically for time-critical systems using data-centric
AI technologies. We present our case by discussing three case
studies from different domains where self-calibration enables a
system to become self-healing or self-optimizing. We then place
self-calibration in a generic system and explicitly describe the
types of systems in which self-calibration can be implemented
and the benefits that one can accrue from its inclusion.

I. INTRODUCTION

Autonomous intelligent systems in general create a world
view to reason, analyze and plan their actions. This world
view, or the system’s internal model, is created from various
sources including the training data, assumptions, and mod-
eling artifacts available at time of inception. It is accepted
that this world view is an approximation of the actual world
in which autonomous intelligent system exists. Furthermore,
as the world evolves over time accuracy of representation of
this model is expected to drop.

Our interest is to maintain an appropriate model of the
world despite the changes in the world so that autonomous
system operates accurately. Online models are a solution
for such problem [6], [19]. However, for a range of time
critical applications such as spam filtering, demand response
systems in smart grids, web 2.0 data handling, etc., online
algorithms are not suitable due to various factors. These
factors primarily are concerned with response time and scal-
ability issues with respect to size of data and its dimensions.

For these time-critical systems, the state of the art is to model
offline and use this model to make real-time decisions. But
such models do not adapt to environment automatically.

A possible way to solve this problem is to make the
autonomous intelligent system self-managing so that it main-
tains fidelity of its model with the world. Based on the
system’s operations this can produce self-healing or self-
optimizing or even self-protecting properties in the system.
But if we look at this task through the generally accepted
self-* definition or analyze operational requirements to
maintain model fidelity we see that this task is subtly differ-
ent from self-healing, self-optimization and self-protection.

As we will argue in section II, the task of maintain-
ing model fidelity is more akin to intelligent, automatic
calibration of system than the task of maintaining health
or optimizing system’s performance or protecting system
from threats. Though this task of maintaining model fidelity
results in a self-healing or self-optimizing system, the task
is inherently different from the accepted norms of traditional
self-* properties.

An appropriate comparison is with adaptive controls
which self-tune their controllers according to the changes in
environment. A common example of adaptive controller is
the controllers used for aircrafts. The parameters to control
an airplane are dependent on weight of the plane. But as
the plane flies, it’s weight changes due to consumption of
fuel. Adaptive controllers such as model reference adaptive
controller (MRAC) apply a second controller on top of the
base controller to calibrate the base controller to correct
the system errors due to environmental evolution. But such
controllers are not applicable in a host of systems where
some intelligent computing solution are required. For these
systems, calibrating of the controller or the autonomous
manager is not well defined according to our study.

Self-calibration though must not be confused with con-
structing the model of runtime which focuses on modeling
the runtime environment of the system. Models at runtime in
their community and research focus on the runtime aspects
of the system such as security, resource allocation, quality
of service etc. [8], [16], [12]. These systems construct a
model of these runtime variables and reason about them. In

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-0-7695-4700-8/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.33

308

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-0-7695-4700-8/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.33

308

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-2-9541-8100-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.33

308

contrast our scope is data-driven time-critical systems which
construct a model of the external world and reason about the
world outside of the system. The system state itself and its
performance is generally considered outside the scope of the
models that we are concerned with.

In this paper we present this concept of self-managing
calibration or self-calibration for data-driven time-critical
systems. We provide an abstract system definition and de-
scribe ways to achieve self-management of model through
self-calibration. In addition we describe two architectures
to implement self-calibration. To ground the problem we
provide case studies from three different domains- web
2.0 application, spam filtering, and sensor networks- which
benefit from use of self-calibration. Our contributions in
this paper are (i) We describe how self-management of a
model can be achieved through self-calibration in an abstract
system. (ii) We define two architectures which can be used to
engineer self-calibration in the class of systems we consider
in our scope. (iii) We provide case studies to ground the
generic system in concrete examples.

The paper is organized in the following way: Section
II discusses the reason for proposing self-calibration. We
follow this we definition of self-calibration in section III. In
section IV we describe an abstract model to position and
define self-calibration. Section V describes the process of
incorporating self-calibration in the abstract system. This is
followed by case studies, future work and conclusion.

II. MOTIVATION

A range of time and content driven autonomous intelli-
gent systems such as spam filtering software, forecasting
engines, online tag recommendation, etc. are based on off-
line learning algorithms. Here by content driven engine we
mean systems where operations, goals or primary services
are dependent on and driven by content. In these systems the
costly step of model creation is done off-line and decisions
are made during execution using this model [14], [15],
[17]. Since the content changes over time, the static off-
line model becomes obsolete after some time resulting in
drop in correctness of the system. On the other hand, current
online algorithms are not viable due to time constraints, or
scalability issues with respect to large variable space or data
size. There are two measures of concern here: accuracy and
efficiency. Accuracy is the measure of correctness of system
and efficiency is the measure of how the system operates.
This includes response time, resources utilized, etc., whereas
an off-line model affects the accuracy, online models affect
the efficiency of the system.

We observed that the degradation of system is dependent
more on the model’s ability to reflect the world adequately
and less on the time passed since the inception of the model.
The accuracy of the system remained healthy while the
distribution of knowledge in input stream was similar to
the knowledge of training data used to create the model.

But degradation results in some cases quite rapidly when
knowledge obtained from the input stream diverges from the
model [14], [17]. This evolution of the world is the major
cause of degradation of service.

