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Abstract 
 

The volume of spam e-mails has grown rapidly in the 
last two years resulting in increasing costs to users, 
network operators, and e-mail service providers (ESPs). 
E-mail users demand accurate spam filtering with 
minimum effort from their side. Since the distribution of 
spam and non-spam e-mails is often different for different 
users a single filter trained on a general corpus is not 
optimal for all users. The question asked by ESPs is: How 
do you build robust and scalable automatic personalized 
spam filters?  

We address this question by presenting PSSF, a novel 
statistical approach for personalized service-side spam 
filtering. PSSF builds a discriminative classifier from a 
statistical model of spam and non-spam e-mails. A 
classifier is first built on a general training corpus that is 
then adapted in one or more passes of soft labeling and 
classifier rebuilding over each user’s unlabeled e-mails. 
The statistical model captures the distribution of tokens in 
spam and non-spam e-mails. This model is robust in the 
sense that its size can be reduced significantly without 
degrading filtering performance. We evaluate PSSF on 
two datasets. The results demonstrate the superior 
performance and scalability of PSSF in comparison with 
other published results on the same datasets.   
 
1. Introduction 
 

Spam, or unsolicited, e-mails have continued to be a 
major problem for e-mail users, network administrators, 
and e-mail service providers (ESPs). Spam e-mails reduce 
user productivity, clog network links, and waste 
computing cycles. Although technological and non-
technological counter measures have been taken in the 
past several years, the menace of spam has grown in 
magnitude. In 1998, spam comprised of 10% of total e-
mails sent. Today, this number has risen to over 80% of 
all e-mails, costing organizations worldwide $75 billion in 
lost productivity and anti-spam products and services [8, 
15]. Moreover, there has been a noticeable surge in spam 

in the last two years indicating that spammers are moving 
aggressively against the counter measures [15].  

E-mail users spend an increasing amount of time 
reading messages and deciding whether they are spam or 
non-spam and categorizing them into folders. Some e-
mail clients make users label their received messages for 
training local spam filters. Similarly, some ESPs ask users 
to provide feedback on the received messages so that they 
can build personalized spam filters for them on the 
service side. Both of these strategies impose additional 
burden on users. Moreover, because of their volunteer and 
ad-hoc nature, both these strategies are neither automatic 
nor robust. E-mail service providers would like to relieve 
users from this burden by installing service-side spam 
filters that can classify e-mails as spam automatically and 
accurately without user feedback. 

Automatic personalized service-side spam filtering is 
challenging along two dimensions. First, it presents a 
challenging machine learning problem where an accurate 
personalized spam filter is built for each user without 
relying on the user’s feedback. Specifically, only a 
general set of labeled e-mails together with a set of 
unlabeled individual user’s e-mails are available for 
building the personalized filter. Oftentimes the 
distribution of e-mails of individual users is not identical 
to that of the general set used for training. As such, a 
standard semi-supervised classification approach cannot 
be adopted. Secondly, automatic personalized service-side 
spam filtering presents several implementation 
challenges. In particular, such filters have to be space 
efficient, time efficient, and robust for them to be scalable 
to thousands and millions of users [13].  

In this paper, we present a novel statistical approach 
for personalized service-side spam filtering (PSSF). PSSF 
builds a discriminative classifier based on a statistical 
model of spam and non-spam e-mails. Initially, the 
classifier is built on the general training set. Subsequently, 
it is adapted to the individual user’s e-mails in one or 
more passes of soft labeling and classifier rebuilding. This 
approach allows automatic adaptation of the general 
classifier to the underlying distribution of e-mails in 
users’ inboxes. The statistical model of spam and non-
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spam e-mails is built from the tokens in the e-mail 
content. This is a robust and tunable model that can be 
scaled up to a large e-mail user base. PSSF is evaluated 
on two publicly available datasets for personalized spam 
filtering. The results demonstrate that PSSF’s filtering 
performance is significantly better than other approaches 
when applied to the same datasets.  

The rest of the paper is organized as follows. In section 
2, we review content-based spam filters with specific 
focus on personalized spam filtering. Section 3 formally 
defines the personalized service-side spam filtering 
problem. The new approach, PSSF, is described in section 
4. Section 5 presents the evaluation of PSSF on two 
datasets. We conclude in section 6.  
 
