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a b s t r a c t 

Social discrimination is said to occur when an unfavorable decision for an individual is 

influenced by her membership to certain protected groups such as females and minority 

ethnic groups. Such discriminatory decisions often exist in historical data. Despite recent 

works in discrimination-aware data mining, there remains the need for robust, yet easily 

usable, methods for discrimination control. In this paper, we utilize reject option in classifi- 

cation, a general decision theoretic framework for handling instances whose labels are un- 

certain, for modeling and controlling discriminatory decisions. Specifically, this framework 

permits a formal treatment of the intuition that instances close to the decision bound- 

ary are more likely to be discriminated in a dataset. Based on this framework, we present 

three different solutions for discrimination-aware classification. The first solution invokes 

probabilistic rejection in single or multiple probabilistic classifiers while the second solu- 

tion relies upon ensemble rejection in classifier ensembles. The third solution integrates 

one of the first two solutions with situation testing which is a procedure commonly used 

in the court of law. All solutions are easy to use and provide strong justifications for the 

decisions. We evaluate our solutions extensively on four real-world datasets and compare 

their performances with previously proposed discrimination-aware classifiers. The results 

demonstrate the superiority of our solutions in terms of both performance and flexibility 

of applicability. In particular, our solutions are effective at removing illegal discrimination 

from the predictions. 

© 2017 Published by Elsevier Inc. 

 

 

 

 

1. Introduction 

Social discrimination is said to occur when a decision in favor of or against a person is made based on the group,

class, or category to which that person belongs to rather than on merit. Discriminatory practices suppress opportunities for

members of deprived groups in employment, income, education, finance, and other benefits/services on the basis of their

age, gender, skin color, religion, race, language, culture, marital status, economic condition, and other non-merit factors.
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Today, discrimination is considered unacceptable from social, ethical, and legal perspectives. Many anti-discrimination laws

[3,11,27,28] have been enacted and many anti-discrimination organizations (e.g., ENAR [1] ) are working for the eradication of

discrimination. The consequences of discriminatory practices can range from legal prosecution to a variety of social problems

like high unemployment rate, frustration, low productivity, and social unrest. 

The discrimination-aware classification problem studies the construction and application of classifiers learned from dis-

criminatory or biased data. The do-nothing approach of simply using a classifier learned from discriminatory data will prop-

agate, if not exacerbate, discriminatory decisions, which is undesirable for decision makers at financial institutions, hiring

agencies, and social service providers. Thus, this do-nothing approach can lead to litigations and penalties. 

In recent years, several methods have been proposed for discrimination-aware classification. However, these methods

have one or both of the following shortcomings. First, they require that either the discriminatory data is processed to re-

move discriminatory patterns before learning a classifier or a specific classifier’s learning algorithm is modified to make

it discrimination-aware. Second, they are usually ‘brute force’ techniques with limited control over overall and illegitimate

(unexplainable) discrimination removal. 

These shortcomings of existing methods have hindered their adoption by practitioners. A direct consequence of the first

shortcoming is that whenever discrimination w.r.t. a different sensitive attribute needs to be addressed, the historical data

or classifier needs to be processed again. Our experience with the Dutch Research and Documentation Center (WODC) as-

sociated with the Ministry of Security and Justice and Statistics Netherlands , the national census body, confirms the im-

portance of tackling discrimination w.r.t. multiple factors including age, gender, and race [18] . Being restricted to a specific

discrimination-aware classifier (e.g., naive Bayes [7] , decision tree [17] ) is also an issue because that classifier may not be the

best performing classifier for a given dataset. The second shortcoming can lead to reverse discrimination whereby deprived

group individuals are favored without a legitimate or plausible explanation. This issue has been studied by the authors of

Zliobaite et al. [32] . They split overall discrimination into legal and illegal parts and claim that if the discrimination (e.g.,

high income of male employees as compared to female employees) can be explained by some reasonable factors (e.g., longer

working hours of males), then it is acceptable and legitimate ‘discrimination’ rather than illegal discrimination. On the other

hand, it would be illegal to discriminate on the basis of sensitive factors (e.g., gender, race) without any plausible explana-

tion. The current state-of-the-art methods either deal with the overall discrimination or illegal discrimination and are not

flexible enough to prevent both overall and illegal discrimination simultaneously. 

In this paper, we develop and evaluate a methodology for making single and ensembles of classifiers discrimination-

aware w.r.t. overall and illegal discrimination. This methodology is based on the decision theoretic notion of reject option

where instances with highly uncertain labels are not given one in classification (i.e., they are given the reject label). Pre-

viously, it has been hypothesized that discriminatory decisions are often made close to the decision boundary because of

decision maker’s bias [16] . Our proposed methodology formalizes this into practically usable solutions for discrimination-

aware classification. Furthermore, the rejected instances represent potentially discriminated or favored instances in the bi-

ased dataset. Thus, our methodology also serves as a model-based discrimination discoverer in biased datasets. 

We present three rejection strategies and corresponding rules for discrimination control in predictions. The first solution

called Probabilistic Rejection (PR), rejects instances with uncertain posterior probabilities, thus enabling it to be used with

any probabilistic classifier or ensemble of classifiers. Our second rejection strategy, called Ensemble Rejection (ER), identi-

fies instances that are not unanimously labeled by an ensemble of classifiers, thus emulating the natural decision making

process by a group of experts. Our third rejection strategy, called Situational Rejection (SR), combines probabilistic rejec-

tion or ensemble rejection with situation testing to identify discriminated instances. Situation testing is a legally admissible

procedure for verifying discrimination cases by comparing them with other similar cases. All strategies/solutions include

relabeling rules with parametric control over the resulting discrimination. We perform extensive experiments to verify the

superior performance of our methodology. In particular, we also demonstrate that our methodology prefers removing illegal

discrimination over explainable discrimination while reducing overall discrimination. Thus, it addresses a common criticism

that discrimination prevention methods disregard explainable discrimination while removing overall discrimination. 

The rest of the paper is organized as follows. Section 2 discusses the related work in discrimination-aware classification.

Section 3 defines the problem setting and measures for overall and illegal discrimination. We present our reject option

based methodology and specific solutions in Section 4 . Section 5 presents experimental evaluations and discussions of our

solutions. We summarize and conclude our contribution in Section 6 . 

2. Related work 

Data mining techniques can assist with the discovery of discriminatory patterns from data and with preventing discrim-

inatory decisions based on biased data. The topic of social discrimination in data mining was introduced by Pedreschi et al.

[24] . Since then many researchers have focused on discrimination detection and prevention in data mining. A multidisci-

plinary survey of discrimination analysis methods is given by Romei and Ruggieri [25] while an edited book provides a

summary of the research works for discrimination discovery and prevention [8] . The book also deals with the legal and

ethical issues of discrimination and profiling. 