There are two characteristics of the effect of world evo-
lution on the system and its model.
• First, the fall in accuracy is usually due to a small subset

of misclassified new knowledge about the environment.
At any given time multiple small subsets may affect the
correctness of the model.

• Second, the fall in accuracy is based on evolutionary
changes and occur with unpredictable frequency and
size. Usually in a large system many small scale
changes occur and if self-awareness is only tuned to
total system efficiency then these small scale changes
go under the radar.

In such systems, we have seen self-optimization [13]
or self-healing as a possible solution. However, self-
optimization, or self-healing, properties by their very def-
inition are not able to respond effectively to the evolution
of the world [4], [18]. Self-healing is the property of system
to heal itself against bugs or failures. A self-healing system
may be able to identify a drop in efficiency due to partial
failure of model. But a deviation of real world from system’s
world view cannot be categorized as a failure of the system
specially if individual deviations are too small to warrant
action in the total system. Secondly, self-healing techniques
try to fix a problem but here the goal is to adjust the model to
improve efficiency as compared to restoring some property
which was lost due to a bug or a failure.

Self-optimization seems like a more appropriate property
but self-optimization is not geared to sensing failures to
correct but is rather looking for ways to improve perfor-
mance. Usually self-optimizing systems either try to main-
tain a threshold of performance or periodically check for an
opportunity to improve their performance. For a large scale
system where multiple small scale inflows are occurring,
neither of the methods can capture the error and fix it. If
a threshold is being maintained then it is possible that a
number of inflow have made the model quite obsolete by the
time threshold is reached. This will necessitate a complete
or atleast a major relearning of the model. In case periodic
opportunity for optimization is checked then it may happen
that between two epochs major changes occur and again
model is sometimes changed beyond repair. We will discuss
these issues in more detail with respect to the system model
in section IV.

Our argument is that, since the downgrade of correctness
is due to minor changes in some parts of the world, the
solution to these shortcomings should also focus on ac-
commodating these changes by minimally tuning the model
locally. This will make these adaptations efficient enough to
update the model at runtime resulting in a more accurate yet
scalable system.

309309309

III. DEFINING SELF-CALIBRATION

To undo the effects of these evolution-induced changes,
we explored calibration of system when the system model
and the sensors capturing the state of world do not match.

Calibration is defined as:

Definition 1. A minimal tuning, filtration, or characteriza-
tion of raw information about the system’s environment to
reduce the gap between system’s world view and the actual
world.

Calibration is referred to as the process of adjusting
system to remove systematic errors in sensor readings. The
term has also been used to refer to the procedure by which
raw outputs of sensors are mapped to standardized units
[7]. Various engineering and professional disciplines use
calibration to adjust their instruments’ model in a new
environment. In essence, when the internal model of the
system and it’s sensor readings are out of sync, calibrations
are done to adjust the differences in model and sensors.
In sensor networks, robotics, and computer vision, such
calibrations are needed when the system is deployed in a new
environment. There are automated methods for calibration
but the process is explicitly initiated by the user deploying
the system and is done once for an environment [23], [26].

Autonomous systems in contrast very rarely change their
physical or operational environment. However, such systems
are faced with the problem of an evolving environment
where new terms, tags, devices, etc., are added, replaced,
updated, and removed frequently. Bychkovskiy and col-
leagues argued that calibrations can be a good solution
for autonomous systems [7]. But, there are two aspects
of autonomous systems that contribute in making simple
calibration a complex task.

First, for traditional calibration, it is explicitly initiated at
a certain time in the life cycle of device. This is not possible
for online autonomous systems. Calibration in these systems
is a tool to handle changes over time. As we will show in
our case studies the need for calibration is unpredictable at
design time. Thus we can not define a specific point in time
in the life cycle of system where calibration will take place.
Rather we would have to intelligently identify when we will
calibrate the system.

Second, usually there are numerous variables, sensor
streams, and tuning parameters in an autonomous system.
Deciding how to effectively calibrate the system is a non-
trivial task.

To execute effective re-calibration of such system we
propose self-calibration as a desired property of time and
content driven autonomous and autonomic systems.

We define a self-calibrating system as:

Definition 2. A system which is able to:

1) Identify the need for calibration by intelligently
observing relevant raw information and the internal
constructed system’s world view

2) Instrument appropriate calibration actions on the sys-
tem to minimize the gap between system’s world view
and the actual world.

That is, self-calibration is an ongoing process in which
system first identifies the point where system model and
actual world diverges from each other. It then initiates
processes to reduce this gap whenever and however pos-
sible. This property, as is evident from definition and its
application, is not a goal in itself like self-optimization
or self-healing. Rather it is an enabling property which
supports efficient self-healing and self-optimization by using
observational traits of self-healing and self-protection. This
ultimately helps in planning and executing a boost in effi-
ciency to provide self-optimization property to the system.

A. Desirous Attributes

Based on the definition of self-calibration we argue that
following attributes are required to achieve self-calibration.

1) Situateability: First and foremost, the system should
be able to situate its data with respect to its model.
For autonomous system, the system model is the
description of its world. But the real world generating
the input stream may have changed since the inception
of system model. An autonomous system requires a
sensor/analyzer to situate its model with respect to
the input stream to identify error in the data-stream,
sensor, or the model.

