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Abstract Content-based e-mail spam filtering continues to be a challenging machine
learning problem. Usually, the joint distribution of e-mails and labels changes from user
to user and from time to time, and the training data are poor representatives of the true
distribution. E-mail service providers have two options for automatic spam filtering at the
service-side: a single global filter for all users or a personalized filter for each user. The
practical usefulness of these options, however, depends upon the robustness and scalability
of the filter. In this paper, we address these challenges by presenting a robust personalizable
spam filter based on local and global discrimination modeling. Our filter exploits highly
discriminating content terms, identified by their relative risk, to transform the input space
into a two-dimensional feature space. This transformation is obtained by linearly pooling
the discrimination information provided by each term for spam or non-spam classification.
Following this local model, a linear discriminant is learned in the feature space for classifica-
tion. We also present a strategy for personalizing the local and global models using unlabeled
e-mails, without requiring user’s feedback. Experimental evaluations and comparisons are
presented for global and personalized spam filtering, for varying distribution shift, for han-
dling the problem of gray e-mails, on unseen e-mails, and with varying filter size. The results
demonstrate the robustness and effectiveness of our filter and its suitability for global and
personalized spam filtering at the service-side.
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1 Introduction

The problem of e-mail spam filtering has continued to challenge researchers because of its
unique characteristics. A key characteristic is that of distribution shift, where the joint dis-
tribution of e-mails and their labels (spam or non-spam) changes from user to user and from
time to time for all users. Conventional machine learning approaches to content-based spam
filtering are based on the assumption that this joint distribution is identical in the training and
test data. However, this is not true in practice because of the adversarial nature of e-mail spam,
differing concepts of spam and non-spam among users, differing compositions of e-mails
among users, and temporal drift in distribution.

Typically, a single spam filter is developed from generic training data, which is then applied
to e-mails for all users. This global approach cannot handle the distribution shift problem.
Specifically, the generic training data do not represent the e-mails received by individual
users accurately as they are collected from multiple sources. A global filter is unlikely to
provide accurate filtering for all users unless it is robust to distribution shift.

Recently, there has been significant interest in personalized spam filtering for handling
the distribution shift problem (see [15]). In this approach, local or personalized filters are
built for users from generic training data and their e-mails. For personalized spam filtering
to be successful, it must (1) provide higher filtering performance when compared to global
filtering, (2) be automatic in the sense that users’ feedback on the labels of their e-mails
is not required, and (3) have small memory footprints. The last requirement is critical for
e-mail service providers (ESPs) who serve thousands and millions of users. In such a setting,
implementing personalized spam filters at the service-side is constrained by the fact that all
filters must reside in memory for real-time filtering.

Motivated by the flexibility of the LeGo (global models from local patterns) framework
[44,56], the success of relative risk in the biomedical domain for identifying risk factors
[29,52], and the robustness of statistical modeling for text classification [35,38], we develop
a robust filter for global and personalized spam filtering. The filter is a robust text classifier
capable of producing accurate classifications under different problem settings. The filter is
also personalizable or adaptable in a semi-supervised fashion, satisfying the three desirable
characteristics mentioned in the previous paragraph. The key ideas of the filter that con-
tribute to its robustness and personalizability include: (1) supervised discriminative term
weighting, which quantifies the discrimination information that a term provides for one class
over the other. These weights are used to discover significant sets of terms for each class.
(2) A linear opinion pool or ensemble for aggregating the discrimination information provided
by terms for spam and non-spam classification. This allows a natural transformation from the
input term space to a two-dimensional feature space. (3) A linear discriminant to classify the
e-mails in the two-dimensional feature space. Items (1) and (2) represent a local discrimina-
tion model defined by two features, while item (3) represents a global discrimination model
of e-mails. The performance of our filter is evaluated on six datasets and compared with four
popular classifiers. Extensive results are presented with statistical evidence, demonstrating
the robustness and personalizability of the filter. In particular, our filter performs consistently
better than other classifiers in situations involving distribution shift. It is also shown to be
scalable with respect to filter size and robust to gray e-mails.

We make the following contributions in this paper. (1) We define and discuss the chal-
lenges in spam filtering from a statistical point of view, highlighting issues like distribution
shift and gray e-mails (Sect. 2). (2) We describe global and personalized spam filtering from
an ESP’s perspective and relate these filtering options to generative, discriminative, super-
vised, and semi-supervised learning (Sect. 2). (3) We present a new spam filter for global and
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personalized spam filtering based on local and global discrimination modeling and compare
it with popular generative, discriminative, and hybrid classifiers (Sect. 4). (4) We introduce a
general classifier framework that emerges by generalizing our filters (Sect. 4). (5) We evaluate
and compare our filter’s performance with others on global and personalized spam filtering
(Sect. 6). (6) We evaluate the performance of our filter for varying distribution shift, gray
e-mail identification, robustness, and scalability (Sect. 6). The related work in spam filtering
and data mining literature is discussed in Sect. 3, and the evaluation setup is described in
Sect. 5.

2 The nature of the spam filtering problem

In this section, we define and describe the nature of e-mail classification, highlighting the key
challenges encountered in the development and application of content-based spam filters. We
introduce the typical e-mail classification problem, discuss the issue of distribution shift and
gray e-mails, explore the applicability of global and personalized spam filtering options, and
define semi-supervised global and personalized e-mail classification.

2.1 E-mail classification

The classification of e-mails into spam or non-spam based on the textual content of the
e-mails given a set of labeled e-mails represents a prototypical supervised text classification
problem. The idea is to learn a classifier or a filter from a sample of labeled e-mails, which
when applied to unlabeled e-mails assigns the correct labels to them.

Let X be the set of all possible e-mails and Y = {+,−} be the set of possible labels with
the understanding that spam is identified by the label +. The problem of supervised e-mail
classification can then be defined as follows:

Definition 1 (Supervised e-mail classification) Given a set of training e-mails L =
{(xi , yi )}Ni=1 and a set of test e-mails U , both drawn from X × Y according to an unknown
probability distribution p(x, y), learn the target function �̄(x) : X → Y that maximizes a
performance score computed from all (x, y) ∈ U .

The joint probability distribution of e-mails and their labels, p(x, y), completely defines
the e-mail classification problem. It captures any selection bias and all uncertainties (e.g.
label noise) in the concept of spam and non-spam in L and U . Thus, the e-mail classification
problem can be solved by estimating the joint distribution from the training data. The learned
target function can then be defined as

�̄(x) = y = argmax
v∈{+,−}

p̄(x, v)

where p̄(x, v) denotes the estimate of the joint probability p(x, v).
Since p(x, y) = p(x |y)p(y) and p(x, y) = p(y|x)p(x), it is customary and easier to

estimate the component distributions on the right-hand sides rather than the full joint distribu-
tion directly. Given these decompositions of the joint distribution, the learned target function
can be written in one of the following ways:

�̄(x) = y = argmax
v∈{+,−}

p̄(x |v) p̄(v) (1)

�̄(x) = y = argmax
v∈{+,−}

p̄(v|x) (2)
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Equation 1 represents a generative approach to supervised learning where the class prior
and class-conditional distributions are estimated. It is called generative because these two
distributions can be used to generate the training data. Equation 2 represents a discrimina-
tive approach to supervised learning where the posterior distribution of the class given the
e-mail is estimated directly. Notice that in the discriminative approach, estimating the prior
distribution of e-mails p̄(x) is not necessary because the classification of a given e-mail x
depends on the posterior probability of the class given the e-mail only.

The performance score quantifies the utility of the learned target function or classifier.
Typically when evaluating spam filters, the performance score is taken to be the accuracy
and/or AUC value (area under the ROC curve) of the classifier. The AUC value is considered
as a more robust measure of classifier performance since it is not based on a single decision
boundary [6,17]. In supervised learning, only the labeled e-mails in L are available to the
learner, and the learned target function is evaluated on the e-mails in U .

2.2 Distribution shift and gray e-mails

In the previous subsection, it was assumed that the training and test data, L and U , follow the
same probability distribution p(x, y). This assumption is not valid in many practical settings,
where the training data come from publicly available repositories and the test data represent
e-mails belonging to individual users. More specifically, the joint distribution of e-mails and
their labels in L , pL (x, y) is not likely to be identical to that in U, pU (x, y). This arises
from the different contexts (e.g. topics, languages, concepts of spam and non-spam, prefer-
ences) of the two data sets. Similarly, if Ui and U j are the test sets belonging to user i and j ,
respectively, then we cannot expect the joint distribution of e-mails and their labels in these
two sets to be identical.

Definition 2 (Distribution shift) Given sets of labeled e-mails L , Ui , and U j , there
exists a distribution shift between any two sets if any of the probability distributions
p(x, y), p(x |y), p(y|x), p(x), and p(y) are not identical for the two sets. The extent of
distribution shift can be quantified in practice by information divergence measures such as
Kullback–Leibler divergence (KLD) and total variation distance (TVD).

Because of distribution shift, it is likely that the learned target function will misclassify
some e-mails, especially when the change in distribution occurs close to the learned decision
boundary. In any case, a distribution shift will impact performance scores like the AUC value
that are computed by sweeping through all decision boundaries.

Distribution shift can be quantified by KLD [9,47] and TVD [41], which are defined
and used in Sect. 6. The extent of distribution shift can also be visualized from simple fre-
quency graphs. Figure 1 illustrates shift in the distribution p(x |y) between training data and
a specific user’s e-mails (test data). The top two plots show the probability of terms in spam
(left plot) and non-spam (right plot) e-mails in the training data, while the middle two plots
show the same distributions for an individual user’s e-mails. The bottom two plots show the
corresponding difference in distributions between the training and individual user’s e-mails.
Figure 2 shows the difference in distributions of p(x |y) over two time periods. These figures
illustrate the presence of distribution shift in practical e-mail systems.

A specific consequence of distribution shift is that of gray e-mail. If the distribution p(y|x)

in Ui and U j is different to such an extent that the labels of some e-mails are reversed in the
two sets, then these e-mails are called gray e-mails. They are referred to as gray because they
are considered non-spam by some users and spam by other users.
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Fig. 1 Shift in p(x |y) between training and test data (individual user’s e-mails) (ECML-A data)

Definition 3 (Gray e-mail) An e-mail x is called a gray e-mail if its label in Ui and U j is
different. Gray e-mails can be identified in practice by finding highly similar e-mails in Ui

and U j that have different labels.

Typical examples of gray e-mails include mass distribution e-mails (e.g. newsletters,
promotional e-mails) that are considered as spam by some but non-spam by others.

2.3 Global versus personalized spam filtering

The issue of global versus personalized spam filtering is important for e-mail service provid-
ers (ESPs). ESPs can serve thousands and millions of users and they seek a practical trade-off
between filter accuracy and filter efficiency (primarily related to filter size). A personalized
spam filtering solution, for example, may not be practical if its implementation takes up
too much memory for storing and executing the filters for all users. A global spam filtering
solution, on the other hand, may not be practical if it does not provide accurate filtering for
all users. Thus, robustness and scalability are two significant characteristics desirable in a
spam filter or classifier. If a filter is robust, then a global solution may provide acceptable
filtering; otherwise, a personalized solution may be needed, but then it has to be scalable for
it to be practically implementable.