Proposed methods for discrimination prevention requiring learning model adaptation include those for decision trees

[17] , naive Bayes classifiers [7] , logistic regression [20] , and support vector machines (SVM) [31] . All these methods require

that the learning model or algorithm is tweaked, and these methods are specific to their respective classifiers. For example,
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Kamiran et al. [17] propose a strategy for relabeling the leaf nodes of a decision tree to make it discrimination-free while in

[31] fairness constraints are introduced to control discrimination in discriminative classifiers like SVM. 

Direct discrimination arises when sensitive attributes are utilized in learning and prediction. Nonetheless, it has been

shown that discrimination is not removed by simply removing these attributes from the dataset [16] . That is, discriminatory

decisions can still be made due to correlation of sensitive attributes with other attributes (indirect discrimination or redlin-

ing . 1 This issue has been studied in greater detail in [32] . Zliobaite et al. [32] also present the concept of explainable and

illegal discrimination and propose a variant of data preprocessing approaches of Kamiran and Calders [16] to prevent the

illegal discrimination only. However, their method is unable to handle multiple explanatory attributes and both explainable

and illegal discrimination simultaneously. More recently, propensity score modeling has been introduced by Calders et al.

[6] to filter out illegal discrimination from data. Subsequently, they develop analytical solutions for discrimination-aware

linear regression that controls the illegal effect of an attribute on the outcome. 

In our previous work [19] , we presented two strategies for making standard classifiers and classifier ensembles

discrimination-aware at run-time. Based on decision theory, these strategies provided stronger control and interpretabil-

ity of the decisions. A similar approach of shifting the decision boundary has been shown by Fish et al. [12] to produce

good accuracy-discrimination trade-off performance. In this paper, we generalize our strategies to a model of discrimination

based on reject option in classification. This model leads to a methodology for discrimination control in predictions. Follow-

ing this methodology, we present three solutions for discrimination control, including a new solution incorporating situation

testing, and evaluate them extensively for both illegal and overall discrimination prevention. These solutions require neither

data preprocessing nor algorithm tweaking, and can be utilized with a variety of classifiers with ease. 

3. Background and notation 

This section defines the problem setting and introduces the measures used in this work. 

3.1. Problem definition 

We consider a two-class classification problem with label C ∈ { C + , C −} defined over instances X ∈ X described by a fixed

number of attributes. A discriminatory dataset D = { X i , C i } N i =1 
is available in which the labels C i are biased w.r.t. one or more

sensitive or discriminatory attributes S , e.g., Gender or Race. We assume that C + is the desirable label. The instances in

X can be distinguished between those belonging to a deprived group X 

d or a favored group X 

f , where X 

d ∩ X 

f = ∅ and

X 

f = X \ X 

d . This dichotomous grouping of the instances is based on the values of the sensitive attributes. Besides the

sensitive attributes there are some attributes that represent the plausible reasons for preferential treatment on the basis of

sensitive attributes. We refer to these attributes as explanatory attributes and denote them by E . 

To illustrate the notations, consider a university where women have been denied admission in comparison to men. Here

gender is a sensitive attribute ( S ), males belong to the favored group ( X 

f ), females are the deprived group ( X 

d ), and the

acceptance or rejection decision of the selection committee defines the class label ( C ). Every applicant ( X ) who has ever

applied for admission is taken as an instance of database ( D). Part of the discriminatory behavior towards women can be

explained by attributes like program preference that are correlated with both the sensitive attribute and the decision. Thus,

program preference is an explanatory attribute ( e ∈ E ). While selection of explanatory attributes is often debatable, we assume

that they are nominated by the domain experts externally. We restrict this work to nominal explanatory attributes only. 

The task is to learn a classifier F : X → { C + , C −} from the given discriminatory data D that does not make discriminatory

decisions w.r.t. sensitive attribute(s) while predicting future instances. As the convention for this problem setting, the per-

formance of the discrimination-aware classification methods is determined by reporting their accuracy and discrimination.

Ideally, accuracy should suffer the least as discrimination is reduced to zero. 

3.2. Measuring discrimination 

Several measures of discrimination have been proposed in the discrimination-aware classification research. In this work,

we distinguish between two types of discrimination: overall and illegal discrimination. We use the definitions of Kamiran

and co-workers [7,16,17,32] for overall discrimination. Overall discrimination quantifies the difference in treatment (i.e., la- 

belings) between deprived and favored groups on the basis of sensitive attributes only, ignoring all other explanations for

the differential treatment. 

Definition 1. (Overall Discrimination, D all ): Given a labeled dataset D = { X i , C i } N i =1 
, sensitive attributes S and their respective

domains describing instances in deprived and favored groups ( X 

d and X 

f ), the discrimination in dataset D w.r.t. sensitive

attributes S , denoted by D all (D, S) , is defined as: 
1 http://en.wikipedia.org/wiki/Redlining , March. 12, 2016 

http://en.wikipedia.org/wiki/Redlining
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D all (D, S) := 

|{ X ∈ X 

f , C = C + }| 
|{ X ∈ X 

f }| 
− |{ X ∈ X 

d , C = C + }| 
|{ X ∈ X 

d }| . 

In probabilities, this is equivalent to p D (C + |X 

f ) − p D (C + |X 

d ) . 

When clear from the context, we will omit the subscript and parameters in the notation, and more often, refer to this

measure as overall discrimination. 

Overall discrimination disregards other plausible reasons for the differential treatment between the two groups. As such,

this measure is appropriate when discrimination w.r.t. sensitive attribute alone needs to be controlled (e.g., when stipulated

by law). 

In other scenarios, part of the differential treatment between deprived and favored groups can be explained by other

attributes. For instance, low acceptance rate of female applicants to a university can be explained by their preference for

more competitive disciplines (e.g., medicine). In such a scenario, discrimination that cannot be explained is called illegal

discrimination. It quantifies preferential treatment on the basis of sensitive attributes without any plausible reason. We use

the definition of Zliobaite et al. [32] to measure illegal discrimination. 

Definition 2. (Illegal Discrimination, D illegal ): Given a discriminatory labeled dataset D, sensitive attributes S distinguishing

between instances in deprived and favored groups ( X 

d and X 

f ), and explanatory attributes E . Let dom (E) = { 1 , . . . , k } be the

domain of E . The explainable discrimination D expl (D, S, E) in dataset D w.r.t. the sensitive attributes S and the explanatory

attributes E is calculated as follows: 

D expl (D, S, E) := 

k ∑ 

i =1 

(
p(E i |X 

f ) − p(E i |X 

d ) 
)

p � (C + | E i ) 

where 

p � (C + | E i ) := 

P (C + | E i , X 

f ) + p(C + | E i , X 

d ) 

2 

. 