2) Input Stream Transformation: System should be
able to regulate its input stream to protect its model,
correctness or efficiency from temporary events in
the world such as data burst or spikes. For example,
the personalized spam filter discussed in section VI.2
needs to identify if the updated model is required or
not.

3) Model Transformation: System should be able to
update its model to incorporate changes in the world.
This model transformation should reduce the distance
between system’s internal model and the observations
from the world. The model transformation should be
minimal to reduce the overhead of self-calibration.

We define a system that fulfils the above mentioned
requirements as a system with self-calibrating property. That
is, a system is self-calibrating if it is able to analyze and
compare its internal model with the world and tune data
and/or model to bridge the gap between system’s world view
and incoming sensor input stream.

IV. ANALYTICAL MODEL

In this section we describe the abstract system and its
property to reason about self-calibration. This will help us

310310310

define generically, the types of system models which can be
made self-managing through self-calibration. We also define
boundaries for its usage under the scope of this paper.

First, we build a generic system and world abstraction.
Then we will place the performance measurements of inter-
est within the scope of this abstraction followed by definition
of self-calibration in this generic world.

A. System Model and Notation

We build on the abstract model proposed by Berns and
Ghosh [4]. Whereas they restricted their model to system
components, our discussion necessitates abstracting the liv-
ing and breathing world in which our system operates.
We represent this world as Ra. For our system this world
produces a set of observations rt at time t and an output
outa that we can represent as: [rt, outa]⇐ Ra(t).

An autonomous system tries to capture these observations
and replicate processes in Ra(t) to generate outa. That
is the system is given as: [outs] ⇐ S(rt). Here S is
the autonomous system, rt are the observations from Ra

observed through sensors of S and outs is the system output
to replicate outa.

Internally S maintains a state Xi. This internal state S =
{Xi} represents the system and transitions non-linearly over
time. Xi has three possibilities: Xi ∈ {C∪F ∪D}. C is the
set of sound or correct state, F is the set of faulty state and
D is the set of transient state degraded states. These states
are roughly modeled on the survey of self-healing system
by Ghosh and colleagues [11].

The state in turn is composed of system model M s and
internal state variables xv . That is: Xi = {M s, xv}. As part
of state, the system constructs a model M s

t which attempts to
construct the world Ra using historical trace of observations
from some time t− γ till t.

M s
t ⇐ train(rt−γ ..rt)

We would now discuss the world Ra and its hypothetical
working. It can be argued that Ra builds its output based
on some model Ma for every time t. As an external entity,
we do not know of this model and can only infer it through
learning its historical outputs and observations. Hence we
can only approximate Ma

t through some model M s
t .

This model M s
t is our best way of capturing the working

of world Ra. Online algorithms continually update their
model M s

t based on their observations as is the case of
model adaptive control. However, in offline systems this
model is not constructed continuously. That is, M s is created
at discrete times and same model is carried over till next
model creation is initiated.

Possibly infinite modeling paradigms exist to model the
world. However, for the scope of this paper we classify
two types of models (Ma) of the world (Ra) which are
relevant to the type of systems we are working with. First is
a singularity world which is based on a single phenomenon.

By singularity we mean phenomenons which represent a sin-
gle possibly complex system such as controlling an aircraft
control planes or forecasting energy load of a system. Self-
calibration is well defined under the title of adaptive controls
for these systems in literature of control theory and time
series analysis. We do not see a need to revisit or reform it
to our scope or define such system in our generic definition.

In comparison a constructed world is an aggregation or a
composition of multiple sub-components under a single en-
vironmental or operational assumption. In such constructed
world many components combine or contribute to form
Ra. In these systems many independent sub-models or sub-
component contribute to form Ma. If we define domain of
Ra as the total space world occupies then each component
k of the world would represents a sub-space such that:

Ra
∑

k

kRa

Here superscript prior to variable R represents the kth

component of R. When we try to approximate such world
model as M s

t then we see that M s
t can be in a continuum

between generalizational and compositional models which
we define as under.

Compositional models try to model the sub-spaces of
Ra. These sub-spaces are modeled and combined to form
the total system. We can say that the system model M s

t

is sum of j components M s
t =

∑
j

jM s
t such that a sub-

model jM s
t models one or more components of space Ra.

In application parlance, this is akin to clustering of data or
maintaining an ensemble of classifiers where a cluster or a
single classifier represent jth component of jM s

t .

In comparison, generalizational models are those in
which M s

t is an approximation or generalization of its j

components i.e. M s
t ≈ ∀jjM s

t with some discriminative
method to differentiate between jRa regions. We can also
conversely say that jM s

t is a specialization of a generic
model M s

t where M s
t represents the total world Ra and

jM s
t represents the kth component of Ra.

It can also be visualized as a system where there are j

subsystems with some commonality among them. The total
system is an average output of each of the independent
subsystem and is constructed in a way so that M s

t is an
average of the entire system.

For these systems When we simulate M s
t under obser-

vations of jth component (jra
t) then it produces output

joutst appropriate for the jth component. An example of
generalizational model is our spam filtering case study
where each mailbox is a component. Global spam filtering
constructs a model for all the mailboxes (or senders) through
a unified corpus of labeled data. This global spam filter
models all mailboxes to a certain accuracy level.