In order to gain a better understanding of the suitability of personalized and global spam
filtering solutions, it is important to know the settings under which each can be applied.
Table 1 shows the learning settings under which global and personalized spam filtering can
be applied. The first column indicates that a supervised global filter is possible, whereas
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Fig. 2 Difference in p(x |y) for e-mails from two different time periods (ECUE-1 data)

Table 1 Global and personalized spam filtering options (S’vised = Supervised)

S’vised Semi-S’vised Semi-S’vised + Feedback Hybrid

Global � � � �
Personalized X � �

supervised personalized filtering is not possible. This is because only the training data (L)
are available to the learner while the labels of the e-mails belonging to individual users are
not. Semi-supervised learning can be adopted for both global and personalized filtering solu-
tions. Under this learning setting, the e-mails belonging to the users (without their labels)
are available during the learning process in addition to the training data L . The actual way
in which the unlabeled e-mails are utilized can vary from algorithm to algorithm. The third
column indicates that both personalized and global filtering can be applied when users are
requested to label some e-mails that belong to them. These labeled e-mails are then used
during the learning process to build global or personalized filtering solutions. This strategy,
however, is not automatic and places an additional burden on users in providing feedback
on the received e-mails. Certain hybrid global/personalized and supervised/semi-supervised
filtering solutions are also possible.

In this work, we focus on automatic supervised and semi-supervised learning for global
and personalized spam filtering. This is the most desirable setting for an ESP. Semi-supervised
global and personalized spam filtering can be defined as follows:
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Definition 4 (Semi-supervised global and personalized e-mail classification) Given a set of
labeled e-mails L (training data) and M ≥ 1 sets of labeled e-mails Ui (e-mails belonging to
user i = 1, 2, . . . , M) drawn from X × Y according to (unknown) probability distributions
pL (x, y) and pUi (x, y), respectively, then

(a) a semi-supervised global filter learns the single target function �̄(x) : X → Y from
L and Ui (without their labels) that maximizes a performance score computed from all
(x, y) ∈⋃

Ui ;
(b) a semi-supervised personalized filter learns M target functions �̄i (x) : X → Y from

L and Ui (without their labels) that, respectively, maximizes a performance score com-
puted from all (x, y) ∈ Ui .

The joint probability distributions pL (x, y) and pUi (x, y) are likely to be different from one
another because of the differing contexts of the training data and the user’s e-mails. Given
this reality, it is unlikely that a single global filter trained on L only (supervised learning) will
perform highly for all users, unless it is robust to shifts in distributions. Similarly, a semi-
supervised approach, whether global or personalized, is likely to do better than a supervised
approach as it has the opportunity to adapt to the users (unlabeled) e-mails. However, such
an approach needs to be scalable and effective for its implementation at the ESP’s end.

For semi-supervised learning, in addition to the training data L , the e-mails in U (without
their labels) are also considered by the learner. In such a setting, the learned target function
can be evaluated on the e-mails in U , as in the supervised learning setting. A better evalu-
ation strategy, especially considering that a spam filter may not be updated continuously, is
to evaluate on a randomly sampled hold out from U, G ⊂ U , with the learner seeing the
unlabeled e-mails U ′ = U\G, and the learned target function tested on the e-mails in G,
which can be referred to as the generalization data.

2.4 Semi-supervised global versus personalized spam filtering

Which semi-supervised filtering solution is better: global or personalized? This question is
difficult to answer in general as it depends on the algorithm and its robustness and scalability
characteristics. It also depends upon the extent of the distribution shifts among L and Ui .
In this section, we try to get a better understanding of this question under certain extreme
distribution shift scenarios.

Let pUi (x) and pUi (y|x) be probability distributions in set Ui belonging to user i .
Given this probabilistic viewpoint, four different scenarios can be defined: (1) pUi (x) �∼=
pU j (x),∀i �= j and pUi (y|x) �∼= pU j (y|x),∀i �= j , (2) pUi (x) ∼= pU j (x),∀i, j and
pUi (y|x) �∼= pU j (y|x),∀i �= j , (3) pUi (x) �∼= pU j (x),∀i �= j and pUi (y|x) ∼= pU j (y|x),

∀i, j , and (4) pUi (x) ∼= pU j (x),∀i, j and pUi (y|x) ∼= pU j (y|x),∀i, j . The binary operator
∼= indicates that the shift between the two probability distributions is minor (i.e. the two distri-
butions are approximately identical). Similarly, the binary operator �∼= indicates that the shift
between the two probability distributions is significant. For presentation convenience, opera-
tors∼= and �∼= are read as “identical” (“no distribution shift”) and “not identical” (“distribution
shift exists”), respectively. Whenever a distribution is identical among the users, it is assumed
that it is the same distribution as that in the training data. Whenever a distribution is not iden-
tical among the users, it is assumed that all are different from that in the training data.

Scenario 1 is a difficult setting in which the users’ e-mails and labels given e-mails both
follow different distributions. For this scenario, it is expected that a personalized spam filter-
ing solution will perform better as learning multiple joint distributions is difficult for a single
algorithm, as would be required in a global filtering solution. An extreme case of this scenario
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is when the vocabularies of e-mails for all the users are disjoint (e.g. when different users
use different languages). In this setting, the size of the global filter will be identical to the
sum of the sizes of the personalized filters. A similar statement can be made about scenario
2 regarding filtering performance. However, for this scenario, the size of each personalized
filter will be identical to the size of the global filter. The problem of gray e-mails is likely to
be present in scenarios 1 and 2, since in these scenarios, the distribution pUi (y|x) is different
between the users. The prevalence of gray e-mails suggests the preference of a personalized
filtering solution. Scenario 3 does not involve concept shift while the distribution of e-mails
is not identical across all users. For this scenario, which manifests as covariate shift in vector
space representations, a global filter (built using all unlabeled e-mails) is expected to perform
better especially when the distribution of e-mails is not very different. Scenario 4 represents
a conventional machine learning problem with no distribution shift among the training and
test data. Here, a global filter will be better in terms of both performance and space.

The scenarios described in the previous paragraph are based on a discriminative viewpoint
of the e-mail classification problem. Similar scenarios can also be defined with a generative
viewpoint using probability distributions p(x |y) and p(y).

Equations 1 and 2 define generative and discriminative probabilistic classifiers, respec-
tively, for spam filtering. When there is no distribution shift, the probability estimates on the
right-hand sides are based on the training data. On the other hand, when distribution shift
exists the probability estimates must be based on the test data (Ui ). However, the labels in the
test data are not available to the learner, and it provides information about p(x) only. When
there is no shift in p(y|x) and training data are abundant, a discriminant function learned
from the training data will perform well on the test data, irrespective of the shift in p(x).
However, when the distribution p(y|x) changes from training to test data, the discriminant
function will require adaptation. Similarly, when the data generation process changes from
training to test data, a generative classifier will require adaptation. Our approach, which is
described in detail in Sect. 4, uses local and global discrimination models with semi-super-
vised adaptation of the models on the test data. The local model takes advantage of generative
probabilities to discover discriminating patterns. The global model then performs pattern-
based classification. This approach is flexible and is better able to adapt to distribution shift
between training and test data.

3 Related work

In this section, we build the contextual background and motivation of our work by discussing
the related work in the literature. For presentation convenience, we divide the discussion
into two subsections: the first subsection covers work that focuses on spam filtering and the
second covers work that focuses on relevant data mining and machine learning approaches.

3.1 Spam filtering

E-mail spam continues to be a menace that costs users, businesses, and service providers
billions of dollars annually [4,26]. The problem of e-mail spam has engendered an industry
sector that provides anti-spam products and services [49]. The spam generating commu-
nity is also vibrant, as it develops new strategies and tools to distribute spam [68]. Many
technological and non-technological measures have been developed to combat spam [15].
Among the technological measures, content-based filtering has proven to be a critical anti-
spam measure. However, content-based spam filtering is challenging due to the nature of
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e-mail spam. Some of these challenges are highlighted by Fawcett [24] as: (1) changing
proportions of spam and non-spam e-mails, with time and with usage context (e.g. specific
user). (2) Unequal and uncertain costs of misclassifications, making it difficult to evaluate
the utility of spam filtering solutions. (3) Differing concepts of spam and non-spam e-mails
among users, and (4) adversarial nature of spam, where spammers are continuously trying
to evade spam filters. Challenges 1, 3, and 4 can be grouped under the general challenge
of handling distribution shift in e-mail systems, as discussed in the previous section. In this
work, we do not directly address challenge 2, although we do use the AUC (area under the
ROC curve) value, in addition to filtering accuracy, for evaluating filtering performance. The
AUC value is considered to be a robust measure of classifier performance that is often utilized
for evaluating and comparing spam filters [6,17].

In recent years, there has been growing interest in personalized spam filtering where spam
filters are adapted to individual user’s preferences [12,13,27,37,39,66]. The adaptation is
done in an effort to handle distribution shift between training e-mails and individual user’s
e-mails, which can cause a single global filter for all users to perform poorly. Personalized
spam filtering solutions can be deployed at the client-side (user) or at the service-side (e-mail
service provider or ESP). Effective service-side personalized spam filtering requires that
the personalized filter be lightweight and accurate for it to be practically implementable for
millions and billions of users served by the ESP [46].

Some solutions for personalized spam filtering rely upon user feedback regarding the
labels of their e-mails [12,27,66,67]. This strategy burdens the e-mail user with the addi-
tional task of aiding the adaptation of the spam filter. Semi-supervised approaches that do not
require user feedback have also been presented [7,13,37,39]. Junejo et al. [39] and Junejo
and Karim [37] describe a statistical approach, called PSSF (personalized service-side spam
filter) that transforms the input space into a two-dimensional feature space in which a linear
discriminant is learned. Personalization is done by updating the transformation and linear
discriminant on the (unlabeled) user’s e-mails. In this paper, we extend our earlier work by
developing a theoretical understanding of PSSF and presenting comprehensive evaluations
of PSSF on various distribution shift scenarios including gray e-mail problem. To the best
of our knowledge, this is the first time that a specific filter has been evaluated under differ-
ent settings in a single paper. Semi-supervised learning approaches for handling covariate
shift have been presented by Bickel and Scheffer [7] and Bickel et al. [8]. Their approaches
assume that the vocabulary of terms and the probability distribution p(y|x) are identical in
the training and test data. Our approach makes none of these assumptions and can handle
vocabulary changes easily since term space is transformed into a feature space via information
pooling.