2. Related work  
 

Since the inception of e-mail spam, many 
technological and non-technological measures have been 
developed to combat it. Among the technological 
measures, content-based filtering has proven to be a 
critical anti-spam measure. Content-based spam filters 
employ machine learning techniques to learn to predict 
spam e-mails given a corpus of training e-mails. Such 
filters are typically deployed on the service-side mail 
server that filters e-mails for all users of the service. 
Bayesian approaches [9, 16, 17, 18] and support vector 
machines (SVM) [7, 12] have shown consistently good 
performances for this (non-personalized) problem setting. 
Bayesian approaches such as the naïve Bayes classifier is 
an example of a generative model based classifier while 
the SVM is an example of a discriminative classifier.  

In recent years, there has been significant interest in 
personalized spam filters. This interest is motivated by the 
fact that the statistical distribution of e-mails in the 
training dataset is often different from that of individual 
users’ inboxes, resulting in the poor performance of a 
single general filter for all users. Classical supervised and 
semi-supervised machine learning techniques assume that 
all e-mails are drawn independently from a given 
distribution. As such, such techniques cannot be directly 
applied to this problem setting. Furthermore, previous 
works on personalized spam filtering have relied upon 
user feedback in the form of e-mail labels from each 
individual user [10, 19]. This strategy burdens the e-mail 
user with the additional task of aiding the adaptation of 
the spam filter. Recently, a workshop was conducted on 
automatic personalized spam filtering [1]. Consequently, 
several interesting solutions have been presented for this 
problem setting ranging from statistical compression 
model based filters to dirichlet-enhanced generative 
models to hybrid clustering/ transductive SVM classifiers 
[2, 3, 4, 5, 11, 14].  

Our approach, PSSF, is related to [5, 11] in that it is 
based on a statistical model of spam and non-spam e-
mails and is similar to [14] in that it uses a discriminative 

classifier on preprocessed datasets. PSSF outperforms all 
previous solutions, as discussed in detail in section 5.  

 
3. Problem definition  
 

Let L be a set of labeled e-mails and U1, U2,…, Um be 
sets of unlabeled e-mails. The set L corresponds to the 
general dataset available for training and the set Ui 
corresponds to unlabeled e-mails for user i. In general, it 
is assumed that the distribution of e-mails in L and Ui’s 
are fixed, unknown, and different from one another. The 
ith e-mail in a set is defined as xi = (xi1, xi2,…, xid), where 

}0,1{∈ijx indicates whether the ith e-mail contains 
token/word j (1) or not (0). It is assumed that the e-mails 
in all sets follow a common dictionary containing d 
tokens. We use the vector notation for simplicity of 
presentation; a bag-of-words representation is appropriate 
as well.  

 The task is to learn the filters { }1,1: −+→ii UF (i = 1, 
m) that classifies an e-mail x for user i as either spam (+1) 
or non-spam (-1). The filter’s performance is evaluated 
using the area under the receiver operating characteristics 
curve (AUC) [6]. We desire that the average (for all 
users) AUC value is as high as possible.  To cater for 
concept drift in individual user’s e-mails, we also desire 
that the filters can be adapted either incrementally or 
periodically with ease.  

Since the personalized spam filters have to be 
deployed on the service side, we prefer that the filtering 
system is parsimonious, efficient, and robust for it to be 
scaled up to thousands and millions of users.  
 
4. PSSF: a statistical approach for 
personalized service-side spam filtering   
 

This section describes PSSF, a novel approach for 
personalized service-side spam filtering. PSSF combines 
the following characteristics: (1) a tunable statistical 
model of tokens (features) in spam and non-spam e-mails, 
(2) a generative model of e-mails for enhancing the 
feature space, (3) a discriminative classifier for the 
enhanced feature space, and (4) an adaptable procedure 
for personalization and concept drift tracking. The 
pseudo-code for PSSF is given in Figure 1; it is described 
in detail in the subsequent subsections.  
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4.1 Statistical model of spam and non-spam e-
mails  