311311311

B. Measurements

It is imperative that the system is observed and measured
to verify if it is achieving its intended goals. For this purpose
both functional and non functional measures are of interest
to ascertain the health and effectiveness of a system. We
may evaluate a system through a function ρ which calculates
instantaneous performance at time t given as Pt.

Pt ⇐ ρ(Xi, rt, outst , outat)

This performance is based on overall system state and in
most cases the input stream (rt). There are three important
components of Pt that are of interest to us. First and
foremost is accuracy that we can quantify as:

accuracy = |outa − outs|

The second measure is of safety and liveness to measure
health of the system. We use Alpern and Schneider’s defi-
nition of the terms [2]. A system may have Y safety and L

liveness properties. Informally safety property implies that
“bad things never happen to the system” and liveness implies
that “good eventually happens”.

The third important measure is performance which can
be measured as response time of system or as resource
requirements to achieve some quality requirement. Measur-
ing performance in abstract system is not feasible due to
limitation posed by abstractions. However, we will discuss
effect of self-calibration on performance in our case studies.

C. Self-Calibration

We describe self-calibration in our abstract world. A
description of other self-* properties in similar context can
be found in [4]. We define self-calibration as a function
selfCalib of model M s and input stream r0···t. According to
our definition of self-calibration, it is the minimal tuning of
model or input stream to reduce disparity between system
model and actual world. That is:

(M s
i+1, r

′

t)⇐ selfCalib(M s
i , rt)

such that |M s′

i+1−Ma| < |M s
i −Ma|. That is, selfCalib is

a function that reduces the distance between the real world
model and the system’s model.

This in itself is not a critical property of a system like
self-optimization or self-healing. But as we have shown
previously, it enables self-optimization and self-healing in an
efficient manner. Next we will discuss how we can engineer
self-calibration in the abstract system.

V. ENGINEERING SELF-CALIBRATION

In the previous section we have described an abstract
world for discussion on system and world model and def-
inition of self-calibration. In this section we propose two
architectures to implement self-calibration for compositional
and aggregational models.

(a) (b) (c)

Figure 1. Venn diagrams showing sets of outs and outa for (a) time t (b)
time t+ i and positive and (c) negative and positive changes from time t to
t + 1. negative is shown colored grey and positive is shaded with vertical
lines.

Autonomous data-driven time critical systems create a
model to reason about the world around them to make
decisions. The goal is to mimic world model Ma as much
as possible in the internal model M s. Though this modeling
may not be perfect but correcting this error is beyond the
scope of this paper. Our focus in this section are architectures
to handle the issue that arises when evolution in world
increases the gap between Ma and M s over time.

We illustrate our point through venn diagrams in figure
1. This system represents a binary classification where set
A represents output of M s and B represents output of Ma

at time t in figure 1(a). Without loss of generality we can
extend this model to multi-dimensional domain and multi-
variate decision making.

The error of the system, by set expression is:

errort = (B −A) + (A−B)

At some time t+ i, Ma evolves into C as shown in figure
1(b). the error at t + i is represented as:

errort+i = (C −A) + (A− C)

Here we are interested in positive change in the error or
Δerror which is shown as shaded region in figure 1(c). This
in essence is the error that did not exist at time t and is
caused due to evolution in Ra. The expression is:

Δerror =
(
C−(A+B))+((A+B)−C−(A−B)−(B−A)

)

Self-calibration specifically focus on the harmful effects
of the evolution and not consider the positive changes due
to it. As can be seen in figure 1(c)), the shaded region
is a positive change in system’s output due to evolution.
If we consider total system performance or accuracy then
we may not see much change. But if negative affects of
evolution can be captured and fixed as they occur then this
can save us from larger and costly wholesale corrections
later in the life of system as is the case for self-optimizing
tag recommendation [13].

Thus the goal of self-calibration is to reduce Δerror.
We propose two architectures which can achieve self-
calibration in such systems and result in self-healing or
self-optimization of the over all system. The selection of
architecture is dependent on the nature of system, existing
autonomous management algorithm and the flavor of self-
management required.

312312312

There are two tasks of self-calibration, first is to identify
when calibration is needed and second is to instrument the
calibration. In this discourse we will identify the point at
which calibration is needed and object on which calibration
needs to be done. The actual method of calibration is domain
specific. This will be discussed with more details the in case
studies.

A. Architecture 1: Sub-model Self-calibration (SMSC) for
Compositional Models

Our first architecture is for systems constructed for a
world Ra which is composed of k components such that:

Ra =
∑

k

kRa

Figure 2 represents such a system. Here Ra is segmented
internally into k segments. An autonomous system ideally
would identify each region and map it to its internal sub-
model jM s

t . Combining all jM s
t sub-models will cover the

domain Ra. This modeling may have error such as incorrect
mappings and overlapping regions. resolving this error is
beyond the scope of self-calibration.

