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Abstract

Roman Urdu is an informal form of the Urdu language written in Roman script. It is used
widely in South Asia for online textual content. It lacks standard spelling and hence poses10

several normalization challenges during automatic language processing. In this article, we
present a feature-based clustering framework for lexical normalization of Roman Urdu
corpora, which includes a phonetic algorithm UrduPhone, a string matching component, a
feature-based similarity function, and a clustering algorithm Lex-Var. UrduPhone encodes
Roman Urdu strings to their pronunciation-based representations. The string matching15

component handles character-level variations that occur when writing Urdu using Roman
script. The similarity function incorporates various phonetic-based, string-based, and con-
textual features of words. The Lex-Var algorithm is a variant of the k-medoids clustering
algorithm that groups lexical variations of words. It contains a similarity threshold to bal-
ance the number of clusters and their maximum similarity. The framework allows feature20

learning and optimization in addition to the use of pre-defined features and weights. We
evaluate our framework extensively on four real-world datasets and show an F-measure
gain of up to 15 percent from baseline methods. We also demonstrate the superiority of
UrduPhone and Lex-Var in comparison to respective alternate algorithms in our clustering
framework for lexical normalization of Roman Urdu.25
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1 Introduction

Urdu and Hindi, the national language of Pakistan, and an official language of

India, respectively, are together the fourth most spoken languages in the world

(Lewis, 2009). Urdu and Hindi are closely related in morphology and phonology but

use different scripts: Urdu is written in Perso-Arabic script and Hindi is written30

in Devanagari script. Interestingly, for social media and short messaging service

(SMS) texts, a large number of Urdu and Hindi speakers use an informal form of

these languages written in Roman script, Roman Urdu.

Since Roman Urdu does not have standardized spellings and is mostly used in

informal communication, there exist many spelling variations for any given word.35

For example, the Urdu word úÃY
	
K 	P [life] is written as zindagi, zindagee, zindagy,

zaindagee and zndagi. The lack of standard spellings inflates the vocabulary of the

language and causes sparsity problems. This results in poor performance of natu-

ral language processing (NLP) and text mining tasks, such as word segmentation

(Durrani and Hussain, 2010), part of speech tagging (Sajjad and Schmid, 2009),40

spell checking (Naseem and Hussain, 2007), machine translation (Durrani et al.,

2010), and sentiment analysis (Paltoglou and Thelwall, 2012). For example, neural

machine translation models are generally trained on a limited vocabulary. Non-

standard spellings would result in a large number of words unknown to the model,

which would result in poor translation quality.45

Our goal is to perform lexical normalization, which maps all spelling variations of

a word to a unique form that corresponds to a single lexical entry. This reduces data

sparseness and improves the performance of NLP and text mining applications.

One challenge of Roman Urdu normalization is lexical variations, resulting from

a variety of reasons, such as informal writing, inconsistent phonetic mapping, and50

non-unified transliteration. Compared to the lexical normalization of languages with

a similar script like English, the problem is more complex than writing a language

informally in the original script. For example, in English, the word thanks can be

written colloquially as thanx or thx, where the shortening of words and sounds

into fewer characters is done in the same script. In Roman Urdu, in addition to55

phonetically mapping various Urdu characters to one or more Latin characters, the

transliteration of Perso-Arabic script to Roman script takes place at the same time.

Since transliteration is a non-deterministic process, it also introduces spelling varia-

tions. Fig. 1 shows an example of an Urdu word ÿ» �QË [boys] that can be transliterated

into Roman Urdu in three different ways (larke, ladkay, or larkae) depending on the60

user’s preference. Lexical normalization of Roman Urdu aims to map transliteration

variations of a word to one standard form.