 
The statistical model is built from a set of labeled e-

mails. This set may be L or a soft-labeled Ui (this will 
become clearer in Section 4.3). Let S

in and N
in  be the 

count of token i in spam and non-spam e-mails, 
respectively, in the set. We define the index set of 
significant spam (ZS) and non-spam (ZN) tokens as 

{ }tnnnnjZ NN
j

SS
j

S >−= )//(|  and 

{ }tnnnnjZ SS
j

NN
j

N >−= )//(|  
where t is a non-negative real-valued threshold, and nS 
and nN are the total number of spam and non-spam e-
mails, respectively, in the set. In other words, a token j is 
a significant spam (non-spam) token if its estimated 
probability given spam (non-spam) e-mails is greater than 
its estimated probability given non-spam (spam) e-mails 
by the threshold t. Note that {}=∩ NS ZZ  and 

dZZ NS ≤+ . This strategy allows us to remove 

statistically insignificant tokens from our model of spam 
and non-spam e-mails. And, this model can be tuned by 
varying the value of t.  

A weight is associated with each significant token as 
follows: 

  
 if  )//()/(

 if  )//()/(







∈

∈
=

NSS
j

NN
j

SNN
j

SS
j

j Zjnnnn

Zjnnnn
w  

The set of significant tokens and their weights can be 
found in a single pass over all e-mails in the labeled set. 
Notice that the weight of a token is simply the ratio of the 
estimated probabilities of the token given spam and non-
spam e-mails. As such, this represents a generative model 
of the e-mails somewhat similar to that used by a naïve 
Bayes classifier. Unlike in a naïve Bayes classifier, 

however, the size of the statistical model can be tuned by 
varying the threshold t. It is also worth remarking that our 
statistical model has similarities to statistical data 
compression models [3, 5]. We retain high differential 
probability tokens as descriptors of spam and non-spam e-
mails.  

 
4.2 Discriminative classifier  

 
After building the statistical model of e-mails, we 

construct a discriminative classifier for labeling e-mails in 
the set. This discriminative model is built in the 
statistically enhanced e-mail space. Specifically, we learn 
the following discriminant function:  

∑ ∑
∈ ∈

−×=
S NZj Zk

kkjj xwxwsF )(~ x  

where s is a positive real valued scaling factor and xj is the 
value of the jth element of the vector x. The first 
summation is over all significant spam tokens in x and the 
second summation is over all significant non-spam tokens 
in x. An e-mail x is classified as spam if the discriminant 
function is greater than zero; otherwise, it is classified as 
non-spam. The weights wj in this function are defined by 
the statistical model described in the previous subsection. 
The only variable is the scaling factor, which is selected 
such that the resulting discriminant function minimizes 
the misclassification rate over the labeled set.  

The decision hyperplane is defined by the weights and 
the scaling factor in the feature space. There is no bias 
term, so the hyperplane passes through the origin. The 
scaling factor modifies the weights corresponding to the 
spam tokens only such that the hyperplane becomes an 
accurate classifier. The feature space is a unit hypercube 
of dimensionality equal to the number of significant 
tokens in the statistical model.  
 
4.3 Personalizing the filter  

 
The previous subsections describe how to build a 

classifier given a set of labeled e-mails (the training set 
L). The users’ e-mails (U1 to Um) are unlabeled. We label 
them using the following procedure. In the first pass over 
e-mails in Ui, use the discriminant function to soft-label 
the e-mails and update the statistical model. At the end of 
the first pass, we rebuild the discriminative classifier 
using the new statistical model (i.e. find the s that results 
in maximum classifier performance over the soft-labeled 
Ui). We repeat the above steps a few more times 
depending on the trade-off desired between computational 
efficiency and filtering performance. In the last pass, the 
user inbox is labeled using the updated filter.  

The above procedure permits easy adaptation of the 
filter. The statistical model can be updated incrementally 

Procedure: PSSF1/PSSF2 
Input: Labeled set L, unlabeled sets Ui 
Output: Filter for each user i, labeled sets Ui 
 
On training set L 
1. Build statistical model 
2. Build discriminative classifier 
 
On each user's inbox Ui 
3. Repeat one or more times (requiring one pass over Ui)  
4.     Label e-mails 
5.     Rebuild statistical model 
6.     Rebuild discriminative classifier (PSSF2 only) 
7. End repeat 
8. Label e-mails  

Figure 1. Key steps in PSSF 
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as new e-mails are seen by the filter capturing the 
changing distribution of e-mails received by the user. The 
scaling factor can be recomputed at periodic intervals 
(e.g. every week) to cater for significant changes in the 
distribution of e-mails.  