The goal of sub-model self-calibration (SMSC) architec-
ture is to autonomically calibrate jM s

t with kRa as kRa

evolves over time in ways similar to an airplane’s controllers
adapting to its evolving environment. The goal is to maintain
fidelity of of jM s

t with kRa.
To identify what and when to calibrate we will look

at ways to quantify distance of Ra and M s
t . For such

systems we can say that the distance between M s
t and Ma

t

is equivalent to distance between pairwise sub-models:

|M s
t −Ma

t | ≡ ∀j|
jM s

t −
jMa

t |

If measuring jM s
t is not possible then we can approximate

it by measuring the output of sub-components:

∀j|jM s
t −

jMa
t | = ∀j|joutst −

joutat |

For systems which transition smoothly we can extend this
measurement method of model health to time beyond t. that
is:

∀j|jM s
t −

jMa
t+n| = ∀j|

joutst+n −
joutat+n|

Note that this is true for sub-components models but not
for entire system as has been discussed above and shown

Figure 2. Architectural design of compositional system model. Ra is
composed of k components. System model attempts to identify these k

regions and model it internally as k sub-models (kMs
t). These model

compose to form the total system model Ms
t .

graphically in figure 1. Here we can see that though total
error for system may be less at time t + n than at time t.
But we can see that the error in sub-components can still be
observed and corrected.

We would like to point out that observing total error
of system does not provide the insight we need for self-
calibration.

|M s
t −Ma

t | �≡ |outst − outat |

Suppose that gain in accuracy due to evolution is the same
as drop in accuracy. This would mean

|outst − outat | ≡ |outst+i − outat+i|

This will give the false impression that M s
t is similar

to M s
t+i. However at component level the model would

have moved. In case-study 1 we discuss similar system
where without self-calibration we were not able to monitor
component level degradation. By the time system level
degradation was observed the model had already denigrated
so much that minor adjustments were not sufficient and
wholesale system re-modeling were required.

Through this type of calibration we maintain the safety
property that “bad things never happen to the system".
Through this system we can capture the system moving
towards D state and recover it before it goes to unhealthy
state as described in [11].

B. Architecture 2: Reference Model Based Self-calibration
(RMBSC)

Reference model based architecture is designed for system
models (M s

t) which are generalization of sub-system models
(jM s

t). in these models the M s
t is an average or generaliza-

tion of the component models jM s
t . Conversely the model

(jM s
t) is specialization of (M s

t) which is a generalization of
entire system. Systems such as personalized spam filtering,
our second case study, is an example of such systems.

Previously generalizational systems used to maintain a
single global model. However, recent trend is to increase
accuracy by adapting local models for each entity that
combines to form the model. Though this increases system
accuracy, but it has the overhead of creating j models. This
effort if done only once in life cycle may be applicable but
many adaptations at runtime are abortively costly.

To implement scalable adaptation of such systems we
propose architecture shown in figure 3. This model is similar
to MRAC with some differences that we will discuss here.
MRAC works on the principle that system maintains a refer-
ence model to correct evolution in environment. A controller
is designed with certain assumptions and boundaries on the
environment. When these boundaries are violated the model
updates the controller for the new environment.

RMBSC core is similar to MRAC. But unlike MRAC our
architecture provides a method to train the reference model

313313313

Figure 3. Data flow architecture for Reference Model Based Self-
calibration . Data stream rt

s representing entire system is stored in data store
and global model Ms

t is created from it. Self-calibration decision maker
(DM) compares this model with jth component’s model and provides
control signal whether to create a new model for j component at this time.
The data stream for jth component is also stored in a local data-store. If
self-calib DM provides a positive signal then a new jMs

t is created and
passed to autonomous manager to make run time decisions.

as well. This way the adaptation itself can be adaptable based
on the environment around it. There are two reason for this
extension. First, because in some situations it is required.
and Second, because we can do it.0.

Consider architecture in figure 3. The architecture repre-
sents architecture for jth sub-component. The task of the
manager here is to make decisions for jth sub-component
using model jM s

t for incoming dataflow. This model may
be an adaptation of the generalized model for all the j

components M s
t . On a global level, a generalized model of

entire system containing data from all the j components is
maintained. This may be learnt model at time t+ i or a ref-
erence model depending upon the system. On some specific
triggers (e.g. construction of new M s

t), M s
t is compared with

each of jM s
t . Based on system goals, the distance between

jM s
t and M s

t is used to initiate an adaptation for selected
jM s

t . The adaptation algorithm then adapts the existing M s
t

using the local data of jth component.
According to our assumption, system model M s

t at its
inception is the best approximation of world model Ma

t

and no better model can be made with the resources and
techniques available. For all practical purposes we can say
that if model is created at time t then:

Since M s
t is a maximal approximation of Ma

t we can
write target of self-calibration system as.

M s
t ≈ Ma

t

According to definition of generalizational model we also
know that M s

t is a generalization of components of S. We
can thus say that:

jM s
t ∼ M s

t ≈ Ma
t

If we consider the error for jth component at time t, we
can use logic similar to previous case and state that:

jerrort = |jM s
t −Ma

t | ≈ |
jM s

t −M s
t |

Using same argument at time t+i if we update our model
M s

t+i then we can say that:

M s
t+i ≈ Ma

t+i

Using this relationship we can compare the jth component’s
un-updated model to Ma

t+i.

jerrort+i = |jM s
t −Ma

t+i| ≈ |
jM s

t −M s
t+i|

This measure of distance of model of jth existing compo-
nent with the best approximation of world model will give
us objective measure to evaluate when and what to calibrate
at time t + i.