Then, the illegal discrimination D il l egal (D, S, E) in dataset D w.r.t. the sensitive attributes S and the explanatory attributes

E is given by: 

D il l egal (D, S, E) := D all (D, S) − D expl (D, S, E) 

Here, D all ( · ) is the overall discrimination in D as defined in Definition 1. [32] . 

When clear from the context, we will omit the subscript and the parameters in the notation, and more often, refer to

this measure as illegal discrimination. 

The above measures calculate the discrimination in any given labeled dataset. We can use the same discrimination mea-

sures to calculate the discrimination of a classifier by assuming the given dataset to be a test dataset labeled by the classifier.

4. Methodology for Discrimination Control 

In this section, we present a methodology for social discrimination control that exploits the reject option in classifica-

tion. The reject option in classification discards a predicted label when it is found to be highly uncertain or ambiguous.

This rejection provides an opportunity for relabeling the instance in a manner that reduces discrimination while maintain-

ing prediction accuracy over the biased dataset. We present three reject option based solutions for discrimination control:

Probabilistic Rejection (PR), Ensemble Rejection (ER), and Situational Rejection (SR). We start by defining our discrimination

model underlying the methodology. 

4.1. Discrimination model: reject option in classification 

Recently, a discrimination model has been presented that describes the process leading to biased labeling of instances

during classification [32] . According to this model, a decision maker obtains a preliminary score m quantifying the worthi-

ness of an individual X without relying upon the sensitive attributes describing X . Thus, this score is evaluated objectively

and on merit. Then, the discrimination bias b ≥ 0 is introduced by looking at the sensitive attributes and their values for

the individual. A uniform bias is either added (positive bias) or subtracted (negative bias) from the merit-based score m , to

yield the overall score m 

∗ = m ± b. In general, the bias can vary for different individuals, however, in this study we assume

a uniform bias b is added/subtracted to favor/discriminate the unprotected/protected group instances. In the social sciences,

this bias is referred to as an unconscious bias [14] . The final decision of individual X is made by using score m 

∗. 

This discriminatory decision making process impacts the decision of instances that are close to the decision boundary

according to their score m . It is quite intuitive that the addition or subtraction of the bias b will not affect the decision of

instances with very high or low merit-based scores m . 
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In our setting, we already have a discriminatory dataset D that captures information about the decision making process.

We know key attributes of the classification problem including the sensitive attributes S , the explanatory attributes E , and

the class label C . However, we do not have a clear distinction between objective or merit-based and biased contributions in

the labeling process. As is required by law, the sensitive attributes cannot be used in learning and prediction. Nonetheless,

because of correlation between sensitive and explanatory attributes the classifier learns the bias through the explanatory

attributes. This phenomenon has been demonstrated in previous works [33] . 

Given the above observations, we propose the following discrimination model. Let F be a classifier (or a classifier ensem-

ble) learned over the discriminatory dataset D without considering the sensitive attributes S , and let 0 ≤ F(X, C + ) ≤ 1 be the

score (e.g., posterior probability or confidence) for label C + of instance X produced by F and F(X, C −) = 1 − F(X, C + ) . Then,

instance X ∈ X 

d with label C − is likely to be discriminated when F(X, C + ) ≥ 0 . 5 − η where 0 < η ≤ 0.5 is a parameter that

specifies the bias in the dataset. Similarly, instance X ∈ X 

f with label C + is likely to be favored when F(X, C + ) ≤ 0 . 5 + η.

Otherwise, instance X is neither discriminated nor favored according to this model. 

The classifier’s score F(X, C + ) and the parameter η correspond roughly to m 

∗ and b , respectively, in the basic discrimi-

nation model outlined earlier. The value of η controls the region on both sides of the classifier’s decision boundary within

which classification scores are considered ambiguous; instances whose scores lie in this region are not assigned a label by

the classifier (i.e., their labels are rejected) and are considered likely to be the result of discriminatory practices captured in

the dataset. 

The parameter η can be estimated automatically when a non-discriminatory dataset is available. Alternatively, a domain

expert can analyze potentially discriminated/favored instances close to the decision boundary to fix an appropriate value for

η. 

Definition 3. (Discrimination and Favoritism Potential): The Discrimination Potential of an instance X ∈ X 

d with label C −

in a discriminatory dataset D is defined as 

DP (X ∈ X 

d ) = F(X, C + ) − (0 . 5 − η) ≥ 0 

Similarly, the Favoritism Potential of an instance X ∈ X 

f with label C + in a discriminatory dataset D is defined as 

F P (X ∈ X 

f ) = (0 . 5 + η) − F(X, C + ) ≥ 0 

Here, F(X, C + ) is the score for label C + for instance X produced by classifier F learned over the discriminatory dataset D. 

DP ( · ) and FP ( · ) range from 0 to 0.5 with higher values signifying greater potential of being discriminated or favored in

the dataset. The expressions for computing DP and FP can return a negative value which implies that no discrimination or

favoritism exists. 

This discrimination model can be used for both discrimination discovery and discrimination prevention. The Discrimina-

tion and Favoritism Potentials described above allow easy identification and ranking of instances that have potentially biased

decisions in a dataset. In the following sections, we present our discrimination control solutions based on our discrimination

model. 

4.2. Probabilistic Rejection (PR) 

Our first reject option based solution for discrimination control, called Probabilistic Rejection(PR), utilizes posterior prob-

abilities produced by one or more probabilistic classifiers to identify instances with high label uncertainty. These instances

are then labeled in a manner that neutralizes the effect of discrimination. Based on the discrimination model introduced in

the previous section, PR embodies strong theoretical concepts to provide excellent control over the accuracy-discrimination

trade-off for future classifications. 

Before proceeding further, it is worth re-emphasizing that effective discrimination control in our setting (only discrimi-

natory dataset available) is possible only when group membership of individuals is known. Knowledge of this information

is also necessary for litigation processing and for affirmative action. 

4.2.1. Labeling strategy 

Traditionally, a learned classifier assigns an instance to the class with the highest posterior probability. PR deviates from

this traditional decision rule and gives the idea of a critical region in which instances belonging to deprived and favored

groups are labeled with desirable and undesirable labels, respectively. We first present PR for single and multiple classifiers

and then relate PR with decision theory for interpretation and control. 

Consider a single classifier, and let p(C + | X ) be the posterior probability for instance X produced by this classifier. When

p(C + | X ) is close to 1 or 0 then the label for instance X is specified with a high degree of certainty. On the other hand, when

p(C + | X ) is close to 0.5 then the label for instance X is more uncertain. Probabilistic rejection is adopted for all instances

for which max [ p(C + | X ) , 1 − p(C + | X )] ≤ θ where (0.5 < θ < 1). These instances, which lie within the critical region , are not

assigned labels (or are labeled as ‘reject’). The labels for instances in the critical region (rejected instances) are considered

to be ambiguous and influenced by biases. Note that η = θ − 0 . 5 relates the parameter θ with the parameter η introduced

in the discrimination model. 
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Table 1 

Loss matrix. 