Based on the personalization procedure, we define two 
variants of PSSF. PSSF1 is the variant in which the 
discriminative classifier is not rebuilt (i.e. the scale factor 
s is not recomputed) in every initial pass over the user’s 
inbox, while PSSF2 is the variant in which the classifier is 
rebuilt after every pass over the user’s inbox.  
 
5. Experimental evaluation 
 

We evaluate PSSF (PSSF1 and PSSF2) on two 
publicly available datasets and compare its performance 
with four previously published results on the same 
datasets.  

 
5.1 Datasets  

 
We use two datasets available from the ECML/PKDD 

Discovery Challenge website [1]. Each of these datasets, 
henceforth identified as dataset A and dataset B, contain a 
training set (L) and several users’ inboxes (Ui) (Table 1). 
The number of e-mails in the training set and the users’ 
inboxes is much larger in dataset A than in dataset B. 
Furthermore, the number of training e-mails in dataset B 
is less than the number of e-mails in users’ inboxes. As 
such, dataset B represents a more challenging 
personalized spam filtering problem than that captured in 
dataset A. The composition of the training set in both 
datasets is: 50% spam e-mails sent by blacklisted servers 
of the Spamhaus project (http://www.spamhaus.org), 40% 
non-spam e-mails from the SpamAssassin corpus, and 
10% non-spam e-mails from about 100 different 
subscribed English and German newsletters. The 
composition of e-mails in users’ inboxes is more varied 
with non-spam e-mails of distinct Enron employees from 
the Enron corpus and spam e-mails from various sources.  

All e-mails are represented by a list of tokens and the 
corresponding frequency of the token within the e-mail 
content (including the headers). All datasets follow the 
same dictionary.  

 

 
5.2 Results  

 
The performance of PSSF1 and PSSF2 on datasets A 

and B are shown in Tables 2 and 3, respectively. We 
report the AUC values after the first, second, and (for 
dataset B only) third and fourth pass over the users’ 
inboxes. The threshold t for these results is set at zero. 
The results show that the average AUC value of the filters 
increase significantly after the first pass over the users’ 
inboxes. Soft labeling is done in the first pass by using the 
filter learned over the training set. When this filter is 
adapted to the distribution of e-mails in individual users’ 
inboxes after the first pass the classification performance 
improves significantly. In the last columns of Tables 2 
and 3, we also show the ‘optimal’ filters for each user’s 
inbox. These filters are constructed on each user’s inbox 
by assuming that the labels are known. In general, it is 
seen that the performance of PSSF for all users increases 
towards the optimal as the number of passes is increased. 
For dataset A, PSSF is able to learn a near optimal 
classifier after the first pass over the users’ inboxes.  

Comparing the results for the two datasets, it is 
observed that PSSF performs consistently well for all 
users in dataset A while its performances varies over a 
broader spectrum for users in dataset B. For example, the 
performance of PSSF1 for U6 actually degrades with the 
number of passes. This is because of a marked difference 
in the distributions of e-mails in U6 and the training set 
(L). The performance of PSSF2, on the other hand, 
degrades less significantly after the first and second pass 
over U6. PSSF2 compensates for the differences in 
distributions by rebuilding the classifier (recalculating s) 
after each pass.  

Dataset B represents a much more challenging 
personalized spam filtering problem because of the very 
small size (100 e-mails) of the training set and the small 
sizes (400 e-mails) of the users’ inboxes. To explore the 
impact of training set size on performance, we ran PSSF 
on a modified dataset B. In this dataset, the training set is 
augmented with the labeled e-mails of users’ inboxes 13, 
14 and 15 (1300 e-mails). For this dataset, the average 
AUC value (for the first 12 users’ inboxes) produced by 
PSSF is 97.46%. This is a substantial improvement in 
performance, highlighting the importance of a sufficiently

Table 2. Results for dataset A (all values are AUC in %)
 