1) When and What to Self-calibrate: There are two
variants of calibrating system based on core demands of
system. For a system concerned about quality of service
(QoS) we can set a threshold of health τ such that when
distance of a sub-component breaches this threshold, re-
calibration of this component is performed.
|jM s

t −
jMa

t | > τ

Another possibility is that we can limit the resource
utilization by putting a threshold at the number of cali-
brations that can be done in an iteration. In this method
the components are sorted according to Δerror and top x

are chosen for calibration where x is dependent upon the
available resources.

This type of calibration maintains the safety property that
“bad things never happen to the system". Moreover, through
this system we can capture the system moving towards D

state and recover it before it goes to unhealthy state as
described in [11].

VI. CASE STUDIES

In this section we present three case studies of self-
calibration from varied domains. The domains vary from
automatic tag recommending web 2.0 application to spam
filtering to sensor networks. The goal of these case studies
is to present exemplar systems where self-calibration can be
helpful and provide examples of our proposed architecture.

A. Automatic Tag Recommendation

A folksonomy, or collaborative tagging, is a system of
classification of documents through collaboratively creating
and managing tags to annotate and categorize content [22].
The system allows its users to assign keywords, or tags, to
resources for navigation, finding resources, etc.

We proposed an automatic tag recommendation system
for folksonomy based on discriminative clustering [14].A
new document is first classified into a specific cluster and
the top 5 tags of the cluster are recommended as possible
tags for the document. The accuracy of the system however,
was affected over time. As new ideas and concept emerge
the tags and their relationships with documents also change.

314314314

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Example to be Tagged

F
S

co
re

Regular
Self−Calibrating

Figure 4. Comparison of cluster accuracy with and without self-calibration.
Red line shows regular results when system allows cluster performance
to degrade. Green line shows self-calibration results. It can be seen that
between example 5 and 10 self-calibration identifies a need for calibration.
After the calibration step accuracy of cluster is restored until 50th example
when another round of calibration is done

To handle this accuracy drop due to distribution drift, we
proposed to rebuild the prediction model by re-clustering
[13]. To automate the task we proposed a self-managing
mechanism for this process. A self-optimizing system
though is able to keep a high level of accuracy, but such
massive re-modeling step is an overkill. Especially when
up to 65% of clusters remain intact and majority of the
system is not affected by clustering. This points to the
intuitive idea that over time not all information will change
but rather some relations between document classification
and tags would be re-ordered. What is required is not self-
optimization but minimal self-healing of system.

We found that a large number of documents were being
clustered correctly but the evolution of tags by users was
not represented in the system. We implemented architecture
1 in this scenario. Figure 4 shows resulting f-score with and
without self-calibration. The accuracy of cluster was 0.35
before example 5 (Y-axis value). Without self-calibration
the average accuracy goes down to 0.0197. However, self-
calibration restores the accuracy 0.329. In addition we
observed that this drop in accuracy, or its healing, did not
affect the global accuracy by much. Without healing global
accuracy was 0.1592 and with self-calibration it was 0.16.
Such a minor change in accuracy at global level was not
observable but at a sub-component level it was observable
and correctable. It is evident that self-calibration of system
can make the system self-healing.

B. Email Spam Filtering

Filtering spam mail or Unsolicited Commercial
Email(UCE) is an important task for mail service providers.
The process needs to be fast and effective. Due to this
reason spam filtering techniques usually build an offline
model on the data collected from users. Emails which are
already classified as spam and ham (meaning valid emails)
are used to train a classifier. This global model is then used
to filter spam emails.

However, as has been shown by Fawcett, spam and ham
email patterns shows concept drift [10]. This means that the
concept of what is spam "drifts" or changes over time and
between users. To show this figure 5 plots class conditional
probabilities of spam and ham for two users against the

term frequency of spam in the generalized model from
ECML data set [5]. Term frequency is the number of times
a term appears in an email. Different peaks and troughs in
figure 5 points to difference in terms which are considered
spam by different users.

To handle this concept drift among users, personalized
spam filtering was considered. A global corpus of emails
was used to train a global filter and this filter was adapted
according to user’s own email repository [17], [20]. This
results in 5.5% increase for task A and 10% increase for
task B in accuracy of spam filtering [17].

But this does not solve the problem of concept drift
over time. As can be seen from figure 6. Term frequency
for spam and ham changed between two time periods for
the same user. The problem can be resolved with repeated
construction of the global model and its adaptation for local
models but with hundreds of thousands of local models, such
adaptations were not possible.

We applied the second self-calibration architecture using
the global model as M s

t and individual mailbox models
as jM s

t . This resulted in objective way of identifying the
personal mail boxes which were most distant from M s

t .
We applied a threshold such that only the worst 20% of
mailboxes were adapted at each iteration. This resulted in
minor drop in accuracy while it reduced our computing
resource requirement to one fifth.

C. Sensor Networks

Sensor networks present an interesting application for
self-calibration. The distributed nature of sensors and adhoc
and evolving world they work in makes self-calibration a
very interesting application in this domain. The concept of
calibration has already been used in sensor networks [7].