The notion of concept drift is closely related to distribution shift with the implicit under-
standing that distribution shift occurs continuously over time. Delany et al. [20] propose a
case-based reasoning approach for handling concept drift in e-mail systems. Their strategy
for maintaining the case base requires knowledge of the correct labels. Ensemble approaches
are known to be robust to drifting data. The ensemble update process can be supervised
[21] or semi-supervised [13,40]. Cheng and Li [13] present a graph-based semi-supervised
approach combining support vector machine (SVM), naive Bayes classifier, and rare word
distribution for personalized spam filtering. Katakis et al. [40] address the problem of recur-
ring contexts in e-mail systems by presenting an ensemble method in which each classifier
in the ensemble models a particular context. Our local model uses an ensemble approach for
constructing features from discriminating terms while we adopt the naive semi-supervised
learning approach for adaptation [70].
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3.2 Data mining and machine learning

The data mining and machine learning literature has extensive coverage of learning para-
digms and problem settings appropriate for spam filtering. A comprehensive discussion of
all related areas is beyond the scope of this paper. We focus on key contributions and areas
that have direct relevance to our work in this paper.

The literature on text classification has direct relevance to content-based spam filtering.
A survey of supervised text classification is given by Sebastiani [64]. Supervised text clas-
sifiers can be based on generative or discriminative learning. The most common generative
classifier is naive Bayes [45,65]. This classifier results from the application of the Bayes
rule with the assumption that each variable is independent of the others given the class
label. Another successful probabilistic classifier, which has similarities to naive Bayes [36],
is maximum entropy [59]. The maximum entropy classifier estimates the joint probability
distribution by maximizing its entropy constrained by the empirical distribution. The most
popular discriminative text classifier is SVM [33,35,61]. SVM, which is based on statistical
learning theory and structural risk minimization, learns a maximum margin linear discrimi-
nant in a (possibly) high-dimensional feature space. The balanced winnow is another example
of a discriminative classifier that learns a linear discriminant in the input space by minimizing
the mistakes made by the classifier [18].

Over the years, there has been some interest in combining generative and discrimina-
tive learning for classification [30,38,58,62]. These classifiers try to exploit the strengths
of generative and discriminative learning by first learning the data distribution and then
building a discriminative classifier using the learned distribution. Several variants of this
general concept have been explored with promising results. Our work extends the super-
vised text classification algorithm presented by Junejo and Karim [38] to semi-supervised
classification of e-mails. Although the algorithms presented in this work are not truly hybrid
generative/discriminative in nature, they have close correspondence to such algorithms, as
discussed in Sect. 4.

The semi-supervised learning paradigm was originally proposed for improving classifier
performance on a task when labeled data are limited but unlabeled data are plentiful for the
task. For this setting, several approaches have been proposed such as generative mixture mod-
els, self-training, co-training, and graph-based propagation [72,73]. In recent years, however,
all approaches that rely upon labeled and unlabeled data are considered to be semi-super-
vised, regardless of whether their problem settings and motivations are identical to those
proposed for the paradigm originally. As such, semi-supervised learning has been applied
to problems involving distribution shift. Xue and Weiss [70] investigate quantification and
semi-supervised learning approaches for handling shift in class distribution. Bickel et al. [8]
present a discriminative learning approach for handling covariate shift. It should be noted
that for handling covariate shift, quantification is not necessary as p(x) can be estimated
from the unlabeled data. Another machine learning paradigm with relevance to personalized
spam filtering is transfer learning. Transfer learning involves the adaptation of a classifier for
one task to a related task, given data for both tasks. Many transfer learning approaches are
semi-supervised requiring only unlabeled data for the new task [63,69].

Recently, there has been much interest in the domain adaptation problem, where a clas-
sifier is adapted from a source domain to a target domain [32]. The target domain data
may be labeled or unlabeled. Blitzer et al. [10] present a domain adaptation approach based
on learning frequently occurring features (pivot features) in the source and target domains.
The weights of the learned classifiers are then used to transform the input representation
into a lower-dimensional feature space in which the task classifier is built. The importance of
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having a feature space in which the two domains are less different is highlighted by Ben-David
et al. [5].

Building global models from local patterns is a promising approach to classification [11,
43,44,56]. This approach, often called the LeGo (from local patterns to global models)
framework for data mining, focusses on finding relevant patterns in data that are then used
as features in global models of classification. Local patterns can be model-independent or
model-dependent [11]. Also, it is desirable that these patterns form a non-redundant and opti-
mal set or pattern team [43]. Our local patterns (significant term sets) are model-dependent
as they are based on discrimination information. Furthermore, our local patterns form pattern
teams based on the relative risk statistical measure. Our global model is a linear classifier
that operates on features derived from the pattern teams. We also relate our local and global
approach to hybrid generative/discriminative models for classification.

In data mining research, there is growing reliance on statistically sound measures for
quantifying the relevance of patterns [52]. Efficient algorithms for discovering risk patterns,
defined as itemsets with high relative risk, are discussed by Li et al. [53], while direct dis-
covery of statistically sound association rules is presented by Hämäläïnen [28]. The use of
statistical measures of association, such as relative risk, odds ratio, and risk difference, is
motivated from biomedical studies where they have been used widely for some time [29,50].
Such measures have also been used in the language processing literature for quantifying term
association [14].

A statistical model of text classification tasks is presented by Joachims [35]. Based on
this model, he develops a characterization of the generalization performance of an SVM. He
highlights that redundancy (multiple terms describing a specific class), discriminative power
of terms (and term sets), and high frequency terms are desirable for robust classification.
Statistical measures for term selection have been investigated by Forman [25], while term
weighting with a relative risk variant for naive Bayes classification has been proposed by
Kim et al. [42]. The idea of discriminative term weighting for text classification is introduced
by Junejo and Karim [38]. Their algorithm, called DTWC, uses relative risk, log relative risk,
or Kullback–Leibler divergence (KLD) to quantify the discrimination information provided
by terms, which is then used to construct a two-dimensional feature space for linear classifi-
cation. They report robust performance on text classification tasks, especially when using the
relative risk discriminative term weighting strategy. More recently, Malik et al. [55] adopt
a similar approach for text classification, relying upon information gain for term weighting
and classifying directly from feature scores. The work presented in this paper is motivated by
the robustness of relatively simple statistical models for text classification, and it extends the
DTWC algorithm for semi-supervised learning and evaluation under different distribution
shift scenarios.

4 DTWC/PSSF: a Robust and personalizable spam filter

In this section, we describe a robust and personalizable content-based spam filter suitable for
global and personalized filtering of e-mails at the ESP’s end. The filter is robust in the sense
that its performance degrades gracefully with increasing distribution shift and decreasing
filter size. The filter can be used for global as well as personalized filtering and can take
advantage of each user’s e-mails in a semi-supervised fashion without requiring feedback
from the user.

The filter relies upon local and global discrimination models for its robustness and scala-
bility. The key ideas of the supervised filter are the following: (1) identification of significant
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content terms based on the discrimination information provided by them, quantified by their
relative risk in spam and non-spam e-mails (called their discriminative term weights), (2)
discrimination information pooling for the construction of a two-dimensional feature space,
and (3) a discriminant function in the feature space. In a semi-supervised setting, either or
both the local model (the discriminative term weights and the two scores) and the global
model (discriminant function) are updated using the e-mails of each user to personalize the
filter.

We name the supervised filter as DTWC (discriminative term weighting-based classi-
fier) and its semi-supervised extension as PSSF (personalized service-side spam filter) in
accordance with our previous work [37,38].

We start the discussion on DTWC/PSSF by describing the e-mail representation in the
following section. The local and global models in DTWC/PSSF are presented next. These
models are discussed for a supervised setting first followed by their extension to a semi-
supervised setting for building personalized filters. Finally, we interpret and compare our
algorithms with popular generative, discriminative, and hybrid classifiers.

4.1 E-mail representation

DTWC/PSSF is a content-based spam filter. For mathematical convenience, it is assumed
that e-mails are represented in a vector space whose dimensions are the key attributes of
the classification problem. The i th e-mail is defined by the vector xi = 〈xi1, xi2, . . . , xiT 〉,
where T is the size of the vector space and xi j ≥ 0,∀(i, j) is the value of the j th attribute.
Please note that, unlike in the previous sections, an e-mail is denoted by the boldface x.
Typically, each attribute is a distinct term or token (e.g. word) in the e-mails’ contents. Its
value is defined by a term weighting strategy [64]. Our formulation assumes a binary (0/1)
weighting strategy, although this can be extended to term count, term frequency, and term-
frequency–inverse-document-frequency term weighting strategies easily. For simplicity of
presentation, we also use the notation x j (with a single subscript) to denote the j th term of
an e-mail. Moreover, we denote the probability of occurrence of term j as p(x j ).

4.2 Local patterns of spam and non-spam e-mails

DTWC/PSSF is based on a novel local model of spam and non-spam e-mails. The terms
in the vocabulary are partitioned into significant spam and non-spam terms depending on
their prevalence in spam and non-spam e-mails, respectively. The e-mails are considered to
be made up of significant spam and non-spam terms, with each term expressing an opinion
regarding the classification of the e-mail in which it occurs. The overall classification of
an e-mail is based on the aggregated opinion expressed by the significant terms in it. The
discriminative term weight quantifies the discrimination information (or opinion) of a term,
while a linear opinion pool is formed to aggregate the opinions expressed by the terms. The
aggregated opinions (one for spam and one for non-spam class) represent local patterns or
features of an e-mail, learned from the training data, that are input to a global classification
model (described in the next subsection).

4.2.1 Significant spam and non-spam terms

A term j in the vocabulary is likely to be a spam term if its probability in spam e-mails,
p(x j |y = +), is greater than its probability in non-spam e-mails, p(x j |y = −). A term j
is a significant spam (non-spam) term if p(x j |y = +)/p(x j |y = −) > t (p(x j |y = −)/
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p(x j |y = +) > t), where t ≥ 1 is a term selection parameter. Given the above, the index
sets of significant spam and non-spam terms (Z+ and Z−) can be defined as follows:

Z+ =
{

j

∣
∣
∣
∣

p(x j |y = +)

p(x j |y = −)
> t

}

, and (3)

Z− =
{

j

∣
∣
∣
∣

p(x j |y = −)

p(x j |y = +)
> t

}

, (4)

where index j varies from 1 to T . It should be noted that Z+ ∩ Z− = ∅, indicating that a
hard partitioning of terms is done. However, |Z+ ∪ Z−| is generally not equal to T .

The probability ratios in Eqs. 3 and 4 are the relative risks of term j in spam and non-spam
e-mails, respectively. We discuss this aspect in more detail in the following subsection.

The parameter t serves as a term selection parameter and can be used to tune the size
of the spam filter. If t = 1, then all spam and non-spam terms are retained in the signifi-
cant term model. As the value of t is increased, less significant (or less discriminating, as
explained in the next subsection) terms are removed from the model. This is a supervised
and more direct approach for term selection when compared to the common techniques used
in practice like term document frequency and principal component analysis. Effective term
selection is important for creating lightweight personalized filters for large-scale service-side
deployment.