Actual ↓ , Predicted → C + C − C r 

C + L + , + L + , − L + ,r 
C − L −, + L −, − L −,r 
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To reduce discrimination, these rejected instances are labeled as follows; if the instance is from the deprived group ( X 

d )

then label it as C + otherwise label it as C −. 

The instances outside the critical region are classified according to the standard decision rule, i.e., if p(C + | X ) > p(C −| X )

then C + will be assigned to instance X ; otherwise, C − will be assigned to instance X . 

Probabilistic rejection is not restricted to work with a single classifier; it can also be used for an ensemble of probabilistic

classifiers. In our problem setting of discrimination-aware classification, a classifier ensemble can be thought of as a pool of

experts with varying characteristics and biases – their combined output is expected to be more reliable w.r.t. both accuracy

and discrimination. 

Let F k ( k = 1 , . . . , K) denote the k th classifier in an ensemble of K > 1 classifiers, and p(C, F k | X ) be the posterior probabil-

ity of classification of instance X produced by classifier F k . The posterior probability of classification of the ensemble p ( C | X )

is given by 

p(C| X ) = 

K ∑ 

k =1 

p(C| X, F k ) p(F k ) (1)

The prior probability of a classifier, p(F k ) , can be taken to be proportional to the accuracy of that classifier on the data.

Or, if such information is considered uninformative, the prior probability distribution can be taken to be uniform, in which

case, the posterior probability of the ensemble is simply the average of the posterior probabilities of each classifier in the

ensemble. 

Given the posterior probability of an ensemble p ( C | X ), PR proceeds in the manner as discussed for a single classifier

above. This labeling strategy will ensure that only higher risk instances are rejected and thus its impact on accuracy of the

classifier is a minimum. This aspect is discussed further in the next subsection. 

4.2.2. Decision theoretic interpretation 

In this section, we develop a decision theoretic understanding of PR. The expected loss of a single classifier or an en-

semble of classifiers ( F) that produces posterior probabilities p(C + | X ) and p(C −| X ) = 1 − p(C + | X ) for instance X is given

by 

E[ L ] = 

∑ 

{ X ∈X |F(X )= C + } 
L −, + p(C −| X ) p(X ) 

+ 

∑ 

{ X ∈X |F(X )= C −} 
L + , − p(C + | X ) p(X ) . (2)

Here, L + , − quantifies the loss incurred in classifying a positive instance as negative. These quantities are typically given in a

loss matrix, with rows representing actual labels and columns giving predicted labels ( Table 1 ). There is no loss when the

predicted and actual labels match; hence, L + , + = L −, − = 0 while L + , −, L −, + > 0 . 

The best label for each instance X , that ensures the minimum expected loss of classification ( Eq. (2) ), is given by the

j ∈ { + , −} that minimizes [5] : 

L + , j p(C + | X ) + L −, j (1 − p(C + | X )) . (3)

When all classification errors incur a constant loss (e.g., L + , − = L −, + , then the above decision rule assigns each instance X

to the label whose posterior probability is the largest. This is the standard decision rule that ensures the lowest loss in the

accuracy of classification. 

The reject option in classification is invoked when max [ p(C + | X ) , 1 − p(C + | X )] < θ . From Eq. (2) , it is clear that even

when all rejected instances (say R instances) are misclassified the increase in expected loss is a minimum as compared to

any other set of R misclassified instances from a given dataset. This is because the rejected instances have a low maximum

posterior probability. The labeling strategy of Probabilistic Rejection (PR), however, only relabels deprived group instances

with negative labels and favored group instances with positive labels. This strategy reduces discrimination by decreasing the

dependence of the sensitive attributes on the class attribute without impacting the dependence of other attributes on the

class attributes. Thus, PR reduces illegal discrimination first while maintaining the explainable discrimination. 

In PR, the trade-off between accuracy and discrimination is controlled by θ ; in general the larger the value of θ the

greater the reduction in classifier discrimination, as more deprived and favored group instances are likely to be labeled with

 

+ and C −, respectively. For any given value of θ , the expected reduction in accuracy is the minimum possible as pointed

out in the preceding paragraph. To achieve a specified discrimination level, the value of θ can be determined by using a

validation dataset. 
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Table 2 

Loss matrices for Probabilistic Rejection (PR). The left ma- 

trix is for deprived instances and the right is for favored in- 

stances. 

Deprived Insts Favored Insts 

Actual ↓ , Predicted → C + C − C + C −

C + 0 θ
1 −θ

0 1 

C − 1 0 θ
1 −θ

0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typically in classification, a uniform cost or loss is associated with all errors, irrespective of them being false positives or

false negatives. That is, L + , − = L −, + (see Table 1 ), and conveniently this loss can be taken to be 1 unit. The reject option can

be invoked by considering a third prediction label ( C r for reject) and taking L + ,r = L −,r = 1 − θ . Thus, the loss for rejecting

an instance depends upon the value of θ – the larger its value is, the smaller the loss for rejection. 

The PR labeling strategy can be interpreted via loss matrices. Consider a separate 2 × 2 (no C r label) loss matrix for de-

prived and favored group instances ( Table 2 ). The discrimination reducing and accuracy preserving classification is achieved

when L d + , − = L 
f 
−, + = θ/ (1 − θ ) , with the other values remaining unchanged from the usual loss matrix ( Table 1 ). 

Thus, PR can be interpreted as a cost-based prediction method in which the cost or loss of misclassifying a deprived

group instance as negative is θ/ (1 − θ ) times that of misclassifying it as positive. A similar statement can be made for

favored group instances. For example, when θ = 0 . 6 then a 50% higher loss is associated with one type of error as compared

to the other. 

4.3. Ensemble Rejection (ER) 

Our second reject option based solution for discrimination-aware classification, called Ensemble Rejection (ER), relabels

instances on which an ensemble of classifiers disagrees significantly. Unlike PR, ER is not restricted to probabilistic classi-

fiers only; an ensemble comprising of any type of classifier can be used in this solution. As pointed out earlier, classifier

ensembles often produce robust classifications by taking advantage of the diversity of member classifiers. Furthermore, a

classifier ensemble mimics practical decision making where a panel of experts converge on an outcome (e.g., acceptance or

rejection) for an individual. For discrimination prevention and control, ER provides additional flexibility in the choice of a

classification system. 

4.3.1. Labeling strategy 

Typically, a classifier ensemble labels a new instance with the majority class label (majority-vote rule). Ensemble Rejec-

tion (ER) deviates from this standard rule to neutralize the effect of discrimination. Specifically, it labels instances on which

member classifiers disagree significantly in a manner that reduces discrimination. 