 PSSF1/PSSF2 PSSF1 PSSF2 Optimal 

Inboxes Pass 1 Pass 2 Pass 2  

U1 96.35 98.60 98.99 99.99 

U2 97.37 98.78 99.58 99.96 

U3 94.59 99.43 99.22 99.91 

Avg. 96.10 98.94 99.26 99.95 

 

Table 1. Evaluation datasets’ characteristics
 

 Dataset A Dataset B 
No. of labeled training e-
mails 

4000 100 

No. of e-mails per user 
inbox 

2500 400 

No. of user’s inboxes (m)  3 15 
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large training set. Obtaining a sufficiently large training 
set is not difficult as several training corpora are readily 
available. Moreover, for a service-side implementation, 
collecting a sufficiently large set of users’ e-mails is 
simply a matter of waiting for the e-mails to accumulate.  
 
5.3 Comparison with other techniques  
 

We compare PSSF’s performance with four recently 
published results on the same datasets in Table 4. Three 
of these results [5, 11, 14] are winning performances of 
the Discovery Challenge [1]. PSSF outperforms all 
algorithms on dataset A and is on par with the others on 
dataset B. Junejo et al. has the previous best performance 
on dataset A (they do not report results for dataset B) 
[11]. PSSF1 improves on their algorithm by using 
estimated probabilities rather than occurrence counts for 
defining the statistical model, and PSSF2 rebuilds the 

discriminative classifier after each pass over the user’s 
inbox. Kyriakopoulou and Kalamboukis preprocess the 
dataset by clustering the training set with each user’s 
inbox [14]. The combined set is augmented with 
additional meta-features derived from the clustering. This 
combined set is then learned using transductive SVM. 
This approach is computationally expensive and non-
adaptive. Cormack use statistical compression models for 
predicting spam and non-spam e-mails [5]. His approach 
is adaptive but the reported performances lag the leaders. 

Figure 2. Generalization performance on dataset A 

Table 4. Comparison with other techniques (all values 
are average AUC in %) 

 
Technique Dataset A  Dataset B 

PSSF1 98.94 94.57 

PSSF2 99.26 94.00 

Junejo et al. [11] 98.75 --- 

Kyriakopoulou [14] 97.31 95.08 

Cormack [5] 93.00 94.90 

Cheng and Li [4]  93.33 --- 

Table 3. Results for dataset B (all values are AUC in %)
 

 PSSF1/PSSF2 PSSF1 PSSF2 Optimal 

Inboxes Pass 1 Pass 2 Pass 3 Pass 4 Pass 2 Pass 3 Pass 4  

U1 72.16 94.15 96.89 96.72 79.60 92.17 96.97 99.93 

U2 73.52 96.50 96.98 96.61 78.81 95.64 97.40 99.99 
U3 91.24 96.29 96.72 96.75 94.74 96.22 96.30 99.99 
U4 98.14 99.22 99.12 99.12 98.93 99.05 99.05 99.98 
U5 82.11 93.79 94.70 95.05 93.09 94.09 94.48 99.66 
U6 80.71 78.65 74.11 69.90 79.17 78.39 74.96 99.96 
U7 72.42 92.72 91.81 90.79 72.80 87.59 87.39 100.0 
U8 86.78 95.46 95.96 96.16 91.64 94.36 95.73 99.70 
U9 79.62 99.32 99.39 99.24 94.10 99.53 99.54 100.0 
U10 75.20 98.12 99.19 98.05 87.10 98.73 98.74 100.0 
U11 85.82 94.08 95.88 96.24 89.50 92.92 94.50 99.97 
U12 86.69 91.26 92.54 92.36 87.83 89.42 90.38 99.61 
U13 91.28 98.85 99.60 99.51 94.75 98.45 99.40 99.88 
d14 83.12 88.21 90.23 90.74 84.88 88.41 89.23 99.84 
U15 75.49 90.52 95.50 97.92 82.79 89.33 96.01 99.92 

Avg. 82.29 93.81 94.57 94.38 87.32 92.95 94.00 99.89 
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Cheng and Li present a semi-supervised classifier 
ensemble approach for the personalized spam filtering 
problem [4]. Their approach is also computationally 
expensive as compared to PSSF, and it lags in 
performance by more than 5% on dataset A (they do not 
report results for dataset B). 
 