� ��� ��� ��� ��� ����
��	��

�

�	��

�	��

���������������������������

�
��
��
��
���
��

���
�
�
�

������
� ��� ��� ��� ��� ����

��	��

�

�	��

�	��

���������� ��������������������

������

Figure 5. Shift in p(x|y) between training and test data for ECML-A
dataset (individual user’s e-mails), where yε{spam, nonspam} and x is
an email)

0 0.5 1 1.5 2 2.5

x 10
5

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3 Spam Probabilities

P
ro

ba
bi

lit
y

D
iff

er
en

ce

Term Id
0 0.5 1 1.5 2 2.5

x 10
5

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3 Non−Spam Probabilities

P
ro

ba
bi

lit
y

D
iff

er
en

ce

Term Id

Figure 6. Difference in p(x|y) for e-mails from different time periods for
ECUE-1 dataset), where yεspam, nonspam and x is an email

315315315

Here we will present two different types of sensor
networks and relate them with the architectures we pre-
sented. Furthermore, our proposed architecture can provide
these systems with extending their adaptation. Mainland
and colleagues propose Self-Organizing Resource Allocating
(SORA) sensor networks [21]. A similar work (DIRL) by
Shah and Kumar used an economic model as the global
model but had similar architecture [25]. In both systems each
sensor can assume different roles in the system. A sensor
can be active scanner, passive scanner, data aggregator or a
networking node. With a changing world it is impractical to
explicitly assign a specific role to each sensor. The proposed
systems propagate a central cost or economic model to all
sensors. Sensors use this model to bid on different actions
and through this auction mechanism each sensor assumes
the optimal role according to market forces. Whereas the
sensors in this mechanism are self-optimizing the overall
emergent behavior is self-healing as well.

Assume that a sensor goes offline. The remaining sensors
can then win in auction the responsibility of offline sensors
in the most optimal way.

If we consider incorporating the assumptions of DIRL
and SORA, we see an application of our second proposed
architecture (RMBSC). Both the systems are dependent on a
global model which can best utilize the sensor network. This
model is based on considering the generalization of sensors
to ascertain the most optimal mix of policies. In essence
this is creating a M s

t so that each sensor, or jth component
of system can adapt it to its local needs. Although it is
assumed that M s

t will exist but both the system leave
its construction as assumption or as future work. RMBSC
provides a concrete architecture to incorporate modeling and
maintenance of M s

t and provide tools for its propagation,
comparison and utilization.

This global model will require regular evaluation and on
each re-evaluation, sensors can decide if they wish to update
their role or continue in their current state.

Another flavor of sensor networks works by partitioning
the world according to its evolution such as the work
of Salazar and colleagues [24]. In this system through a
diffusion searching algorithm sensors are arranged in certain
configurations. These configurations then internally manage
their roles and resources. The configurations in terms of
their distribution in space are not fixed and the algorithm
allows movements of configurations through sensors. This
task however is internal to a configuration as it searches
in its neighborhood for appropriate resources and roles for
efficient operations. This is an example of localized self-
calibrating architecture. As the sensors notice an evolution
of the world, they use diffusion algorithm to ascertain change
of roles for sensors within the reach of its configuration.

We have been working on various other applications
of self-calibration in autonomous systems that cannot be
included here due to space limitation.

VII. FUTURE WORK

We believe that this work lays the foundation for research
and development for self-calibration. There are numerous
directions in which we foresee possible progress. Apart from
developing techniques and systems to effect self-calibration,
some generic engineering questions needs to be answered.

The starting step in this direction are the requirements that
gave rise to self-calibration.

Situateability: Situateability is a form of self-awareness
where model and world are compared for awareness. We
feel that research in self-awareness can sufficiently address
this concern. However, mapping of existing self-aware tech-
niques for self-calibration requires further research.

For our case studies, for instance, situating a varying input
stream as temporary change in world will be required for
spam filtering.

Metrics and Thresholds: Self-calibration maintains data
fidelity. However, metrics for validating data fidelity require
some in-depth study. Some basic analytical and control
theoretic models have been used for other self-* proper-
ties but metrics specifically for self-calibration need to be
investigated [1], [9]. For instance metrics and thresholds
for checking cluster fidelity are present [3] but for surgical
revision according to an incoming input stream requires fur-
ther research for our tag recommendation problem. Similarly
thresholds to identify when a term in joint distribution of
emails crosses the boundary from spam to non spam is
needed.

Model transformation: Methods need to researched and
defined on how models can be updated to effect self-
calibration. Various online algorithms provide an insight on
how this can be achieved [6]. However, for systems which
are based on offline learning, integration of surgical online
fine-tuning will provide interesting research avenues. We
require a model transformation that updates the model in
a time-efficient manner without increasing the system turn-
around time. For this we require model transformations for
our clustering approaches in automatic tag recommendation
systems. We will require different transformation for model
transformation of sensor networks.

Input Stream Transformation: Input stream transfor-
mation is most useful in sensor networks problem and in
spam filtering. Here we will require metrics which identify
input stream variations and correct transformations need to
be applied to input stream so that the model can be efficiently
updated.

VIII. CONCLUSION

For content driven systems where the new information
from the outside world is continuously received the con-
structed model of the world gets obsolete with time. Taking
the system to an offline mode to reconstruct the model is not
a viable solution for time-critical systems. Reconstruction of
the model using self-optimization or self-awareness is also

316316316

inefficient as the process of reconstruction of the model
is expensive and time consuming. However, through self-
calibration the model is updated with minimal changes.

In systems that receive a lot of content e.g. spam filtering,
tag recommendation etc., much of the information is useless
or false positive. Therefore, self-calibration also aims to mit-
igate the inaccurate information and only accept statistically
significant information for the model tuning. We believe that
for systems that use AI techniques and are heavily content-
driven, self-calibration will provide an important missing
property in making these systems self-managing.