Another challenge is that Roman Urdu lacks a standard lexicon or labeled corpus

for text normalization to use. Lexical normalization has been addressed for stan-

dardized or resource-rich languages like English, e.g., (Jin, 2015; Han et al., 2013;65

Gouws et al., 2011). For such languages, the correct or standard spelling of words

is known, given the standard existence of lexicon. Therefore, lexical normalization

typically involves finding the best lexical entry for a given word that does not exist

in the standard lexicon. Proposed approaches therefore aim to find the best set of
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Fig. 1. The lexicon can be varied due to informal writing, non-unified definition of

transliteration, phonetic mapping etc.

standard words for a given non-standard word. On the other hand, Roman Urdu is70

an under-resourced language that does not have a standard lexicon. Therefore, it is

not possible to distinguish between an in-lexicon and an out-of-lexicon word, and

each word can potentially be a lexical variation of another. Lexical normalization

of such languages is computationally more challenging than that of resource-rich

languages.75

Since we do not have a standard lexicon or labeled corpus for Roman Urdu lexi-

cal normalization, we cannot apply a supervised method. Therefore, we introduce

an unsupervised clustering framework to capture lexical variations of words. Dif-

ferent from the English text normalization by Rangarajan Sridhar (2015); Sproat

and Jaitly (2017), our approach does not require prior knowledge on the number of80

lexical groups or group labels (standard spellings). Our method significantly out-

performs the state-of-the-art Roman Urdu lexical normalization using rule-based

transliteration Ahmed (2009).

In this work we give a detailed presentation of our framework (Rafae et al., 2015)

with additional evaluation datasets, extended experimental evaluation, and analysis85

of errors. We develop an unsupervised feature-based clustering algorithm, Lex-Var,

that discovers groups of words that are lexical variations of one another. Lex-Var

ensures that each word has at least a specified minimum similarity with the clus-

ter’s centroidal word. Our proposed framework incorporates phonetic, string, and

contextual features of words in a similarity function that quantifies the relatedness90

among words. We develop knowledge-based and machine-learned features for this

purpose. The knowledge-based features include UrduPhone for phonetic encoding,

an edit distance variant for string similarity, and a sequence-based matching al-

gorithm for contextual similarity. We also evaluate various learning strategies for

string and contextual similarity such as weighted edit distance and word embed-95

dings. For phonetic information, we develop UrduPhone, an encoding scheme for Ro-

man Urdu derived from Soundex. Compared to other available techniques that are

limited to English sounds, UrduPhone is tailored for Roman Urdu pronunciations.

For string-based similarity features, we define a function based on a combination of

longest common subsequence and edit distance metric. For contextual information,100

we consider top-k frequently occurring previous and next words or word groups.

Finally, we evaluate our framework extensively on four Roman Urdu datasets: two

group-chat SMS datasets, one Web blog dataset, and one service-feedback SMS

dataset and measure performance against a manually developed database of Ro-

man Urdu variations. Our framework gives an F-measure gain of up to 15% as105

compared to baseline methods.
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We make the following key contributions in this paper:

• We present a general framework for normalizing words in an under-resourced

language that allows user-defined and machine learned features for phonetic,

string, and contextual similarity.110

• We propose two different clustering frameworks including a k-medoids based

clustering (Lex-Var) and an agglomerative clustering (Hierarchical Lex-Var)

• We present the first detailed study of Roman Urdu normalization.

• We introduce UrduPhone for phonetic encoding of Roman Urdu words.

• We perform an error analysis of the results, highlighting the challenges of115

normalizing an under-resourced and non-standard language.

• We have provide the source code for our lexical normalization framework1.

The remainder of this article is organized as follows. In Section 2, we present

our problem statement for lexical normalization of an under-resourced language.

In Section 3, We describe our clustering framework for lexical normalization of120

an under-resourced language, including UrduPhone and Lex-Var. In Section 4, we

describe the evaluation criterion for lexical normalization of Roman Urdu, describe

the research experiments and present the results and the error analysis. Section 5

discusses the related work in the lexical normalization of informal language, and

Section 6 concludes the paper.125

2 Task Definition

Roman Urdu is a transliterated form of the Urdu language written in Roman script.

It does not have a standardized lexicon. That is, there is no standard spelling for

words. Therefore, each word observed in a corpus can potentially be a variant

of one or more of the other words appearing in the corpus. The goal of lexical130

normalization is to identify all spelling variations of a word in a given corpus.