5.4 Generalization performance  
 

The results presented in the previous subsections 
assume a transductive learning problem setting where all 
the unlabeled e-mails in users’ inboxes are classified. 
However, in practice, once a personalized spam filter is 
learned using labeled and unlabeled e-mails it is applied 
to unseen e-mails. The performance over these unseen e-
mails represents the generalization performance of the 
filter. We evaluate the generation performance of PSSF 
by splitting the users’ inboxes into two: split 1 is used 
during learning and split 2 contains the unseen e-mails. 
The generalization performance of PSSF1 and PSSF2 on 
dataset A is shown in Figure 2. In general, the average 
AUC value over split 2 (the unseen e-mails) is less than 
that over split 1. However, this difference is typically less 
than 1% for PSSF1 and less than 0.2% for PSSF2. 
Furthermore, the decrease in average AUC value with 
increase in size of split 2 (decrease in size of split 1) is 
graceful. PSSF2, in particular, exhibits excellent 
generalization performance. It is able to learn the 
personalized filter for each user from a small number of e-
mails for the user. This characteristic of PSSF2 stems 
from the realignment of the decision hyperplane after 
each pass over the user’s inbox. These results demonstrate 
the robustness of PSSF. 
 

5.5 Scalability analysis 
 

The size of the statistical model can be tuned by 
varying the value of the threshold t. This is evident from 
Figure 3 which shows the variation of the number of 
significant tokens (or words) with the threshold t. The 
number of significant tokens drops significantly with only 
a small increase in t. However, the remarkable result is 
that filtering performance does not drop significantly (and 
sometimes even increases) when the size of the statistical 
model is decreased (Figure 4). The performance increases 
for very small values of t. The threshold t acts as a feature 
selection filter which retains tokens that are highly 
discriminatory for spam classification. The weights of 
these tokens and the scale factor s together define the 
decision hyperplane for spam classification. As such, the 
threshold t can be used to tune the size and performance 
of personalized filters.  

Robustness and scalability are essential characteristics 
for personalized service-side spam filtering [13]. To 
implement PSSF on the service-side for a given user, the 
statistical model and the scale factor have to be resident in 
memory. The statistical model comprises of the 
significant tokens and their weights. Table 5 shows the 
average personal filter size (as number of tokens in 
statistical model) and the average AUC value of PSSF for 
dataset A. It is seen that even when the average filter size 
is reduced by one-sixth (from 24776 to 4098 tokens) the 
average AUC value for PSSF1 remains unchanged and 
that for PSSF2 decreases slightly. Moreover, with an 
average statistical model size of only 18 tokens PSSF 
performs admirably with average AUC values greater 
than 95%. The average filter size is directly related to the 
scalability of the filter – the smaller the size the greater 
the number 

Figure 4. Average AUC value vs. threshold for 
dataset A

Figure 3. Number of significant tokens vs. 
threshold for dataset A 
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of users that can be served with the same computing 
resources.  

PSSF is built by learning over the training set and the 
users’ inboxes. Learning the general filter from the 
training set involves a single pass over the set in which 
the statistical model is built. Subsequently, an iterative 
procedure is used for finding the scale factor. This step is 
performed once (or can be done periodically if new 
training sets become available). The general filter is then 
adapted in one or more passes over the users’ inboxes. 
This step is also done once (or periodically). The filters 
can be adapted by continuously updating the statistical 
model (weights) and periodically recomputing the scale 
factor.  
  
6. Concluding remarks  
 

In this paper, we present a scalable and robust 
approach for personalized service-side spam filtering.  
The approach, named PSSF, uses a tunable statistical 
model of tokens in spam and non-spam e-mails to build a 
discriminative classifier. The issue of adapting the filter to 
the different distributions of unlabeled e-mails in users’ 
inboxes is handled by multiple passes of soft labeling and 
statistical model rebuilding. PSSF can track concept drift 
by incremental update to the statistical model and periodic 
rebuilding of the discriminative classifier. Our 
experimental evaluations demonstrate the superior 
filtering performance of PSSF as compared to other 
published results on the same datasets.  