Formally, let K ≥ 2 be the number of classifiers in an ensemble F , and 0 ≤ K 

+ ≤ K be the number of classifiers in the

ensemble predicting label C + for an instance X . Then, the confidence of the C + label produced by the classifier ensemble F
is defined as 

con f (F, X, C + ) = K 

+ /K. 

Likewise, the confidence of the C − label is given by con f (F , X, C −) = 1 − con f (F , X, C + ) . Given these confidence values, ER

labels instance X using the following decision rule: if max [ con f (F , X, C + ) , con f (F , X, C −)) ≤ θ then instance X ) is assigned

the desired label ( C + ) if it belongs to the deprived group and the undesired label ( C −) if it belongs to the favored group.

Otherwise (i.e., when max [ con f (F , X, C + ) , con f (F , X, C −)) > θ ), the standard majority-vote label is assigned to instance X . 

As in PR the parameter θ , which varies from 0.5 to 1, controls the critical region in input space where the standard

decision rule (majority-vote) is rejected in favor of the discrimination-aware rule to reduce discrimination. A value of θ = 0 . 5

means that the standard majority-vote rule is utilized for all instances, while a value of θ = 1 means that the majority-vote

label is rejected for all instances. Thus, θ controls the trade-off between discrimination and accuracy of a specific classifier

ensemble. 

A special case of the ER labeling strategy is when θ is just less than one (e.g., θ = 0 . 99 ). In this case, when all member

classifiers predict the same label for a given instance, the agreed class label is assigned to it; otherwise, if the instance

belongs to the deprived group it is assigned the C + label and if the instance belongs to the favored group it is given the C −

label. In other words, all instances for which the member classifiers disagree are rejected and labeled to reduce discrimina-

tion. 

Based on our discrimination model, the ER labeling strategy considers that instances on which more member classifiers

disagree are closer to the decision boundary and are more likely to be discriminated. We can draw a parallel between an

ensemble and an admission committee: assume that some members of the committee are biased against female applicants

and try to reject their applications. Hence, it is very likely that these members will only be able to affect the applicants

close to the decision boundary because the highly qualified female applicants cannot be rejected due to their overall high

score. If we consider member classifiers of an ensemble as admission committee members, then having more classifiers in
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the ensemble or increasing the acceptance confidence may neutralize the discriminatory effect of ensemble due to the fair

classifiers. Thus, using classifier ensembles is a natural fit to the solution of discrimination-aware classification problem. 

4.3.2. Controlling discrimination 

There are two approaches towards controlling discrimination with ER. The first approach assumes a fixed classifier en-

semble. In this approach, the trade-off between discrimination and accuracy is controlled by varying the value of θ . This

approach and the corresponding discrimination-accuracy behavior is similar to that for PR. 

The second approach assumes that an instance is rejected for discrimination-aware labeling whenever a given classifier

ensemble disagrees on its label. In this approach, the trade-off between accuracy and discrimination is controlled by varying

the composition of the ensemble. The question now is: which members should we choose and how does this impact dis-

crimination? The accuracy-discrimination performance of a given ensemble with ER depends upon the disagreement among

the member classifiers, which is defined as: 

Definition 4. (Disagreement of a Classifier Ensemble): Given a classifier ensemble {F k } K k =1 
( K > 1) trained on discrimina-

tory dataset D = { X i , C i } N i =1 
, the disagreement of the ensemble w.r.t. dataset D, denoted as disagr D , is defined as: 

disagr D = 

|{ X i |∃ j, k F j (X i ) � = F k (X i ) }| 
|{ X i }| 

When clear from the context, we will drop the subscript or simply use disagreement while referring to this measure. 

Equivalently, disagr D = d/N, where d is the number of instances on which the ensemble disagrees. If a is the number

of instances on which the ensemble agrees, then a + d = N. However, it is worth noticing that not all instances in a are

correctly classified; the ensemble can agree on an incorrect label for an instance. 

In general, the higher the disagreement of an ensemble on a given dataset, the lower will be the discrimination produced

by this ensemble with ER on new instances since the ensemble will disagree on more instances and all such instances

belonging to the deprived group are labeled with C + and the rest are labeled with C −. Disagreement, as defined above,

can be considered to be a measure of ensemble diversity as well. Ensemble diversity has been shown to be positively

correlated with ensemble accuracy determined via majority vote [21] . Another measure of ensemble diversity is average

pairwise correlation between member classifiers. In [30] , error bounds have been developed for classifier ensemble under

reject option as a function of correlation. Therefore, a key thumb rule to remember while selecting member classifiers of

an ensemble for ER is: the more diverse the member classifiers are, the higher will be the disagreement (or lower will

be the correlation) among them, and the greater will be the reduction in discrimination. This means that we can control

the discrimination of an ensemble with ER by changing the diversity of member classifiers. To select an ensemble with ER

having a specific discrimination level, a validation dataset can be used. 

4.4. Situational Rejection (SR) 

Our third solution for discrimination control, called Situational Rejection (SR), combines PR or ER with a legally-grounded

procedure of situation testing . SR includes an additional check, based on a local model of classification, for instances that are

rejected and relabeled in PR or ER. As such, SR is more careful in relabeling and hence less ‘brute force’ in its labeling strat-

egy. Furthermore, SR provides additional insights into the prevalence of discrimination and its control in future predictions.

4.4.1. Labeling strategy 

Situational rejection’s labeling strategy for discrimination control deviates from that for PR and ER with the addition

of situation testing. Situation testing or situational judgment test is a systematic procedure employed in the legal domain

for determining the response of a decision maker towards an applicant’s suitability for a benefit or service under different

settings. In this procedure, a hypothetical situation is assumed where a pair of applicants with similar qualifications (e.g.,

education, experience) but from different sensitive groups (e.g., race) apply for certain benefits (e.g., job) simultaneously. The

different outcomes of such a controlled experiment can assist victims of discrimination to establish the evidence against the

discriminatory practices w.r.t. certain sensitive characteristics [4,22,26] . Specifically, if it is found that the victim was denied

the benefits while his pair was awarded the benefits then this provides evidence for the discriminatory practice. 

We model situation testing via a k-nearest neighbor (k-NN) classifier [9] . This local model of classification is applied to

each instance that is rejected by a probabilistic classifier or a classifier ensemble learned on the discriminatory data (i.e., the

instances in the critical region produced in PR and ER). A rejected instance is compared with its neighbors and is labeled

w.r.t. the majority class of its neighbors from the opposite group of sensitive attribute. For instance, a rejected female will be

labeled according to majority class of the k-nearest male neighbors of this rejected female. The intuition of this method is

to relabel only those rejected instances that have been treated differently as compared to their peers rather than relabeling

all the rejected instances. 