Alternatively, significant spam and non-spam terms can be selected by the conditions
p(x j |y = +) − p(x j |y = −) > t ′ and p(x j |y = −) − p(x j |y = +) > t ′, respectively
(see Eqs. 3 and 4). Here, t ′ ≥ 0 is a term selection parameter, which has the same semantics
as the parameter t discussed above.

The probabilities p(x j |y) are estimated from the training data (the set L of labeled e-mails)
as the fraction of e-mails in which term j occurs:

p̄(x j |y) =
∑

i∈L y xi j

|L y | ,

where L y denotes the set of e-mails in L belonging to class y ∈ {+,−} and |L y | is the number
of e-mails in the set. To avoid division by zero, we assign a small value to the probabilities
that are coming out to be zero.

4.2.2 Discriminative term weighting

E-mails are composed of significant spam and non-spam terms. Each term in an e-mail is
assumed to express an opinion about the label of the e-mail—spam or non-spam. This opinion
can be quantified by discrimination information measures that are based on the distribution
of the term in spam and non-spam e-mails.

If an e-mail x contains a term j (i.e. x j = 1), then it is more likely to be a spam e-mail if
p(x j |y = +) is greater than p(x j |y = −). Equivalently, an e-mail x is likely to be a spam
e-mail if the relative risk for spam of a term j in it is greater than one. This can be expressed
mathematically as

p(y = +|x j )

p(y = −|x j )
∝ p(x j |y = +)

p(x j |y = −)
> 1 (5)
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Given this observation, we define the discriminative term weightw j for terms j = 1, 2, . . . , T
as

w j =
{

p(x j |y = +)/p(x j |y = −) ∀ j ∈ Z+
p(x j |y = −)/p(x j |y = +) ∀ j ∈ Z− (6)

The discriminative term weights are always greater than or equal to 1. The larger the value
of w j the higher is the discrimination information provided by term j . The inclination of the
discrimination information is determined by whether the term is a significant spam term or
a significant non-spam term.

It is worth pointing out the distinction between discriminative term weights (DTWs) and
(document) term weights (TWs). First, DTWs quantify the discrimination information that
terms provide for classification, while TWs quantify the significance of a term within a doc-
ument. Second, DTWs are defined globally for every term in the vocabulary, while TWs are
defined locally for every term in a document. Third, DTWs are computed in a supervised
fashion rather than the usual unsupervised computation of TWs. DTWs are not a substitute
for TWs; they are defined for a different purpose of classification rather than representation.

Relative risk or risk ratio has been used in medical domains for analyzing the risk of a
specific factor in causing a disease [29,52]. This is done as part of prospective cohort studies,
where two groups of individuals, with one group exposed and the other unexposed to the
factor, are observed for the development of the disease. The relative risk of the factor is
determined by the ratio of the proportion of exposed individuals developing the disease to
the proportion of exposed individuals not developing the disease. Here, we adopt the relative
risk for identifying terms that are likely to make an e-mail to be a spam or non-spam e-mail.
We also use the relative risk to quantify the discrimination information provided by a term.

It is interesting to note that the sets of significant spam and non-spam terms (Z+ and Z−)
represent pattern teams [43] for a given value of t . To see this, define q(Z) = ∑

j∈Z w j to
be the quality measure of a set of patterns (terms) defined by the index set Z . Then, it follows
from Eq. 3 that there exists no other set of patterns of size |Z+|with a higher value of q(Z+).
A similar reasoning shows that the set of patterns defined by Z− is a pattern team. In other
words, these sets are optimal and non-redundant with respect to the quality measure. This
quality measure quantifies the collective discriminative power of a set of terms, and a pattern
team with respect to this measure and a value of t will retain maximum discrimination power.
For each e-mail, a feature is constructed from each pattern team by utilizing this definition
of the quality measure, as discussed next.

4.2.3 Linear opinion pooling

The classification of an e-mail depends on the prevalence of significant spam and non-spam
terms and their discriminative term weights. Each term j ∈ Z+ in e-mail x expresses an
opinion regarding the spam classification of the e-mail. This opinion is quantified by the
discriminative term weight w j . The aggregated opinion of all these terms is obtained as the
linear combination of individual terms’ opinions:

Score+(x) =
∑

j∈Z+ x jw j
∑

j x j
(7)

This equation follows from a linear opinion pool or an ensemble average, which is a statis-
tical technique for combining experts’ opinions [2,31]. Each opinion (w j ) is weighted by
the normalized term weight (x j/

∑
x j ) and all weighted opinions are summed yielding an
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Fig. 3 The two-dimensional feature space and the linear discriminant function for e-mail classification

aggregated spam score (Score+(x)) for the e-mail. If a term i does not occur in the e-mail
(i.e. xi = 0), then it does not contribute to the pool. Also, terms that do not belong to set Z+
do not contribute to the pool. Similarly, an aggregated non-spam score can be computed for
all terms j ∈ Z− as

Score−(x) =
∑

j∈Z− x jw j
∑

j x j
. (8)

These scores represent constructed features based on a local model of discrimination.
E-mail classification can be done directly using these scores as follows:

y(x) = argmax
v∈{+,−}

Scorev(x). (9)

In other words, the classification label of a new e-mail x is determined by the greater of the
two scores, spam score or non-spam score.

4.3 Global discriminative model of spam and non-spam e-mails

This section describes a discriminative model that is built using the features found in the
local model. The use of both local and global learning allows greater flexibility in updating
model parameters in the face of distribution shift. It also contributes to the robustness of the
classifier to distribution shift.

The local model yields a two-dimensional feature space defined by the scores, Score+(x)

and Score−(x). In this feature space, e-mails are well separated and discriminated, as illus-
trated in Fig. 3. DTWC/PSSF classifies e-mails in this space by a linear discriminant function:

f (x) = α+ · Score+(x)− Score−(x)+ α0, (10)

where α+ and α0 are the slope and bias parameters, respectively. The discriminating line is
defined by f (·) = 0. If f (·) > 0, then the e-mail is likely to be spam (Fig. 3).

The global discrimination model parameters are learned by minimizing the classification
error over the training data. This represents a straightforward optimization problem that can
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be solved by any iterative optimization technique [54]. DTWC/PSSF’s learned target function
is defined as

�̄(x) = y =
{+ f (x) > 0
− otherwise

(11)

The supervised spam filter DTWC is shown in Algorithm 1.

Algorithm 1 DTWC—Supervised Spam Filter
Input: L (training data – labeled e-mails), U (test data – unlabeled e-mails)
Output: labels for e-mails in U

On training data L
-Build local model

form index sets Z+ and Z− (Eqs. 3 and 4)
compute w j ,∀ j ∈ (Z+ ∪ Z−) (Eq. 6)

transform x �→ [Score+(x) Score−(x)]T , ∀x ∈ L (Eqs. 7 and 8)

-Build global model
learn parameters α+ and α0 (see Eq. 10)

On test data U
-Apply learned models

for x ∈ U do
compute Score+(x) and Score−(x) (Eqs. 7 and 8)
compute f (x) (Eq. 10)
output �̄(x) (Eq. 11)

end for

4.4 Personalization

The previous subsections described a supervised algorithm for spam filtering. This can be
used to build a single global filter for all users given training data (L). A global filtering solu-
tion, however, is not appropriate when there is a distribution shift between the training data
and the individual user’s e-mails. In such a situation, which is common in e-mail systems,
personalization of the filter is required for each user. Since the e-mails of users are unlabeled,
a semi-supervised approach is needed, as discussed in Sect. 2.

DTWC is adapted to an individual user’s e-mails (Ui ) as follows. Use the learned target
function from training data to label the e-mails in Ui . Since labels are now available, update
the local and global models to form a new target function. Use this updated target function
to finally label the e-mails in Ui . This approach corresponds to the naive semi-supervised
learning (SSL) used in Xue and Weiss [70]. The motivation for using naive SSL instead of
more sophisticated approaches (e.g. self-training SSL) are twofold. First, most of the other
approaches are proposed for situations where the training and test data follow the same dis-
tribution. In e-mail systems, on the other hand, the distribution of e-mails in training data can
be significantly different from that in the test data, and this difference is in general not easily
quantifiable. Second, in e-mail systems, distribution shift occurs continuously over time and
it is better to personalize a filter from one time period to another rather than from training data
to current time period. The naive SSL approach decouples the adaptation from the training
data and as such can be performed on the client-side in addition to the service-side.

123



Robust personalizable spam filtering

Algorithm 2 PSSF1/PSSF2—Personalized Spam Filter
Input: L (training data – labeled e-mails), Ui (test data – unlabeled e-mails)
Output: labels for e-mails in Ui

Ui
′ ← Ui labeled with DTWC(L , Ui )

On labeled e-mails Ui
′

-Build local model
-Build global model [PSSF2 Only]

On test data Ui
-Apply learned models

The local model can be updated incrementally as new e-mails are seen by the filter
capturing the changing distribution of e-mails received by the user. The global model can be
rebuilt at periodic intervals (e.g. every week) to cater for significant changes in the distribution
of e-mails.

The semi-supervised version of our filter is called PSSF (personalized service-side spam
filter). We further differentiate between two variants of PSSF as PSSF1 or PSSF2. PSSF1 is
the variant in which only the local model (the spam and non-spam scores) is updated over
the user’s e-mails (Ui ) and the global model is not updated from the model learned over the
training data. PSSF2 is the variant in which both the local and global models are updated
over the user’s e-mails (Ui ). PSSF1/PSSF2 is described in Algorithm 2.

4.5 Interpretations and comparisons

In this section, we provide a broader interpretation of our spam filter by comparing it with
generative, discriminative, and hybrid classifiers. We also propose a general framework for
building adaptable classifiers and relate it to the local pattern discovery and global modeling
framework of data mining.

4.5.1 Naive Bayes classifier

The naive Bayes classifier is popularly used for text and content-based e-mail classification.
Using the Bayes rule, the odds that an e-mail x is spam rather than non-spam can be written
as

p(y = +|x)

p(y = −|x)
= p(x|y = +)p(y = +)

p(x|y = −)p(y = −)

Assuming that the presence of each term is independent of others given the class, the e-mail
risk on the right-hand side become a product of terms’ risks. The naive Bayes classification
of the e-mail x is spam (+) when

p(y = +)

p(y = −)

∏

j

(
p(x j |y = +)

p(x j |y = −)

)x j

> 1 (12)

Equivalently, taking the log of both sides, the above expression can be written as

log
p(y = +)

p(y = −)
+

∑

j

x j log
p(x j |y = +)

p(x j |y = −)
> 0 (13)
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This equation computes an e-mail score, and when this score is greater than zero, the naive
Bayes classification of the e-mail is spam. Notice that only those terms are included in the
summation for which x j > 0.

Comparing the naive Bayes classifier, as expressed by Eq. 13, with DTWC/PSSF yields
some interesting observations. The global discriminative model of DTWC/PSSF is similar
to Eq. 13 in that the structure of the spam and non-spam score computations (Eqs. 7 and 8)
is similar to the summation in Eq. 13, and the bias parameter α0 corresponds to the first term
in Eq. 13.