This challenging task involves normalizations associated with the following three

issues: (1) different spellings for a given word (e.g., kaun and kon for the word

[who]); (2) identically spelled words that are lexically different (e.g., bahar can be

used for both [outside] and [spring]); and (3) spellings that match words in English135

(e.g., had [limit] for the English word had). The last issue arises because of code-

switching between Roman Urdu and English, which is a common phenomenon in

informal Urdu writing. People often write English phrases and sentences in Urdu

conversations or switch language mid-sentence, e.g., Hi everyone. Kese ha aap log?

[Hi everyone. How are you people?]. In our work, we focus on finding common140

spelling variations of words (issue (1)), as this is the predominant issue in lexical

normalization of Roman Urdu and and do not address issues (2) or (3) explicitly.

With respect to issue (1), we note that Urdu speakers transliterate Urdu script

into Roman script, but often move away from the transliteration in favor of a

phonetically closer alternative. A commonly observed example is the replacement145

of one or more vowels with another set of the vowels that has a similar pronunciation

1 https://github.com/abdulrafae/normalization
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(e.g., janeaey [to know] can also be written as janeey). Here, the final characters

’aey’ and ’ey’ give the same pronunciation. Another variation of the previous word

is janiey. Now the character ’i’ is replacing the character ’e’. In some cases users

will omit a vowel if it does not impact pronunciation, e.g., mehnga [expensive]150

becomes mhnga and similarly bohut [very] becomes bht. Another common example

of this type of omission occurs with nasalized vowels. For example, the Roman Urdu

word kuton [dogs] is the transliteration of the Urdu word àñ
�
J» . But often the final

nasalized Urdu character à is omitted during conversion, and the Roman Urdu

word becomes [kuto]. A similar case is found for words like larko [boys], daikho155

[see], nahi [no] with final ’n’ omitted. We incorporate some of these characteristics

in our encoding scheme UrduPhone (See Section 3.3.1 and Table 2 for more details

on UrduPhone, its rules, and for complete steps to generate encoding).

We define the identification of lexical variations in an under-resourced language

like Roman Urdu as follows: Given words wi (i = 1, . . . , N) in a corpus, find the160

lexical groups `j (j = 1, . . . ,K) to which they belong. Each lexical group can

contain one or more words corresponding to a single lexical entry and representing

spelling variations of that entry in the corpus. In general, for a given corpus, the

number of lexical groups K is not known since no standardized lexicon is available.

Therefore, we estimate it using normalization.165

We define the identification of lexical variations in an under-resourced language

like Roman Urdu as follows: Given words wi (i = 1, . . . , N) in a corpus, find the

lexical groups `j (j = 1, . . . ,K) to which they belong. Each lexical group can

contain one or more words corresponding to a single lexical entry and representing

spelling variations of that entry in the corpus. In general, for a given corpus, the170

number of lexical groups K is not known since no standardized lexicon is available.

Therefore, we estimate it using normalization.

Clustering is expensive in the specific case of Roman Urdu normalization. Consid-

ering an efficient algorithm like k-means clustering, the computational complexity

of lexical normalization is O(NKT ), where T is the number of iterations required175

for clustering. In comparison, for languages like English with standardized lexicons,

each out-of-vocabulary (OOV or not in the dictionary) word can be a variant of

one or more in-vocabulary (IV) words. The computational complexity of lexical

normalization in English (given by O(K(N −K)) where K and (N −K) are the

numbers of IV and OOV words, respectively) is computationally less expensive than180

the lexical normalization of Roman Urdu.

3 Method

In this section, we describe different components of our clustering framework. Sec-

tion 3.1 formalizes our clustering framework including the algorithm developed.