Automatic personalized service-side spam filtering has 
generated much interest in recent times.  E-mail service 
providers (ESPs) are seeking robust solutions that can 
relieve their users from providing feedback to achieve 
improved filtering performance. PSSF is a viable solution 
for ESPs promising scalable and accurate filtering. In the 
future, we plan to further develop the theoretical 
underpinnings of PSSF, investigate efficient data 
structures for large scale implementations, and 
incorporate cost-based measures of filtering performance.     

 
7. References 
 
[1] S. Bickell. ECML/PKDD: discovery challenge. 

http://www.ecmlpkdd2006.org/challenge.html, 2006. 

[2] S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering 
based on biased samples. Proc. of Neural Information 
Processing Systems (NIPS ’06), 2006.  

[3] A. Bratko, G.V. Cormack, B. Filipic, T.R. Lynam, and B. 
Zupan. Spam filtering using statistical data compression 
models. Journal of Machine Learning Research, 7, 2673-
2698, 2006. 

[4] V. Cheng and C.H. Li. Personalized spam filtering with 
semi-supervised classifier ensemble. Proc. of International 
Conf. on Web Intelligence (WI ’06), 2006.  

[5] G.V. Cormack. Harnessing unlabeled examples through 
application of dynamic Markov modeling. ECML/PKDD 
Discovery Challenge Workshop, 2006.  

[6] C. Cortes and M. Mohri. AUC optimization vs. error rate 
minimization. Proc. of Neural Information Processing 
Systems (NIPS ’04), 2004.  

[7] H. Drucker, D. Wu, and V.N. Vapnik. Support vector 
machine for spam categorization. IEEE Transactions on 
Neural Networks, 10(5), 1048-1054, 1999. 

[8] J. Goodman, G.V. Gormack, and D. Heckerman. Spam and 
the ongoing battle for the inbox. Communications of the 
ACM, 50(2), 25-33, 2007. 

[9] P. Graham. Better bayesian filtering. Proc. of 2003 Spam 
Conference, http://www.paulgraham.com/better.html, 2003. 

[10]A. Gray and M. Haahr. Personalised collaborative spam 
filtering. Proc. of Conference on Email and Anti-Spam, 
2004. 

[11] K.N. Junejo, M.M. Yousaf, and A. Karim. A two-pass 
statistical approach for automatic personalized spam 
filtering. ECML/PKDD Discovery Challenge Workshop, 
2006. 

[12] A. Kolcz and J. Alspector. SVM-based filtering of e-mail 
spam with content-specific misclassification costs. Proc. of 
the TextDM Workshop on Text Mining, 2001. 

[13] A. Kolcz, M. Bond, and J. Sargent. The challenge of 
service-side personalized spam filtering: scalability and 
beyond. Proc. of INFOSCALE, 2006.   

[14] A. Kyriakopoulou and T. Kalamboukis. Text classification 
using clustering. ECML/PKDD Discovery Challenge 
Workshop, 2006.  

[15] N. Leavitt. Vendor’s fight spam’s sudden rise. IEEE 
Computer, 16-19, March 2007.  

[16] E. Michelakis, I. Androutsopoulos, G. Paliouras, G. Sakkis, 
and P. Stamatopoulos. Filtron: a learning-based anti-spam 
filter. Proc. of Conf. on Email and Anti-Spam (CEAS 2004), 
2004. 

[17] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A 
Bayesian approach to filtering junk e-mail. Proc. of AAAI 
Workshop on Learning for Text Categorization, AAAI 
Technical Report WS-98-05, 1998. 

[18] A.K. Seewald. An evaluation of naive Bayes variants in 
content-based learning for spam filtering. Kluwer Academic 
Publsihing, 2005. 

[19] R. Segal, J. Crawford, J. Kephart, and B. Leiba. SpamGuru: 
an enterprise anti-spam filtering system. Proc. of 
Conference on Email and Anti-Spam (CEAS ’04), 2004. 

  

Table 5. Impact of filter size on average AUC value 
for dataset A 

 
Threshold Tokens PSSF1 PSSF2 

0.0 24776 98.94 99.26 

0.007 4098 98.94 99.40 

0.24 47 97.53 97.76 

0.34 18 95.89 96.90
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