However, there are also significant differences between DTWC/PSSF and naive Bayes.
(1) DTWC/PSSF partitions the summation into two based on discrimination information and
then learns a linear discriminative model of the classification. Naive Bayes, on the other hand,
is a purely generative model with no discriminative learning of parameters. (2) DTWC/PSSF,
as presented in this work, involves summation of terms’ relative risks rather than terms’ log
relative risks as in naive Bayes. However, as discussed in Junejo and Karim [38], other mea-
sures of discrimination information can be used instead of relative risk. (3) The spam and
non-spam scores in DTWC/PSSF are normalized (for each e-mail) using the L1 norm. This
normalization arises naturally from linear opinion pooling. Document length normalization
is typically not done in naive Bayes classification, and when it is done, the L2 norm is used.
It has been shown that performing L1 document length normalization improves the precision
of naive Bayes for text classification [45].

4.5.2 Discriminative and hybrid classifiers

Popular discriminative classifiers learn a hyperplane or linear discriminant in the space rep-
resenting the objects to be classified (e-mails in our case). Let φ : X → V be the function
that maps an e-mail x from the T -dimensional input space to v in a d-dimensional feature
space. Then, a hyperplane in the feature space is defined by

d∑

j=1

α jv j + α0 = 0, (14)

where α j ( j = 1, 2, . . . , d) are the parameters of the hyperplane.
DTWC/PSSF’s global model is also a linear discriminant. However, this discriminant func-

tion is learned in a two-dimensional feature space defined by spam and non-spam scores and
has only two parameters. Input-to-feature space transformation is typically not done for dis-
criminative classifiers like balanced winnow/perceptron and logistic regression. In SVM, this
transformation is done implicitly through the inner product kernel k(x, x′) = 〈φ(x), φ(x′)〉,
where φ(·) is the function that maps from input to feature space.

The input-to-feature space transformation in DTWC/PSSF can be written as

φ(x) = [φ1(x) φ2(x)]T = [
Score+(x) Score−(x)

]T
, (15)

where the scores are defined in Eqs. 7 and 8. This represents a linear mapping from a T -
dimensional input space to a two-dimensional feature space. The kernel is then defined as
follows (after substitution and using vector notations):

k(x, x′) = φT (x)φ(x′) = x̄T W+x̄′ + x̄T W−x̄′, (16)

where W+ = w+w+T and W− = w−w−T are T × T -dimensional matrices and x̄ =
x/‖x‖L1, x̄′ = x′/‖x′‖L1. The elements of vector w+ (vector w−) are equal to w j (Eq. 6)
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when j ∈ Z+ ( j ∈ Z−) and zero otherwise. Noting that terms in the vocabulary are hard-
partitioned, we can write

k(x, x′) = x̄T Wx̄′ (17)

where W =W+ +W−.
The following observations can be made from the above discussion. (1) DTWC/PSSF

performs a linear transformation from the input space to a lower dimension feature space.
This feature space is formed in such a way that the discrimination between spam and non-
spam e-mails is enhanced. Recently, it has been shown that feature space representations are
critical to making classifiers robust for domain adaptation [1,5]. (2) The matrices W, W+,
and W−, which are symmetric, are smoothing matrices. The associated kernel is positive
semi-definite. (3) The transformation is supervised, requiring information about class labels.

Jaakkola and Haussler [30] discuss a hybrid classifier in which the kernel function is
derived from a generative model. The input-to-feature space transformation is based on the
Fisher score and the resulting kernel is a Fisher kernel. Our input-to-feature space transforma-
tion is based on discrimination scores computed from discrimination information provided
by the terms in the e-mails.

Raina et al. [62] present another hybrid classifier in which the input space (defined by the
terms) is partitioned into two sets (based on domain knowledge) and the weights for each set
of class-conditional distributions are learned discriminatively. DTWC/PSSF’s global model
parameters are similar in purpose; however, the two sets of class-conditional distributions
in DTWC/PSSF correspond to the sets of significant spam and non-spam terms, which are
determined from labeled e-mails.

4.5.3 Classifier framework

DTWC/PSSF are specific algorithms based on a general classifier framework. This frame-
work emerges when the specific decisions made for DTWC and PSSF are generalized.
Specifically, the classifier framework contains the following components: (1) Identifica-
tion of descriptors or experts (we use terms), (2) quantification of descriptors’ or experts’
discrimination opinions (we use terms’ relative risk), (3) combining experts’ opinions (we
use a linear opinion pool), (4) transformation from input to feature space (we do a linear trans-
formation), (5) discriminative classification in the feature space (we use a linear discriminant
function), and (6) classifier adaptation for semi-supervised learning (we adapt naive SSL).
This is a rich framework worth exploring in future.

5 Evaluation setup: datasets and algorithms

We present extensive evaluations of DTWC, PSSF1, and PSSF2 on six spam filtering datasets
and compare their performances with four other classifiers. We present results for a single
global filter trained in a supervised fashion on the training data, as well as for personalized
filters trained in a semi-supervised fashion. We also evaluate the robustness and scalability
characteristics of our algorithms in several ways: (1) by varying distribution shift, (2) by
evaluating performance on gray e-mails, (3) by testing on unseen e-mails, and (4) by varying
filter size. For all the algorithms, we report filtering performance with the percent accuracy
and the percent AUC value. Finally, we present significance test results showing that our
algorithms are significantly better than the others.
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Table 2 Evaluation datasets and their characteristics

ECML-A ECML-B ECUE-1 ECUE-2 PU1 PU2

No. of training e-mails 4,000 100 1,000 1,000 672 497

No. of users/test sets 3 15 1 1 1 1

No. of e-mails per user/test set 2,500 400 2,000 2,000 290 213

Distribution shift Yes Yes (temporal) No

In this section, we describe the datasets and the setup for the comparison algorithms.
The details of the various evaluations and their results are presented in the next section.

5.1 Datasets

Our evaluations are performed on six commonly used e-mail datasets: ECML-A, ECML-B,
ECUE-1, ECUE-2, PU1, and PU2. Some characteristics of these datasets, as used in our
evaluations, are given in Table 2. The selected datasets vary widely in their characteristics.
Two datasets have distribution shift between training and test sets and among different test
sets. Two datasets have concept drift from training to test sets, and the remaining two datasets
have no distribution shift between training and test sets. The number of e-mails in training
and test sets varies greatly in the selected datasets. The number of e-mails varies from 100 to
4,000 in the training sets and from 213 to 2,500 in the test sets. In some datasets, the size of
the training set is larger than the size of the test set, while in others, it is the opposite. These
datasets are described in greater detail subsequently.

5.1.1 ECML-A and ECML-B datasets

The ECML-A and ECML-B datasets correspond to the datasets for task A and task B, respec-
tively, released for the 2006 ECML-PKDD Discovery Challenge [6]. Both datasets contain
a generic set of e-mails for training and several sets of e-mails belonging to individual users
for testing. All sets have an equal number of spam and non-spam e-mails. Distribution shift
exists between the training and test sets and among the test sets.

The composition of the training sets is as follows: 50% spam e-mails sent by blacklisted
servers of the Spamhaus project, 40% non-spam e-mails from the SpamAssassin corpus, and
10% non-spam e-mails from about 100 different subscribed English and German newsletters.
The composition of the test sets (users’ e-mails) is more varied with non-spam e-mails from
distinct Enron employees in the Enron corpus and spam e-mails from various sources.

The number of e-mails in the training and test sets is much larger in ECML-A than in
ECML-B. Furthermore, in ECML-B, the number of e-mails in the training set is less than the
number of e-mails in the test sets. As such, the ECML-B dataset represents a more challenging
personalized spam filtering problem than that captured in the ECML-A dataset.

E-mails in these datasets are represented by a list of tokens and their counts within the
e-mail content (including the Subject field in the headers). This representation is based on a
common dictionary (vocabulary) for all e-mails in ECML-A and a common dictionary for
all e-mails in ECML-B. For more details regarding these datasets, including preprocessing
steps, refer to Bickel [6].
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5.1.2 ECUE-1 and ECUE-2 datasets

The ECUE-1 and ECUE-2 datasets are derived from the ECUE concept drift 1 and 2 datasets,
respectively [19]. Each dataset is a collection of e-mails received by one specific user over
the period of one year. The order in which the e-mails are received is preserved in these
datasets. The training sets contain 1,000 e-mails (500 spam and 500 non-spam) received dur-
ing the first 3 months. The test sets contain 2,000 e-mails (1,000 spam and 1,000 non-spam)
randomly sampled from the e-mails received during the last 9 months. As such, concept drift
exists from training to test sets in these datasets.

These datasets are not preprocessed for stop words, stemming, or lemmatization. E-mail
attachments are removed before parsing but any HTML text present in the e-mails is included
in the tokenization. A selection of header fields, including the Subject, To and From, is also
included in the tokenization. These datasets contain three types of features: (a) word fea-
tures, (b) letter or single character features, and (c) structural features, e.g. the proportion of
uppercase or lowercase characters. For further details, refer to Bickel [19].

5.1.3 PU1 and PU2 datasets

The PU1 and PU2 datasets contain e-mails received by a particular user [3]. The order in
which the e-mails are received is not preserved in these datasets. Moreover, only the earliest
five non-spam e-mails from each sender are retained in the datasets. Attachments, HTML
tags, and duplicate spam e-mails received on the same day are removed before preprocessing.
The PU1 dataset is available in four versions depending on the preprocessing performed. We
use the version with stop words removed. The PU2 dataset is available in the bare form only,
i.e. without stop word removal and lemmatization.

The PU1 dataset contains 481 spam and 618 non-spam e-mails available in 10 partitions or
folders. We select the first 7 folders for training and the last 3 for testing. Within the training
and test sets, we retain 336 and 145 e-mails, respectively, of each class for our evaluation.
The PU2 dataset is also available in 10 folders with the first 7 folders selected for training
and the last 3 for testing. There are 497 training e-mails (399 are non-spam) and 213 test
e-mails (171 are non-spam). For this dataset, we do not sample the e-mails to achieve even
proportions of spam and non-spam e-mails because doing so produces very small training
and test sets.

5.2 Algorithms

We compare the performance of our algorithms with Naive Bayes (NB), Maximum Entropy
(ME), Balanced Winnow (BW), and Support Vector Machine (SVM). Two of these are gen-
erative (NB and ME) and two are discriminative (SVM and BW) in nature. For NB, ME, and
BW, we use the implementation provided by the Mallet toolkit [57]. For SVM, we use the
implementation provided by SV M Light [34].