Since SR changes the labels of selected deprived and favored group instances in the critical region it is less ‘forceful’

in reducing discrimination. As such, in general, to achieve the same level of discrimination a larger critical region may be

required. It is also worth noting that SR can be applied to all instances and not just to those in the critical region. 
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Table 3 

Key characteristics of datasets. 

Dataset Inst. |X d | Attr. Class SA disc% 

Adult 16281 5421 14 Income sex 19.45 

Communities 1994 1024 122 violent criminal race 43.14 

Dutch 71 99772 51658 9 economic status sex 58.66 

Dutch 01 15150 7603 12 occupation sex 29.85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experimental evaluation 

In this section, we discuss the evaluation of our methodology for discrimination control on four real-world datasets.

We compare the performance of our solutions with previously proposed discrimination-aware classification methods. Since

our solutions are not restricted to any specific classifier, we consider several standard classifiers for discrimination-aware

classification (identifying label of each classifier is given in parenthesis): naive Bayes ( NBS ), logistic regression ( Logistic ),

k -nearest neighbor ( IBK ), and decision tree ( J48 ). The first and second classifiers are generative and discriminative proba-

bilistic classifiers, respectively, while the third is an instance-based classifier with well-defined probabilistic interpretation.

We also show results with decision trees, which is an information theoretic classifier, since they have been used popularly

in previous discrimination-aware classification research. Besides the above classifiers, we tried many other classifiers as well,

including support vector machines ( SVM ), but do not report all results for ease of understanding. 

In summary, we present and discuss the results of the following experiments for preventing overall and illegal discrimi-

nation: 

1. PR: Probabilistic Rejections using single and multiple probabilistic classifiers, identified as PR (classifier) and PR (1st

classifier+2nd classifier+ . . . ) , respectively. 

2. ER: Ensemble Rejection with two or more classifiers, identified as ER (1st classifier+2nd classifier+ . . . ) . 

3. SR: Situational Rejection using single and multiple probabilistic classifiers, identified as SR (classifier) and SR (1st clas-

sifier+2nd classifier+ . . . ) , respectively. 

4. Comparison of our solutions’ results with those of current state-of-the-art discrimination-aware classification methods, 

identified as Prev Methods . 

5. Performance of our solutions (PR, ER, and SR) for illegal discrimination prevention. 

6. Evaluation of PR w.r.t. different and multiple sensitive attributes. 

7. Evaluation of PR on test dataset with less discrimination. 

Datasets: We conduct our experiments on four real-world datasets: Adult [2] , Communities and Crime [2] , and Dutch Cen-

sus of 1971 and 2001 [10] datasets. Table 3 gives the important characteristics of these datasets such as number of instances,

number of instances belonging to deprived group ( X 

d ), number of attributes in the dataset, class attribute defining the de-

sirable and undesirable labels, sensitive attribute (SA), and overall discrimination (calculated using Eq. (1) ). For experiments

on less discriminatory test sets (reported in Fig. 6 ), we change some settings in the Dutch Census datasets as follows: use

the attribute economic status as class attribute rather than occupation as class attribute of the Dutch Census of 2001 dataset

and by removing some attributes like current economic activity and occupation from these experiments to make both datasets

(Dutch 1971 and 2001) consistent w.r.t. codings. The discrimination in the Dutch Census of 2001 dataset w.r.t. economic status

as class attribute is 28.23%. 

All results reported in the paper (excluding those reported in Fig. 6 ) are obtained using 10-fold cross-validation and each

point in the figures represents the result of an independent experiment. 

5.1. Overall discrimination control 

In this section, we show that our proposed solutions prevent effectively overall discrimination in future predictions. We

also show that our proposed solutions outperform the current state-of-the-art methods over three real-world datasets (the

Dutch 71 dataset is only used in Section 5.4 ). 

5.1.1. Results of PR and SR 

Fig. 1 shows the results of our experiments with PR and SR (PR combined situation testing) on three datasets (labeled

(a), (b), (c)). The x- and y-axis of these plots represent classifiers’ discrimination and accuracy respectively, and each point

is for a specific value of θ which is varied from 0.5 to a maximum value (usually around 0.9). It is observed that as the

value of θ is increased, the discrimination reduces to zero. Furthermore, the reduction in discrimination with the increase

in θ is generally smooth and consistent across datasets and classifier(s). Thus, the discrimination level of PR and SR can be

controlled easily by varying the value of θ . The generally small decrease in accuracy for specific values of θ makes PR and

SR robust solutions appropriate for practical discrimination-aware classification. 

We know that the performance of classifiers varies over different datasets; the best performing classifier over one dataset

can give poor performance on another one. Fig. 1 demonstrates this fact and shows that PR and SR can be used with a
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Fig. 1. Discrimination-accuracy trade-off of PR and SR on three datasets. For each dataset, θ is increased from 0.5 (top right points representing standard 

decision boundaries) to a maximum value around 0.9 (bottom left points) which reduces the discrimination to 0%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

selected single classifier or classifier ensemble to ensure the best performances. For instance, both PR and SR give better

performance with single classifiers over the Communities and Crime dataset ( Fig. 1 (a)). However, PR with an ensemble of

logistic regression and J48 outperforms the other tested methods over the Adult dataset ( Fig. 1 (c)). This fact shows that

the flexibility in choice of classifier(s) is really important to achieve the best results and it makes our solutions widely

applicable to different domains and datasets. We can simply use the best performing classifier (single or an ensemble of

multiple classifiers) on any given dataset. In general, it is seen that the classifier(s) that produces the highest accuracy at

θ = 0 . 5 for a given dataset also gives low discrimination scores by maintaining the high accuracy, making the choice of

classifier(s) easier for decision makers. 

We observe in Fig. 1 that both PR and SR give comparable performance. However, SR has the advantage that it can be

used to establish an evidence of discriminatory practices in the court of law. This advantage of SR makes it a better choice

for practitioners. 

5.1.2. Results of ER 

Fig. 2 shows the results of our experiments with ER over three real world datasets ((a), (b), (c)). In these plots, member

classifiers of different ensembles are listed on the lower x-axis, ensemble disagreement is given on the upper x-axis, ER

discrimination is shown on left y-axis, and ER accuracy is given on right y-axis. These results demonstrate that discrimi-

nation can be controlled by varying the disagreement of the ensemble. For a given dataset, the higher disagreement the

ensemble has, the lower is its discrimination with ER. The disagreement of an ensemble, which also measures the diversity

of its member classifiers, can be increased by adding more classifiers. Alternatively, the disagreement can be increased by

including diverse classifiers in an ensemble. For example, Fig. 2 (a) shows that it is not always necessary to add more clas-

sifiers to reduce discrimination to 0%; just selecting an ensemble with high diversity (e.g., an ensemble comprising of naive

Bayes (NBS) and nearest neighbor classifier with k = 7 neighbors (IBK7) in this case) is enough to ensure discrimination-free

classification. 