Section 3.2 defines a similarity function used in our clustering algorithm. In Section185

3.3 we describe the features used in our system.
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Algorithm 1: Lex-Var
Input: L∗ = {`∗1 , `

∗
2 , . . . , `

∗
K∗} (initial clusters; see Table 4), W = {w1, w2, . . . , wN} (words), t

(similarity threshold)
Output: L = {`1, `2, . . . , `K} (predicted clusters)

1 L = L∗;
2 repeat

/* Find cluster centroidal word */
3 C = ∅;
4 for ∀ `i ∈ L do
5 R = ∅;
6 for ∀ wj ∈ `i do
7 rj = 0;
8 for ∀ wk ∈ `i do
9 rj = rj + S(wj , wk);

10 end
11 R = R∪ {rj} ;

12 end
13 m = argmaxj(rj ∈ R);
14 ci = wm;
15 C = C ∪ {ci};
16 `i = ∅;
17 end

/* Assign word to clusters */
18 for ∀ wi ∈ W do
19 closest = null;
20 maxSim = 0;
21 for ∀ cj ∈ C do
22 if S(wi, cj) > t and S(wi, cj) > maxSim then
23 maxSim = S(wi, cj);
24 closest = cj ;

25 end

26 end
27 if closest ! = null then // Move word wi to cluster `j
28 `j = `j ∪ {wi} | closest ∈ `j ;
29 else // Move word wi to new cluster `|L|+1

30 `|L|+1 = {wi};
31 L = L ∪ {`|L|+1};
32 end

33 end

34 until stop condition Satisfied;

3.1 Clustering Framework: Lex-Var

We develop a new clustering algorithm, Lex-Var, for discovering lexical variations

in informal texts. This algorithm is a modified version of the k-medoids algorithm

(Han, 2005) and incorporates an assignment similarity threshold, t > 0, for con-190

trolling the number of clusters and their similarity spread. In particular, it ensures

that all words in a group have a similarity greater than or equal to some threshold,

t. It is important to note that the k-means algorithm cannot be used here because

it requires that the means of numeric features describe the clustered objects. The

standard k-medoids algorithm, on the other hand, uses the most centrally located195

object as a cluster’s representative.

Algorithm 1 gives the pseudo-code for Lex-Var. Lex-Var takes as input words

(W) and outputs lexical groups (L) for these words. UrduPhone segmentation of

the words gives the initial clusters. Lex-Var iterates over two steps until it achieves

convergence. The first step finds the centroidal word ci for cluster `i as the word200

for which the sum of similarities of all other words in the cluster is maximal. In

the second step, each non-centroidal word wi is assigned to cluster `j if S(wi, cj)



A Clustering Framework for Lexical Normalization of Roman Urdu 7

Fig. 2. Flow Diagram for Lex-Var

(see Section 3.2) is maximal among all clusters and S(wi, cj) > t. If the latter

condition is not satisfied (i.e., S(wi, cj) ≤ t), then instead of assigning word wi to

cluster `j , it starts a new cluster. We repeat these two steps until a stop condition is205

satisfied (e.g., a fraction of words that change groups becomes less than a specified

threshold). The computational complexity of Lex-Var is O((n2 +N)KT ), where n

is the maximum number of words in a cluster, which is typically less than N .

Fig. 2 shows the details of our clustering framework. The first row of boxes

shows the workflow of the system, and the area in the dotted square includes the210

modules used in our clustering method. The filled arrows indicate the outputs of

the algorithms, and the unfilled arrows show modules that apply sub-modules.

After pre-processing the text, we normalize each word in the vocabulary. First,

we initialize the clustering using random clustering or UrduPhone clusters. Then,

based on the initial clusters, we apply (Hierarchical) Lex-Var algorithm to predict215

clusters. Finally, we compute the F- Measure based on the gold standard clusters

to evaluate our prediction.

The Lex-Var algorithm applies a modified version of the k-medoids clustering,

which uses a similarity measure that is further consisted of different features in-

cluding UrduPhone, String Learning, and Contextual feature. The edit distance is220

a sub-module of the string learning. We learn the substitution cost with various

methods such as EM.