E-mails are represented as term count vectors for the NB, ME, BW, and SVM classifiers.
The default algorithm settings provided by Mallet are adopted for NB, ME, and BW. The SVM
(using SV M Light ) is tuned for each dataset by evaluating its performance on a validation set
that is a 25% holdout of the training set. The SV M Light parameter C that controls the trade-off
between classification error and margin width is tuned for each dataset and each evaluation.
Similarly, we evaluate the performance of SVM with both linear and non-linear kernels and
find the linear kernel to be superior. This observation is consistent with that reported in the
literature [23,51,71]. We perform e-mail length normalization using L2 (Euclidean) norm.
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Table 3 Global spam filtering results for ECML-A dataset

User DTWC NB ME BW SVM

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

1 91.00 96.35 81.24 82.71 62.20 77.32 61.00 66.01 64.56 72.55

2 92.36 97.37 83.80 86.40 68.16 81.19 64.76 69.46 70.08 79.24

3 87.52 94.59 87.88 94.40 78.92 91.13 73.44 78.52 80.44 90.59

Avg 90.29 96.10 84.30 87.83 69.76 83.21 66.40 71.33 71.69 80.79

Bold values signify maximum or best performance

This improves performance slightly from the unnormalized case, as observed by others as
well [23,60,71]. We keep the remaining parameters of SV M Light at default values.

Semi-supervised versions of the comparison algorithms are obtained by adopting the naive
SSL approach (see Sect. 4.4). The semi-supervised versions of these algorithms are identified
as NB-SSL, ME-SSL, BW-SSL, and SVM-SSL.

6 Results and discussion

We evaluate DTWC, PSSF1, and PSSF2 under several settings: global spam filtering, person-
alized spam filtering, varying distribution shift, gray e-mails, generalization to unseen data,
and scalability. We also present statistical significance test results for the tested algorithms
on global and personalized spam filtering.

6.1 Global spam filtering

In this section, we evaluate the performance of DTWC, NB, ME, BW, and SVM for global
spam filtering. Each algorithm is trained on the training data and evaluated on the test set(s).
As such, this represents a supervised learning setting where test data are not available to the
algorithms during training. For this and subsequent evaluations (unless specified otherwise),
the term selection parameter t ′ of DTWC/PSSF is kept equal to zero (or, equivalently, t
is kept equal to one). The effect of varying the term selection parameter is discussed in
Sect. 6.7.

Tables 3, 4, 5, and 6 show the percent accuracy and AUC values of the algorithms on
ECML-A, ECML-B, ECUE (ECUE-1 and ECUE-2), and PU (PU1 and PU2) datasets, respec-
tively. Out of the 44 results (percent accuracy and AUC values), DTWC outperforms the rest
of the algorithms in 29 results. The next best algorithm is ME with 13 out of 44 winning
results, all of them on the ECML-B dataset.

DTWC’s performance is significantly better than the other algorithms on ECML-A,
ECUE-1, ECUE-2, PU1, and PU2 datasets. The ECML-A dataset involves a distribution
shift from training to test sets, where the test sets correspond to e-mails received by different
users. For this dataset, the average percent accuracy and average AUC value of DTWC are
5.99 and 8.27% higher, respectively, than those of the next best filter (NB). The ECUE-1
and ECUE-2 datasets also involve a distribution shift from training to test sets in the form
of concept drift. For these datasets, the percent accuracy and AUC values of DTWC are
at least 3.95 and 6.14% higher, respectively, than the next best results. The PU1 and PU2
datasets involve no distribution shift as their training and test sets are drawn randomly from
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Table 4 Global spam filtering results for ECML-B dataset

User DTWC NB ME BW SVM

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

1 76.00 72.16 57.00 50.24 67.75 87.88 39.75 35.63 49.75 57.8

2 74.50 73.52 54.50 45.22 67.75 82.69 26.50 21.14 44.25 51.73

3 84.50 91.24 67.00 69.77 72.50 81.41 49.00 46.95 63.75 69.20

4 93.50 98.14 73.75 74.52 67.25 81.26 46.50 52.39 53.00 65.33

5 74.25 82.11 68.75 79.26 71.25 83.39 60.00 67.90 64.75 86.28

6 72.25 80.71 63.25 64.49 74.50 81.83 62.25 69.89 68.00 81.78

7 75.25 72.42 62.25 56.43 59.00 73.01 60.00 60.89 54.25 64.11

8 74.50 86.78 58.50 65.27 75.75 86.98 40.75 37.87 65.50 70.53

9 78.75 79.62 61.50 58.97 79.25 89.98 36.00 33.46 62.75 68.28

10 80.00 75.20 58.25 52.56 67.25 87.18 36.00 32.80 46.75 56.57

11 80.25 85.82 62.75 70.71 70.00 83.26 57.75 65.65 65.75 77.29

12 79.75 86.69 69.25 74.99 67.25 81.13 60.25 67.75 64.75 77.94

13 88.75 91.28 70.25 68.70 67.50 80.70 55.00 54.13 66.25 80.19

14 64.75 83.12 58.50 69.62 78.25 86.16 59.75 66.58 71.75 82.19

15 73.25 75.49 65.75 62.64 62.00 81.92 57.50 60.42 54.25 67.93

Avg 78.01 82.29 63.41 64.22 69.81 83.52 49.80 51.56 59.70 70.47

Bold values signify maximum or best performance

Table 5 Global spam filtering results for ECUE-1 and ECUE-2 datasets

Dataset DTWC NB ME BW SVM

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

ECUE-1 92.20 96.88 50.05 50.05 78.3 86.63 83.05 90.74 83.30 89.84

ECUE-2 83.45 98.24 50.00 50.00 79.5 84.54 77.50 83.95 76.95 85.62

Bold values signify maximum or best performance

Table 6 Global spam filtering results for PU1 and PU2 datasets

Dataset DTWC NB ME BW SVM

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

PU1 98.27 99.65 96.55 97.70 96.89 99.48 97.24 99.27 96.21 99.51

PU2 97.18 97.06 87.32 71.24 94.36 96.65 90.61 89.34 88.26 93.60

Bold values signify maximum or best performance

e-mails received by a single user. For these datasets too, DTWC outperforms the others in
both percent accuracy and AUC values.

The ECML-B dataset represents a more challenging spam filtering problem where (1)
distribution shift exists between training and test sets and (2) the training and test sets are
much smaller in size (100 and 400 e-mails, respectively). On this dataset, DTWC comes out
on top in 16 out of 30 results. The next best algorithm is ME with 13 out of 30 winning results.
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Table 7 Personalized spam filtering results for ECML-A dataset

User PSSF1 PSSF2 NB-SSL ME-SSL BW-SSL SVM-SSL

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

1 87.84 98.60 96.68 98.96 81.84 83.71 81.48 81.06 76.28 81.22 64.56 70.66

2 89.92 98.78 97.24 99.60 80.96 82.54 85.76 86.65 77.80 82.71 70.08 79.30

3 97.00 99.43 93.36 98.92 86.36 88.14 85.16 86.02 81.24 85.42 80.44 90.78

Avg 91.58 98.94 95.80 99.16 83.05 84.79 84.13 84.57 78.44 83.11 71.69 80.24

Bold values signify maximum or best performance

This spam filtering setting, however, is unlikely to occur in practice because large quantities
of generic labeled e-mails are readily available for training purposes. When the size of the
training set is larger, as for ECML-A dataset, DTWC outperforms the other algorithms by a
wide margin.

It is worth noting that SVM performs poorly on datasets involving distribution shift. We
study the impact of varying distribution shift on algorithm performance in a subsequent
section.

These results demonstrate the robustness of our algorithm and its suitability as a global
spam filter at the service-side. An extensive evaluation of DTWC for supervised text classifi-
cation is given in Junejo and Karim [38], where it is shown that DTWC performs accurately
on other text datasets as well.

6.2 Personalized spam filtering

In this section, we evaluate the performance of PSSF, NB-SSL, ME-SSL, BW-SSL, and
SVM-SSL for personalized spam filtering. In this setting, the filter that is learned on the
training data is adapted for each test set in a semi-supervised fashion. Performance results
are reported for the personalized filters on their respective test sets.

Tables 7, 8, 9, and 10 show the personalized spam filtering results of the algorithms
on ECML-A, ECML-B, ECUE (ECUE-1 and ECUE-2), and PU (PU1 and PU2) datasets,
respectively. The results demonstrate the effectiveness of personalization for datasets with
distribution shift (ECML-A, ECML-B, and ECUE). For ECML-A dataset, the performance
of both PSSF1 and PSSF2 improves over that of the global spam filter (DTWC), with PSSF2
outperforming the others in 4 results and PSSF1 outperforming the others in the remain-
ing two results. The performance of the other algorithms (except SVM-SSL) also improves
from that of their supervised versions. For ECML-B dataset, PSSF1 has the highest average
percent AUC value while BW-SSL tops the others in average percent accuracy. For ECUE-1
dataset, PSSF1 has the best results while ME-SSL outperforms the others on ECUE-2 data-
set. ME-SSL and BW-SSL have the wining results on PU1 and PU2 datasets, respectively.
In all, PSSF1/PSSF2 outperforms the others in 22 out of 44 results. In most cases, where
our algorithm does not win, the difference in performance with the winner is minor, e.g.
the average accuracy of PSSF1 on the ECML-B dataset is less 1.5% less than the winner,
whereas for NB-SSL and SVM-SSL, they are almost 27 and 30% behind, respectively.

The most surprising results are those of BW-SSL on ECML-B dataset. The performance of
BW jumped by about 40% (on both average accuracy and AUC value) after semi-supervised
learning. Balanced winnow learns a hyperplane by updating its parameters whenever mis-
takes in classification are made. In theory, the hyperplane learned by BW from the training
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Table 8 Personalized spam filtering results for ECML-B dataset