Accuracy and discrimination generally decreases with increase in disagreement. Nonetheless, accuracy remains robust

since it is based on agreement of member classifiers of an ensemble. ER has an advantage that it can be used in collaboration

with non-probabilistic classifiers; however, its execution time can be higher than that for PR since multiple classifiers need

to be learned and applied. Similarly, SR provides a better solution for legal purposes but its execution time is the highest due

to the neighborhood search step. The execution times of sample PR, ER, and SR solutions on all datasets are given in Table 4 .
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Fig. 2. Discrimination-accuracy trade-off of ER (disagreement based) on three datasets. For each dataset, several classifier ensembles are shown with their 

accuracy and discrimination. 

Table 4 

Average execution time of PR, ER, and SR (in seconds). 

Method ↓ , Dataset → Crime Dutch Adult 

PR (Logistic) 0.58 7.86 14.23 

ER (Logistic + J48) 0.76 9.33 18.54 

SR (Logistic) 3.2 78 54.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

In practice, however, execution time is not a critical deciding factor as real-world predictions do not involve stringent time

constraints. 

5.1.3. Comparison with previous methods 

We compare the performance of our solutions (PR, ER, and SR) with that of previous methods of discrimination-aware

classification. Fig. 3 provides a detailed comparison of results on three real-world datasets. It is clear from the figure

that our solutions outperform the previously proposed discrimination-aware classification methods of Kamiran co-workers 

[7,13,16,17,23] w.r.t. accuracy-discrimination trade-off. For each dataset, the accuracy-discrimination curve of our methods 

lies above all previously reported results, confirming the performance superiority of our solutions. More importantly, our

solutions significantly outperform previous methods on the left side of the plots where discrimination is low but accu-

racy is high. To further discuss the less discriminatory results, we report highest accuracies of our proposed and previous

solutions when discrimination is kept only 5%. For communities and crime dataset, our solutions find the highest value of

accuracy (77%), while the highest accuracy of previous methods is 67% only ( Fig. 3 (a)). A similar trend is observed for Dutch

Census of 2001 dataset, where the highest reported accuracy of our solutions is 79.2% and of previous solutions is 78.1%

( Fig. 3 (b)). However, the minimum difference in highest reported accuracies is discovered for the Adult dataset, i.e., the pre-

vious methods return 84.5% and our solutions return 84.8% ( Fig. 3 (c)). With the increase in discrimination, the difference

in the highest accuracies of our solutions and other state-of-the-arts keep decreasing, which is not justified as eventually

discrimination is not prevented. These results, coupled with ease-of-use and flexible control, of our solutions make them a

major step forward in practical discrimination-aware classification. 
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Fig. 3. Comparison of our solutions with the existing state-of-the-art methods [7,13,16,17,23] on three datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Illegal discrimination prevention 

In this section, we empirically show that our solutions not only prevent overall discrimination but also ensure illegal

discrimination prevention w.r.t. given explanatory attributes. For this purpose we present results of our experiments on

two real world datasets: Adult and Dutch Census . The Communities and Crime dataset is not very appropriate for these

experiments because of its small size and all numerical attributes. Although we discretize the numerical attributes in Adult

and Dutch Census datasets as well but discretization of numerical attributes in Communities and Crime dataset produces

very small data bins that can generate misleading results for overall and illegal discrimination. 

The selection of reasonable explanatory attributes is an important step for illegal discrimination calculation and preven-

tion. In the Adult dataset a number of attributes are very weak candidates for being explanatory attributes and thus cannot

be presented as an explanation for the low income of females. For instance, we know from biology that race and gen-

der are independent. Thus, race cannot explain the discrimination w.r.t. gender; any such discrimination is either illegal or

due to some other attributes. Similarly, the relationship attribute with values wife and husband clearly captures the gender

information (i.e., is a proxy for gender) and thus cannot be used as an explanation for the low income of females. On the

other hand, the attributes age and working hours per week can be considered reasonable for explaining different incomes of

males and females. Therefore, it is appropriate to treat them as explanatory attributes. For Dutch Census dataset, attributes

education level, age and economic activity are good candidates for explanatory attribute. 

Selection of explanatory attributes is often difficult and may lead to controversies. Our solutions assume that the explana-

tory attributes are externally nominated (e.g., by domain experts) and in our experiments we present results by considering

each attribute in the dataset as explanatory attribute. 

Fig. 4 shows the performance of our proposed solutions w.r.t. illegal discrimination. In the plots, the x-axis shows dif-

ferent explanatory attributes and the y-axis shows the resultant illegal discrimination (plots on the top) and accuracy (plot

in the bottom). Plots on the top of Fig. 4 present the comparison of illegal discrimination in the actual data ( Data ), in the

predictions of a discrimination ignorant classifier, e.g., decision tree in this figure ( J48 ), and results of previously proposed

methods of Zliobaite et al. [32] ( Prev-Method ) with the illegal discrimination in the predictions of our proposed solutions

(PR, ER, SR). We observe that our solutions reduce the illegal discrimination to almost 0% for all reasonable explanatory

attributes. In general, our reject option based solutions remove the illegal discrimination with similar magnitude for all ex-

planatory attributes as shown in Fig. 4 . The strange performance observed for the relationship and marital status attributes

in the Adult dataset is due to the fact that these attributes are almost duplicates of the sensitive attribute (gender) and thus

are not reasonable explanatory attributes, respectively. 
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Fig. 4. Performance comparison of our solutions (PR, ER and SR) with the state-of-the-art methods of illegal discrimination prevention. 
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The top two plots of Fig. 4 also compare the performance of our proposed solutions with the best performing results of

Zliobaite et al. [32] where one specialized and independent classifier was learnt for each explanatory attribute separately.

It is also very important to mention that our solutions do not require this laborious work of learning a different model for

each explanatory attribute. We just learn one model to remove the illegal discrimination w.r.t. all explanatory attributes. We

observe that our solutions give comparable performance with the specialized models of Zliobaite et al. [32] . Our solutions

are capable of reducing the discrimination to any desired level by changing the value of parameter θ . We observe even the

best performing results of previous methods are not able to reduce the illegal discrimination to 0% in the Dutch Census

dataset while our solutions reduce the discrimination very close to 0%. 

The bottom plots of Fig. 4 also give the accuracy comparison of our proposed solutions with the best performing and

specialized methods of Zliobaite et al. [32] . We observe that our proposed solutions give a comparable accuracy to the

previous methods over the Adult dataset. However, in the Dutch Census dataset, PR and SR are a little less accurate as they

reduce the illegal discrimination to 0% as compared to the 10% range of specialized methods of Zliobaite et al. [32] . 