3.2 Similarity Measure

We compute the similarity between two words wi and wj using the following simi-

larity function:225

S(wi, wj) =

∑F
f=1 α

(f) × σ(f)
ij∑F

f=1 α
(f)

(1)
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Table 1. UrduPhone vs Soundex Encodings

Word Soundex Encoding UrduPhone Encoding

mustaqbil [future] M 2 3 2 M 1 2 7 9 17

mustaqil [constant] M 2 3 2 M 1 2 7 17 0

khirki [window] K 6 2 0 K 19 14 7 0 0

kursi [chair] K 6 2 0 K 14 1 0 0 0

ronak [brightness] R 5 2 0 R 11 7 0 0 0

rung [color] R 5 2 0 R 11 13 0 0 0

dimaagh [brain] D 5 2 0 D 12 13 19 0 0

dimaag [brain] D 5 2 0 D 12 13 0 0 0

please P 4 2 0 P 17 1 0 0 0

plx P 4 2 0 P 17 3 0 0 0

Algorithm 2: UrduPhone
Input: w = {w1, · · · , wn}, a word of length n
Output: e = {e1, · · · , e6}, an encoding of length 6

1 e[0] = uppercase(w[0]);
2 j = 1;
3 for i = 1→ n do

// Discard duplicates
4 if i+ 1 ≤ n && w[i] == w[i+ 1] then
5 continue;
6 end

// Discard Roman Urdu vowels (a,e,i,o,u,y)
7 if w[i] ==‘a’ || w[i] ==‘e’ || w[i] ==‘i’ || w[i] ==‘o’ || w[i] ==‘u’ || w[i] ==‘y’ then
8 continue;
9 end

// Encode character based on Table 2
10 e[j] = get encoding(w[i]);
11 j + +;

12 end
// Add 0s if encoding length less than 6

13 while j ≤ 6 do
14 e[j] = 0;
15 j + +;

16 end

Here, σ
(f)
ij ∈ [0, 1] is the similarity contribution made by feature f . F is the total

number of features. We will describe each feature in Section 3.3 in detail. α(f) > 0

is the weight of feature f . These weights are set to one by default and are automat-

ically optimized in Section 3.4 and 4.3.4. The similarity function returns a value in

the interval [0, 1] with higher values signifying greater similarity.230

3.3 Features

The similarity function in Eq. 1 is instantiated with features representing each

word. In this work, we use three features: phonetic, string, and contextual, which

are computed based on rules or based on learning.

2 https://en.wikipedia.org/wiki/Urdu_alphabet
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Table 2. UrduPhone homophone mappings in Roman Urdu

Characters Urdu Alphabets IPA2 Example

q,k
�

� , ¸ [q], [k] qainchi [scissors], kitab [book]

c,sh,s � , �
� , � , �

H [s], [S], [s], [s] shadi [wedding], sadi [simple]

z,x 	P ,
	
X , 	

  , 	
� [z], [z], [z], [z] zameen [earth], xar [gold]

zh �P [Z] zhalabari [hail]

kh p [x] zakhmi [injured]

d X ,
�
X [d”], [ã] dahi [yogurt], doob [sink]

t �
H , �

H ,   [t”], [ú], [t”] tareef [praise], timatar [tomato]

m Ð [m] maut [death]

j h. [ “dZ] jism [body]

g À [g] gol [circular]

f
	

¬ [f] fauj [army]

b H. [b] bjli [lightening]

p H� [p] pyaz [onion]

l È [l] lafz [word]

ch h� [“tS] chehra [face]

h h , è
f

, ë
[h, H ], [h, H, ø] ,

[h, H]

haal [present],

bahar [spring], phal

[fruit]
n 	

à , à [n, ñ, ï, N], [ ˜ ] nazar [sight], larkioun [girls]

r P, �P [r], [ó] risala [magazine], guriya [doll]

w,v ð , ¨
[V, u:, o:, O:],
[a:, o:, e:, P, Q, ø]

waqt [time], vada [promise]

bh ìK.
[bh] bhaag [run]

ph ìK�
[ph] phool [flower]

jh ìk.
[ “dZh] bojh [weight], boj [weight]

th ì
�
K , ì

�
K [t”h], [th] thapki [pat], thokar [stumble]

dh ëX , ë
�
X [d”]h], [ãh] udhar [loan], dhool [drum]

rh ëP , ë �P [ rh], [óh] rhnuma [guide], barhna [to grow]

gh
	

¨ [G] ghalat [wrong]

a,i,e,o,u,y
�
@ , ø , þ , ð, ¨,



@

[a:, P, ø], [j, i:, a:],
[E:,e:], [V, u:, o:, O:],
[a:, o:, e:, P, Q, ø],
[P, ø]

aam [mango],

ilm [knowledge], ullu

[owl]

3.3.1 UrduPhone235

We propose a new phonetic encoding scheme, UrduPhone, tailored for Roman Urdu.