User PSSF1 PSSF2 NB-SSL ME-SSL BW-SSL SVM-SSL

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

1 91.25 94.15 76.75 77.79 57.00 56.28 77.75 85.94 83.75 90.88 49.75 53.42

2 93.75 96.50 78.50 79.54 53.00 54.31 82.75 91.53 93.50 97.31 44.25 50.83

3 93.50 96.29 86.00 93.73 64.00 64.22 92.00 95.83 94.75 98.21 63.75 70.59

4 98.50 99.22 98.25 98.91 69.50 70.23 80.25 87.27 90.75 93.74 53.00 60.37

5 82.75 93.79 74.75 93.12 67.75 68.85 79.25 83.66 75.75 71.11 64.75 81.29

6 76.00 78.65 71.25 78.39 63.50 64.54 92.00 95.05 87.75 86.30 68.00 77.81

7 80.25 92.72 76.25 70.79 63.50 63.74 83.50 91.46 91.00 88.78 54.25 60.66

8 91.50 95.46 80.50 91.62 59.00 60.23 92.25 97.52 87.50 91.31 65.50 72.16

9 92.00 99.32 80.00 92.74 60.75 61.48 89.75 94.29 92.25 94.37 62.75 71.15

10 82.75 98.12 80.00 83.55 56.75 57.39 77.25 86.42 94.25 97.84 46.75 49.20

11 90.75 94.08 80.50 88.91 62.50 64.31 88.00 93.80 94.75 96.19 65.75 74.80

12 85.75 91.26 79.25 86.82 66.75 66.89 82.25 86.65 92.75 94.63 64.75 73.65

13 97.00 98.85 90.50 94.98 68.50 68.54 89.50 96.12 92.25 96.55 66.25 79.00

14 75.50 88.21 65.00 84.46 57.75 58.79 92.25 95.86 86.50 86.06 71.75 82.56

15 89.00 90.52 77.00 79.31 66.50 67.96 74.50 82.36 84.75 78.53 54.25 58.17

Avg 88.01 93.81 79.63 86.31 62.45 63.18 84.88 90.91 89.48 90.78 59.70 67.71

Bold values signify maximum or best performance

Table 9 Personalized spam filtering results for ECUE-1 and ECUE-2 datasets

PSSF1 PSSF2 NB-SSL ME-SSL BW-SSL SVM-SSL

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

ECUE-1 93.60 97.15 93.35 97.12 50.00 50.00 89.25 88.52 81.00 85.80 83.30 89.36

ECUE-2 84.7 96.55 83.45 96.68 50.00 50.00 95.20 98.61 64.25 92.18 76.95 85.20

Bold values signify maximum or best performance

Table 10 Personalized spam filtering results for PU1 and PU2 datasets

PSSF1 PSSF2 NB-SSL ME-SSL BW-SSL SVM-SSL

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

PU1 98.62 99.28 98.27 99.28 97.93 97.87 99.65 99.89 97.58 97.37 96.21 98.66

PU2 96.24 97.43 97.18 96.46 82.62 60.48 99.06 99.63 99.53 99.88 88.26 93.00

Bold values signify maximum or best performance

data should not change during naive SSL. However, in practice, significant improvement is
seen which can be attributed to the poor convergence characteristics (and lack of robustness)
of the BW learning algorithm. This is supported by the observation that SVM and SVM-SSL
perform almost identically.

We compare PSSF’s performance with four published results on ECML-A and ECML-B
datasets in Table 11. Two of these results [16,39] are winning performances of the 2006
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Table 11 Comparison with other published personalized spam filtering results (all numbers are average
percent AUC values)

Algorithm ECML-A ECML-B

PSSF1 98.94 93.81

PSSF2 99.16 86.31

Junejo et al. [39] 98.75 –

Kyriakopoulou and Kalamboukis [48] 97.31 95.08

Cormack [16] 93.00 94.90

Cheng and Li [13] 93.33 –

Bold values signify maximum or best performance

ECML-PKDD Discovery Challenge [6], while Kyriakopoulou and Kalamboukis [48] pres-
ent the best performance on ECML-B dataset later. PSSF outperforms all algorithms on
ECML-A dataset and lags the best performance by 1.27% on ECML-B dataset. Junejo et
al. [39] has the previous best performance on ECML-A dataset (they do not report results
for ECML-B dataset). PSSF1/PSSF2 improves on their algorithm using estimated prob-
abilities rather than occurrence counts for defining the local model. Kyriakopoulou and
Kalamboukis [48] preprocess the dataset by clustering the training data with each test set.
The combined set is augmented with additional metafeatures derived from the clustering.
This combined set is then learned using transductive SVM. This approach is computationally
expensive and non-adaptive. Cormack [16] uses statistical compression models for predicting
spam and non-spam e-mails. His approach is adaptive but the reported performances lag the
best results. Cheng and Li [13] present a semi-supervised classifier ensemble approach for
the personalized spam filtering problem. Their approach is also computationally expensive
when compared to PSSF, and it lags in performance by more than 5% on ECML-A dataset
(they do not report results for ECML-B dataset).

6.3 Statistical significance analysis

We present the results of statistical significance tests that compare the performance of
DTWC/PSSF with the other classifiers on global and personalized spam filtering. Statis-
tical analysis is necessary to ascertain the consistency of the observed performances and to
reject the possibility that they are produced purely by chance. Although numerous statistical
tests have been proposed, Demsar [22] recommends the nonparametric Wilcoxon signed-
ranks test and the nonparametric Friedman’s test (with post hoc analysis) for comparing two
or more classifiers on multiple datasets. We apply these tests separately for performances
measured with accuracy and AUC values. These tests are performed using the SPSS software
version 19.

The Wilcoxon signed-ranks test compares the performance of two classifiers on multiple
datasets by ranking their absolute difference in performance on the datasets. The null hypoth-
esis that the observed differences in performance are insignificant is rejected when the smaller
of the sum of ranks for positive and negative differences is less than a critical value for a spec-
ified confidence level. In our analysis, we perform two tests (one each for accuracy and AUC
values) comparing the differences in performances of DTWC and PSSF with each of the other
classifiers evaluated for global and personalized filtering, respectively (e.g. DTWC is com-
pared with ME, PSSF is compared with ME-SSL). We find that DTWC/PSSF’s performance
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Table 12 Friedman’s test with stepwise step-down post hoc analysis of filters’ performances (accuracy)

Homogeneous Subsets
Subsets

1 2 3 4 5

Classifiera

BW 2.09
SVM 3.31 3.31

SVM-SSL 3.31
NB-SSL 4.04 4.04

NB 4.31 4.31
ME 5.04

DTWC 7.40
BW-SSL 8.00 8.00
ME-SSL 8.36 8.36

PSSF 9.09
Test Statistic 6.54 4.80 3.90 5.54 2.81
Sig. (2-sided test) 0.01 0.18 0.14 0.06 0.24
Adjusted Sig. (2-sided test) 0.05 0.40 0.39 0.19 0.60
a Each cell shows the classifier’s average rank

Table 13 Friedman’s test with stepwise step-down post hoc analysis of filters’ performances (AUC value)

Homogeneous Subsets
Subsets

1 2 3 4 5 6

Classifiera

BW 2.04
NB-SSL 3.02 3.02

NB 3.29 3.29
SVM-SSL 3.77 3.77

SVM 4.86
ME 6.40

DTWC 7.22 7.22
BW-SSL 7.31 7.31 7.31
ME-SSL 7.90 7.90

PSSF 9.13
Test Statistic 4.93 3.43 4.54 4.72 4.45 6.81
Sig. (2-sided test) 0.08 0.18 0.03 0.09 0.10 0.03
Adjusted Sig. (2-sided test) 0.25 0.48 0.15 0.28 0.31 0.10
a Each cell shows the classifier’s average rank

is significantly different (better) than the others on both accuracy and AUC values at the
confidence level of 0.05 for accepting the null hypothesis. In fact, except for the significance
level (or p value) of 0.025 obtained when DTWC/PSSF is compared with ME/ME-SSL on
AUC values, all other p values are less than 0.001. This result provides evidence that the
difference in performance observed between our algorithms and the others on both global
and personalized filtering is statistically significant.

The Friedman’s test evaluates multiple classifiers on multiple datasets by comparing the
average ranks of the classifiers on the datasets (higher average ranks are considered better).
The null hypothesis that the classifiers are equivalent is rejected when the Friedman sta-
tistic is greater than a critical value at a specified confidence level. In our analysis, we
perform two Friedman’s tests (one each for accuracy and AUC values) comparing 10 classi-
fiers (DTWC, NB, ME, BW, SVM, PSSF, NB-SSL, ME-SSL, BW-SSL, SVM-SSL) on 22
datasets (3 ECML-A, 15 ECML-B, 2 PU, and 2 ECUE datasets). We use the Friedman’s test
with stepwise step-down post hoc analysis, which finds subsets of classifiers that are statis-
tically equivalent (homogeneous subsets). Tables 12 and 13 show the results of this test for
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the accuracy and AUC values, respectively. These results show that DTWC’s performance
in accuracy is statistically better than all other classifiers evaluated for global filtering as
it is placed in a subset that contains none of the other global filters. When performance is
measured using AUC values, DTWC is placed in the same subset with ME, although it still
maintains a higher average rank. For personalized filtering, PSSF is grouped with BW-SSL
and ME-SSL. Nonetheless, PSSF maintains a higher average rank and the significance level
of this subset under AUC is not very high (0.10). Moreover, PSSF appears in only one subset,
unlike the other two classifiers.

These statistical analyses provide evidence for the overall superiority of our algorithms on
global and personalized spam filtering. They also validate the robustness of our algorithms
across different spam filtering settings.

6.4 Varying distribution shift

In this section, we evaluate the performance of DTWC/PSSF, NB, ME, BW, and SVM under
varying distribution shift between training and test data. This evaluation is performed on
ECML-A dataset by swapping varying numbers of e-mails between training and test (user)
data. By increasing the number of e-mails swapped, the distribution shift between training
and test data is reduced as well. To illustrate the evaluation procedure, suppose 100 randomly
selected e-mails from user 1 are moved to the training data and 100 randomly selected e-mails
from the training data are moved to user 1 e-mails. The filters are then trained and tested
using the modified training and test data. This procedure is repeated for each user and for
different numbers of e-mails swapped.

To quantify the distribution shift between training and test data, we adapt the KL diver-
gence (KLD) and total variation distance (TVD) as follows:

DK L(L , U ) = 1

2T

⎡

⎣
∑

j

pL (x j |+) log
pL(x j |+)

pU (x j |+)
+

∑

j

pL (x j |−) log
pL (x j |−)

pU (x j |−)

⎤

⎦

DT V (L , U ) = 1

2T

⎡

⎣
∑

j

|pL (x j |+)− pU (x j |+)| +
∑

j

|pL (x j |−)− pU (x j |−)|
⎤

⎦,

where DK L(·, ·) and DT V (·, ·) denote the adapted KL divergence and total variation dis-
tance, respectively, L and U identify training and test data, respectively, and T is the total
number of distinct terms in the training and test data. The quantity DK L (DT V ) is com-
puted as the average of the KL divergence (total variation distance) for spam and non-spam
conditional distributions normalized by T . The normalization ensures that these quantities
range from 0 to 1 for all training–test data pairs irrespective of the numbers of terms in
them. Table 14 shows the average performance for the three test sets in ECML-A dataset.
It is seen from this table that as the number of e-mails swapped between training and test
sets (given in the first column of Table 14) increases, the distribution shift between the sets
decreases, as quantified by the values of DK L and DT V . More interestingly, it is observed
that as the distribution shift decreases the performance gap between DTWC/PSSF and the
other algorithms narrows down. The performance of all the algorithms improves with the
decrease in distribution shift, especially for ME, BW, and SVM. For example, the average
accuracy of ME jumps up by 28.21% from the case when no e-mails are swapped to the
case when 1,500 e-mails are swapped. Our supervised spam filter, DTWC, comprehensively
outperforms the other algorithms when distribution shift is large, while its performance com-
pares well with the others at low distribution shift. Another observation from this evaluation
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Table 14 Performance under varying distribution shift

# DK L
(×10−7)

DT V
(×10−7)

DTWC PSSF1 PSSF2 NB ME BW SVM

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

0 717 444 90.29 96.10 91.58 98.94 95.80 99.16 84.30 87.83 69.76 83.21 66.40 71.33 71.69 80.79

100 517 384 93.30 98.04 92.86 98.77 96.01 99.11 92.08 95.84 87.90 94.53 75.53 82.73 88.12 94.96

250 477 336 94.68 98.72 92.40 98.39 96.44 99.02 93.70 97.05 92.80 97.36 82.13 88.87 92.08 97.70

500 346 259 96.60 99.38 94.92 98.41 96.56 99.14 95.57 98.01 96.18 98.68 87.29 92.91 95.70 99.17

1500 157 127 97.63 99.55 96.41 98.56 96.94 98.97 96.39 97.82 97.97 99.01 95.08 98.11 97.30 99.68

Avg 94.5 98.35 93.63 98.61 96.35 99.08 92.40 95.31 88.92 94.55 81.28 86.79 88.97 94.46

Average percent accuracy and AUC values are given for ECML-A dataset
Bold values signify maximum or best performance

is that as the distribution shift decreases the benefit of semi-supervised learning dimin-
ishes.