5.3. Multiple sensitive attributes 

A key shortcoming of previous methods is the difficulty of handling multiple sensitive attributes which typically requires

processing the data or classifier again. On the other hand, our solutions make standard classifier(s) discrimination-aware

w.r.t. sensitive attribute(s) at run-time. Thus, our solutions are easy to apply to multiple sensitive attributes or different

definitions of deprived groups. We demonstrate this in Fig. 5 (a), which shows the accuracy-discrimination trade-off of PR

w.r.t. three sensitive attributes (gender, education, race) on Adult dataset. We observe that discrimination decreases towards

zero for all sensitive attributes without repeating the learning procedure by simply increasing the value of θ from 0.5. This
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Fig. 6. Performance of PR on less discriminatory test data. 

Table 5 

Main features of proposed methods. 

Solution ↓ , Feature → Non-prob classifier Legal authenticity Run time 

PR No Medium Low 

ER Yes Medium Medium 

SR Yes High High 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

flexibility of PR makes it a superior discrimination-aware method as it requires very little computing resources to handle the

multiple sensitive attributes as compared to other state-of-the-art methods. Fig. 5 (b) demonstrates this fact by comparing

the computing time of PR with a standard decision tree (J48) and a previously proposed discrimination-aware method, i.e.,

Massaging [16] (Prev Method) on the Adult dataset. We can observe that PR’s computing time to handle discrimination

w.r.t. multiple sensitive attributes is comparable to the computing time of a standard decision tree. However, the computing

time of previous method becomes k times that of a single sensitive attribute when k new sensitive attributes are added, as

the method has to re-run the learning process for each sensitive attribute separately. Fig. 5 (b) clearly points out that this

drawback of previous discrimination-aware methods would become worse over large datasets. 

5.4. Performance on less discriminatory test set 

Ideally, discrimination-aware classification methods trained on discriminatory data should be evaluated on

discrimination-free or less discriminatory test sets. However, such evaluation scenarios are not currently available, and in

state-of-the-art discrimination-aware classification research, performance is measured via accuracy-discrimination trade-off

on discriminatory test sets, as reported in the previous subsections. It is expected that a discrimination-aware classifier that

produces high accuracy and low discrimination on discriminatory data will perform with a higher accuracy on less discrimi-

natory test sets. To validate this hypothesis, we construct an experiment in which PR is trained on Dutch Census of 1971 and

tested on Dutch Census of 2001 datasets. The former dataset has a discrimination of 58.66% while the latter has a discrim-

ination of 24.23%. As discussed while describing the datasets ( Section 5 ), the Dutch Census of 2001 dataset is modified to

make it compatible with the Dutch Census of 1971 dataset for this experiment, and hence, the Dutch Census of 2001 dataset

used in previous subsections is not identical to the one used in this section. 

Fig. 6 shows the performance of PR using single and multiple classifiers when tested on the 2001 version after training on

the 1971 version of the Dutch Census datasets. Unlike the results reported earlier, where both accuracy and discrimination

decreases with an increase in the value of θ , here accuracy actually increases with an increase in θ from 0.5. This trend

continues until discrimination is reduced to about 20%, and then accuracy starts decreasing due to the fact that the test set

is not entirely discrimination free. We can expect that accuracy will continue to increase as discrimination reduces to zero

if the test set is not entirely discrimination-free. This behavior of PR verifies the hypothesis and confirms its applicability to

an ideal scenario where test set is less discriminatory or discrimination-free. 

5.5. Summary and discussion 

Our experimental evaluations have highlighted several benefits of our proposed solutions for discrimination-aware clas-

sification. Table 5 summarizes the main advantages, relationships, and differences among the reject option based solutions.

We compare our proposed solutions w.r.t. execution time, type of classifiers, and authenticity in the court of law. PR is re-

stricted to single or multiple probabilistic classifiers, while ER and SR can use any type of classifiers. Situational Rejection

(SR) is considered highly reliable for justification in the court of law, as it compares the decision of a potentially discrimi-

nated/favored instance with its neighbors to establish a case of discrimination or favoritism. 
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The most significant benefit of our proposed solutions, specifically PR, is prevention of both overall and illegal discrimi-

nation simultaneously. Actually when we increase the value of θ for PR and SR (using PR), it first removes the illegal part of

discrimination and further increase of θ removes the rest of the difference in labeling between the sensitive groups to re-

duce the overall discrimination to zero. This benefit of our solution makes it superior to previously proposed discrimination-

aware classification methods as they either reduce illegal discrimination or overall discrimination and not both. Moreover in

previous illegal discrimination-aware methods, we have to learn a separate classifier for each explanatory attribute; on the

other hand, our reject option based solutions prevent the discrimination w.r.t. all explanatory attributes in a single learning.

Another significant advantage of our solutions is the control over discrimination resulting from the strong correlation

between θ (in PR and SR with PR) or disagreement (in ER and SR with ER) and discrimination. This kind of control is not

available in the existing discrimination-aware classification methods. We have presented results for different values of θ and

disagreement to establish its relationship with discrimination. In practice, if a specific discrimination level is desired, then

these parameters can be fixed by using a validation dataset. 

6. Conclusion 

In this paper, we present three different solutions for the discrimination-aware classification problem. These easy-to-use

and flexible solutions exploit the reject option in classification to identify instances to label in a manner that reduces dis-

crimination without impacting classification accuracy significantly. The reject option in classification provides a theoretical

framework for handling instances close to the decision boundary instances that are more likely to be discriminated. Our so-

lutions employ Probabilistic Rejection (PR) in probabilistic classifiers, ensemble rejection in classifier ensembles (ER), and PR

or ER combined with situation testing (SR). A desirable characteristic of these solutions is their interpretability, i.e., stronger

justifications for the decisions as evidence against discriminatory practices in the court of law. 

Our experimental evaluations on four real-world datasets confirm the benefits of our solutions and demonstrate our so-

lutions’ superior performance when compared to existing state-of-the-art methods. The results also show that our solutions

prevent both overall and illegal discrimination simultaneously with minimal loss in accuracy. Stronger justifications, flexibil-

ity in practical application, ease-of-use, and overall and illegal discrimination control; these signify a major step forward in

practical discrimination-aware classification. 

Discrimination-aware classification is an exciting area of research with many directions for future research. Since deci-

sions impact humans, a broader and less abstract notion of risk needs to be considered in discrimination-aware classifiers:

decisions should satisfy safety requirements rather than maximizing accuracy or optimizing accuracy-discrimination trade- 

off [29] . Furthermore, the learned decision boundary can be quite arbitrary in low density regions thus making the use of

distance from decision boundary for risk assessment more uncertain and suggesting greater human oversight in decision

making [29] . We believe this direction holds much promise for future research with practical benefits. Another aspect that

needs attention in discrimination-aware classification is that of causal inference where the effects of observed and unob-

served explainable factors can be controlled in a systematic manner while estimating overall and illegal discrimination (e.g.,

[15] ). 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ins.2017.09.064 
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