Derived from Soundex (Knuth, 1973; Hall and Dowling, 1980), UrduPhone encodes

consonants by using similar sounds in Urdu and English. UrduPhone differs from

Soundex in two ways:

1) UrduPhone’s encoding of words contains six characters as opposed to four240

in Soundex. An increase in encoding length reduces the possibility of mapping se-

mantically different words to one form. Soundex maps different words to a single

encoding, which, due to the limited encoding length, can cause errors when trying to

find correct lexical variations. (Table 1). For example, mustaqbil [future] and mus-
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taqil [constant] encode to one form, MSTQ, in Soundex but to two different forms245

using UrduPhone encoding. In a limited number of cases, UrduPhone increases am-

biguity by mapping lexical variations of the same word into different encodings, as

in the case of please and plx. Since these words share similar context, we believe

that they will map to one cluster with the addition of contextual information.

2) We introduce homophone-based groups, which are mapped differently in250

Soundex. There are several Urdu characters that map to the same Roman form. For

example, samar [reward], sabar [patience], and saib [apple], all start with different

Urdu characters that have an identical Roman representation: s. We group together

homophones such as w, v as in taweez, taveez [amulet] and z, x as in lolz, lolxx

[laughter] or zara, xara [a bit]. One common characteristic with transliteration from255

Urdu to Roman script is the omission of the Roman character ’h’. For example, the

same Urdu word maps to both the Roman words samajh & samaj [to understand].

This is especially true in the case of digraphs representing Urdu aspirates such as

dh, ph, th, rh, bh, jh, gh, zh, ch, and kh. A problem arises when the longest com-

mon subsequence in words (if ’h’ is omitted) causes overlaps such as (khabar [news],260

kabar [grave]) and (gari [car], ghari [watch]). Also, when sh comes at the end of a

word, as in khawhish, khawhis [wish]; when ’h’ is omitted, the sound is mapped to

the character s. Similarly, if there is a transcription error, such as dushman [enemy]

becomes dusman, the UrduPhone encoding is identical. Here, the omission of ’h’

causes an overlap of the characters � and �
� .265

The second column of Table 1 shows a few examples of Soundex encodings of

Roman Urdu words. In some cases, Soundex maps two semantically different words

to one code, which is undesirable in the task of lexical normalization. Table 2

shows a complete list of homophone-based mapping introduced in UrduPhone, and

Algorithm 2 shows the process to encode a word into an UrduPhone encoding. The270

phonetic similarity of words wi and wj is then computed using Eq. 2.

σPij =

{
1 if UrduPhone(wi) == UrduPhone(wj)

0 otherwise
(2)

3.3.2 Learning String-similarity

The lexical variations of a word have a number of overlapping sub-word units, e.g.,

spelling variations of zindagi [life] include zindagee, zindagy, zaindagee and zndagi

with many overlapping sub-word units. To benefit from this overlap, we define a275

string similarity function as follows:

σSij =
lcs(wi, wj)

min[len(wi), len(wj)] + edist(wi, wj)
(3)

Here, lcs(wi, wj) is the length of the longest common subsequence in words wi and

wj , len(wi) is the length of word wi, and edist(wi, wj) is the edit distance between

words wi and wj .
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Edit Distance: The edit distance allows insertion, deletion and substitution opera-280

tions. We obtain the cost of edit distance operations in two ways:

Manually Defined – In a naive approach, we consider the cost of every operation

to be equal and set them to 1. We refer to this edit distance cost as edistman. This

technique has a downside of considering all operations equally necessary which is

an erroneous assumption. For example, the substitution cost of a Roman character285

’a’ to ’e’ should be less than the cost of ’a’ to ’z’ because both ’a’ and ’e’ have

related sounds in some contexts. It is possible to use these characters alternatively

when transliterating from Perso-Arabic script to Roman Script.