6.5 Gray e-mails

Gray e-mails were introduced and defined in Sect. 2. They present a particulary challenging
problem for spam filters because similar e-mails are labeled differently by different users. To
evaluate the performance of DTWC/PSSF on gray e-mails, we devise an experiment based
on e-mails for user 1 and user 2 in ECML-A dataset. Consider a graph consisting of two
sets of vertices corresponding to the e-mails for user 1 and user 2. Edges in the graph exist
between vertices in the two sets if the corresponding e-mails have a cosine similarity greater
than a specified threshold, s. The cosine similarity between two e-mails xi and x j is defined
as

sim(xi , x j ) = xT
i x j

‖xi‖‖x j‖ ,

where ‖x‖ = √xT x. Given this graphical representation and the true labels of e-mails, an
e-mail belonging to user 1 (user 2) is a gray e-mail if an edge exists from its vertex to one
or more vertices belonging to user 2 (user 1) and the labels of the two e-mails are different.
This procedure identifies the set of gray e-mails for user 1 and the set of gray e-mails for
user 2. We evaluate the performance of DTWC/PSSF on these sets of e-mails by reporting
the number of e-mails that are incorrectly labeled by the algorithms.

The performance of DTWC and PSSF2 on gray e-mails is reported in Table 15. For each
user, the table shows the total number of gray e-mails according to the specified similarity
threshold s and the number of gray e-mails incorrectly classified by DTWC and PSSF2. The
results show that personalization performed by PSSF2 results in a significant reduction in
errors on gray e-mails. This is attributable to the adaptation of the local and global models on
the user e-mails. The most significant improvement in classification on gray e-mails occurs
when the global discriminative model is adapted (therefore results of PSSF1 are not shown
in the table). This observation is consistent with the fact that gray e-mails result from concept
shift, which is better tracked by adapting the discriminative model.
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Table 15 Performance on gray e-mails identified from user 1 and user 2 e-mails in ECML-A dataset. For
DTWC and PSSF2, the table gives the number of gray e-mails that are misclassified

s User 1 User 2

No. of GE DTWC PSSF2 No. of GE DTWC PSSF2

0.5 1,471 130 65 1,443 132 46

0.6 1,016 79 39 1,109 97 40

0.7 622 46 34 588 45 22

0.8 174 12 10 216 17 6

0.9 34 3 1 71 6 1

s similarity threshold, GE gray e-mails
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Fig. 4 Generalization performance on ECML-A dataset

6.6 Generalization to unseen data

In the previous subsections, we presented results of PSSF1 and PSSF2 on the test sets where
the unlabeled e-mails in the test sets were utilized during learning. However, in practice,
once a personalized spam filter is learned using labeled and unlabeled e-mails, it is applied
to unseen e-mails for a while before it is adapted again. The performance over these unseen
e-mails represents the generalization performance of the filter. We evaluate the generalization
property of PSSF by splitting the test set into two: split 1 is used during semi-supervised
learning and split 2 contains the unseen e-mails for testing. The generalization performance
of PSSF1 and PSSF2 on ECML-A dataset is shown in Fig. 4. In general, the difference
between the average percent AUC values for split 1 and split 2 is less than 1% for PSSF1 and
less than 0.5% for PSSF2. Furthermore, the decrease in average AUC value with decrease in
size of split 1 (increase in size of split 2) is graceful. PSSF2, in particular, exhibits excellent
generalization performance. It is able to learn the personalized filter for each user from a
small number of e-mails for the user. This characteristic of PSSF2 stems from the realign-
ment of the decision line after considering the user’s e-mails. These results also demonstrate
the robustness of PSSF.
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Table 16 Scalability of PSSF: impact of filter size on performance. The results are averages for the three test
sets in ECML-A dataset

t ′ Terms PSSF1 PSSF2

Acc AUC Acc AUC

0.00 24777 91.58 98.94 95.80 99.16

0.05 484 93.90 98.80 93.88 98.81

0.12 146.66 94.00 98.75 96.06 98.88

0.20 66 92.17 97.77 93.80 98.03

0.30 26.33 88.88 96.00 89.44 96.84

0.35 14.66 85.92 93.75 84.33 94.38

0.40 9.33 82.85 90.96 81.42 91.69

0.41 8 82.68 87.45 81.11 88.07

Bold values signify maximum or best performance

6.7 Scalability

Robustness and scalability are essential for personalized service-side spam filtering [46].
To implement PSSF on the service-side for a given user, the local and global model param-
eters must be resident in memory. There are only two global model parameters; the slope
and bias of the line. The local model parameters are the discriminative term weights for the
significant spam and non-spam terms. The number of significant spam and non-spam terms,
which defines the size of the filter, is controlled by the term selection parameter t ′. Figure 5
shows that by increasing the value of t ′ slightly from zero, the number of significant terms
drops sharply. This reduction in filter size does not degrade filtering performance signifi-
cantly (and sometimes it even improves performance) as only less discriminating terms are
removed from the model.

Table 16 shows the term selection parameter, average filter size (as average number of
significant terms), and average percent accuracy and AUC values of PSSF1 and PSSF2 on
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ECML-A dataset. It is seen that even when the average filter size is reduced by about a factor
of 165 (from 24,777 to 146.66 terms), the average AUC value for PSSF1 decreases very
slightly (less than 0.25%), and this value is still greater than that reported by Kyriakopoulou
and Kalamboukis [48], Cormack [16], Cheng and Li [13] (see Table 11). Moreover, with
an average filter size of only 66 terms, PSSF performs remarkably well with average AUC
values greater than 97%. It is worth pointing out that even when t ′ = 0, the average number
of significant terms is much less than the vocabulary size of 41,675 for this dataset. This
is because terms that provide no discrimination information for either spam or non-spam
classification are removed from the model.

The average filter size is directly related to the scalability of the filter—the smaller the
size the greater the number of users that can be served with the same computing resources.
For example, when the average filter size is 8 terms, PSSF1 can serve approximately 30,000
users with 1 MB of memory (assuming 4 bytes per discriminative term weight). Interestingly,
the average performance of PSSF1 with this filter size is similar to that of a single global NB
filter (see Table 3). However, the size of the NB filter will be over 83,350 (41, 675×2) when
compared to only 24 (8× 3) for PSSF1 (for three users).

It is worth emphasizing from a scalability perspective that DTWC/PSSF requires a single
pass over the labeled data to learn the local model parameters and its global model param-
eters are obtained by solving a straightforward optimization problem. Also, the naive SSL
approach that we use for personalization decouples the adaptation from the training data and
as such can be performed on the client-side in addition to the service-side.

7 Conclusion

E-mail spam continues to be a menace for users and e-mail service providers (ESPs) with
content-based e-mail spam filters providing a popular defense against spam. Spam filtering
solutions deployed at the ESP’s side can either be a single global filter for all users or multiple
filters each personalized for a specific user. The motivation for having personalized filters
is to cater for the differing spam and non-spam preferences of users. However, personalized
spam filtering solutions need to be scalable before they are practically useful for large ESPs.
Similarly, a global filtering solution needs to be robust to differing preferences of users for
its practical usefulness.

We address the above dilemma by presenting a scalable and robust spam filter appropriate
for global and personalized spam filtering. Based on local and global modeling of discrimi-
nation, our filter learns a discriminant function in a two-dimensional feature space in which
spam and non-spam e-mails are well separated. The two dimensions of the feature space
correspond to the linear opinion pool or ensemble average of discrimination information
(opinions) provided by significant spam and non-spam terms. This feature space representa-
tion makes our filter robust to distribution shift. In addition to a supervised version, named
DTWC, we also present two semi-supervised versions, named PSSF1 and PSSF2, that are
suitable for personalized spam filtering. PSSF1/PSSF2 can be adapted to the distribution of
e-mails received by individual users to improve filtering performance.

We evaluate DTWC/PSSF on six e-mail datasets and compare its performance with four
classifiers. DTWC/PSSF outperforms the other algorithms in 51 out of 88 results (accuracy
and AUC) in global and personalized spam filtering. Statistical tests show that DTWC/PSSF
perform significantly better than the other algorithms. In particular, DTWC/PSSF performs
remarkably well when distribution shift is significant between training and test data, which is
common in e-mail systems. We also evaluate our algorithms under varying distribution shift,
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on gray e-mails, on unseen e-mails, and under varying filter size. Our personalized spam
filter, PSSF, is shown to scale well for personalized service-side spam filtering.

In this paper, we also discuss the nature of the spam filtering problem and the challenges
to effective global and personalized spam filtering. We define key characteristics of e-mail
classification such as distribution shift and gray e-mails and relate them to machine learning
problem settings.

Our algorithms are based on an intuitive statistical understanding of the spam filtering
problem. Although they have been shown to be reliable and accurate, they do have some
limitations. Currently, we consider each term independently of the others in the local dis-
crimination model, which disregards any correlation between terms. One way of addressing
this is to discover combinations of terms (or termsets) with high discrimination power and use
them as weighted features in the global model. We faced some convergence problems while
learning the global model parameters for small datasets. This issue can be resolved using a
regularized or large margin classifier for the global model. In this work, we use the naive
SSL approach for personalization. Although this approach has some merits for our problem
setting, as discussed in Sect. 4.4, it discards the local model learned from the training data
after labeling the test data before building a new model from the test data alone. It might
be worthwhile to investigate approaches that consider knowledge from both the training and
the test data as a whole. Presently, our personalized spam filter cannot take advantage of
some labeled e-mails of each user. In the future, in addition to addressing the above points,
we would also like to study the classifier framework introduced in this paper by considering
other discriminative term weighting and opinion pooling strategies.

We believe that service-side spam filtering presents significant learning and implementa-
tion challenges for researchers. Some research directions include characterization of users’
spam/non-spam preferences, incorporation of users’ characterizations in learning models,
and development and evaluation of hybrid global/local/service-side/user-side solutions.
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