IX. ACKNOWLEDGEMENT

This work is in part supported by grants from the De-
partment of Computer Science at LUMS, ICT Research
and Development Fund of Pakistan, and Higher Education
Commission of Pakistan.

REFERENCES

[1] S. Abdelwahed, N. Kandasamy, and S. Neema. A control-
based framework for self-managing distributed computing
systems. In Proceedings of the 1st ACM SIGSOFT workshop
on Self-managed systems (WOSS), pages 3–7, 2004.

[2] B. Alpern and F. B. Schneider. Recognizing safety and
liveness. Distributed Computing, 2:117–126, 1987.

[3] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo. A compari-
son of extrinsic clustering evaluation metrics based on formal
constraints. Inf. Retrieval, 12:461–486, 2009.

[4] A. Berns and S. Ghosh. Dissecting self-* properties. In Self-
Adaptive and Self-Organizing Systems, IEEE International
Conference on, pages 10–19, 2009.

[5] S. Bickel. Ecml-pkdd discovery challenge 2006 overview.

[6] A. Blum. On-line algorithms in machine learning. In
A. Fiat and G. Woeginger, editors, Online Algorithms, volume
1442 of Lecture Notes in Computer Science, pages 306–325.
Springer Berlin / Heidelberg, 1998.

[7] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak.
A collaborative approach to in-place sensor calibration. In
Proceedings of the 2nd international conference on Informa-
tion processing in sensor networks, IPSN’03, pages 301–316,
Berlin, Heidelberg, 2003. Springer-Verlag.

[8] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola,
and G. Tamburrelli. Dynamic qos management and optimiza-
tion in service-based systems. Software Engineering, IEEE
Transactions on, 37(3):387 –409, may-june 2011.

[9] Y. Diao, J. L. Hellerstein, S. S. Parekh, R. Griffith, G. E.
Kaiser, and D. B. Phung. Self-managing systems: A control
theory foundation. In 12th IEEE International Conference on
the Engineering of Computer-Based Systems (ECBS), pages
441–448, 2005.

[10] T. Fawcett. "in vivo" spam filtering: A challenge problem for
data mining. CoRR, cs.AI/0405007, 2004.

[11] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya.
Self-healing systems - survey and synthesis. Decis. Support
Syst., 42:2164–2185, January 2007.

[12] S. Götz, C. Wilke, S. Cech, and U. Assmann. Runtime
variability management for energy-efficient software by con-
tract negotiation. In Proceedings of the Models Workshop on
Models@Runtime, New Zealand, Oct 2011.

[13] M. T. Hassan, A. Karim, F. Javed, and N. Arshad. Self-
optimizing a clustering-based tag recommender for social
bookmarking systems. In International Conference on Ma-
chine Learning and Applications (ICMLA), 2010.

[14] M. T. Hassan, A. Karim, S. Manandhar, and J. Cussens. Dis-
criminative clustering for content-based tag recommendation
in social bookmarking systems. In ECML/PKDD Discovery
Challenge Workshop, 2009.

[15] F. Javed and N. Arshad. Adopt: An adaptive optimization
framework for large-scale power distribution systems. In In-
ternational Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pages 254–264, 2009.

[16] R. R. Jorn Eichler. Model-based situational security analysis.
In Proceedings of the Models Workshop on Models@Runtime,
New Zealand, Oct 2011.

[17] K. Junejo and A. Karim. Pssf: A novel statistical approach
for personalized service-side spam filtering. In International
Conference on Web Intelligence (WI), 2007.

[18] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[19] J. Kivinen, A. Smola, and R. Williamson. Online learning
with kernels. Signal Processing, IEEE Transaction on,
52(8):2165 –2176, Aug. 2004.

[20] A. Kyriakopoulou and T. Kalamboukis. Text classification
using clustering. In In Proceedings of the ECML-PKDD
Discovery Challenge Workshop, 2006.

[21] G. Mainland, D. C. Parkes, and M. Welsh. Decentralized,
adaptive resource allocation for sensor networks. In NSDI’05:
Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation, pages 315–328,
Berkeley, CA, USA, 2005. USENIX Association.

[22] I. Peters. Folksonomies. Indexing and Retrieval in Web 2.0.
Walter de Gruyter & Co., Hawthorne, NJ, USA, 1st edition,
2009.

[23] Z. Roth, B. Mooring, and B. Ravani. An overview of robot
calibration. Robotics and Automation, IEEE Journal of,
3(5):377 –385, october 1987.

[24] N. Salazar, J. Rodriguez-Aguilar, and J. Arcos. Self-
configuring sensors for uncharted environments. In Self-
Adaptive and Self-Organizing Systems (SASO), 4th IEEE
International Conference on, pages 134 –143, 2010.

[25] K. Shah and M. Kumar. Distributed independent reinforce-
ment learning (dirl) approach to resource management in
wireless sensor networks. Mobile Adhoc and Sensor Systems
(MASS). IEEE Internatonal Conference on, pages 1–9, Oct.
2007.

[26] S. Zhang and P. S. Huang. Novel method for structured light
system calibration. Optical Engineering, 45(8), 2006.

317317317