Automatically Learning Edit Distance Cost – In this approach, we automat-

ically learn the edit distance cost from the data. Consider a list of word pairs where290

one word is a lexical variation of another word. One can automatically learn the

character alignments between them using an EM algorithm. The inverse character

alignment probability serves as cost for the edit distance operations.

In our case, we do not have a cleaned list of word pairs to learn character align-

ments automatically. Instead, we try to learn these character alignments from the295

noisy training data. To do this, we build a list of candidate word pairs by aligning

every word in the corpus to every other word in the corpus as a possible lexical

variation. We split the words into characters and run the word-aligner GIZA++

(Och and Ney, 2003). Here, the word-aligner considers every character as a word

and every word as a sentence. We use the learned character alignments with one300

minus their probability as the cost for the edit distance function. We refer to this

edit distance cost as edistgiza.

Since the model learns the cost from the noisy data, it is likely that it is not a

good representative of the accurate edit distance cost that would be learned from the

cleaned data. In our alternative method, we automatically refine the list of candidate305

pairs and learn character alignments from it. In this approach, we consider the

problem of lexical variations as a transliteration mining problem (Sajjad et al.,

2011), where, given a list of candidate word pairs, the algorithm automatically

extracts word pairs that are transliterations of each other. For this purpose, we use

the unsupervised transliteration mining model of (Sajjad et al., 2017), who define310

the model3 as a mixture of a transliteration sub-model and a non-transliteration

sub-model. The transliteration sub-model generates the source and target character

sequences jointly and is able to model the dependencies between them. The non-

transliteration model consists of two monolingual character sequence models that

generate source and target strings independently of each other. The parameters of315

the transliteration sub-model are uniformly initialized and then learned during EM

training of the complete interpolated model. During the training process, the model

penalizes character alignments that are less likely to be part of a transliteration pair

and favors character alignments that are likely to be part of a transliteration pair.

3 https://github.com/hsajjad/transliteration_mining



12 A. Rafae and others

Similar to GIZA++ training, we train the unsupervised transliteration miner on320

our candidate list of word pairs and learn character alignments. We then use these

character alignments with one minus their probability as cost for the edit distance

metric. We refer to this cost as edistminer.

3.3.3 Context Information

We observe that non-standard variants of a standard word have similar contexts.325

For exmaple, truck and truk will be used in similar contexts, which might be very

different from cat. We used this idea to define a contextual similarity measure

between two words. We compare the top-k frequently occurring preceding (previous)

and following (next) words’ features of the two words in the corpus. The previous

and next word’s features can be each word’s ID, UrduPhone ID, or cluster/group330

ID (based on initial clustering of the words).

Let ai1, a
i
2, . . . , a

i
5 and aj1, a

j
2, . . . , a

j
5 be the features (word IDs, UrduPhone IDs,

or cluster IDs) for the top-5 frequently occurring words preceding word wi and wj ,

respectively. We use the similarity between the two words based on this context as

defined by (Hassan et al., 2009):335

σCij =

∑5
k=1 ρk∑5
k=1 k

(4)

Here, ρk is zero for any aik (i.e., the kth word in the context of wi) when there exists

no match in aj∗ (i.e., in the context of word wj). Otherwise, ρk = 5−max[k, l]− 1

where aik = ajl and l is the highest rank (smallest integer) at which a previous match

has not occurred. In other words, this measure is the normalized sum of rank-based

weights for matches in the two sequences, with more importance given to those340

occurring in higher ranks. Note that contextual similarity can be computed even

if the context sizes of the two words are different, an essential step as a word may

not have 5 distinct words preceding it in the corpus.

We combine all the features using our similarity measure from Eq. 1. The code

for combining a set of features is mentioned in Algorithm 3.345

3.4 Parameter Optimization

The feature weights α(f) used to measure word similarity in Eq. 1 can be tuned to

optimize prediction accuracy. For example, by changing the weights in our clustering

framework (see Eq. 1), we can make contextual similarity more prominent (by

increasing the weight αC) so that words with the same UrduPhone encoding but350

different contexts are placed in separate clusters (see discussion in Section 4.4). But,

we also test with other weight combinations and features, including using both word

IDs and UrduPhone IDs to represent the top-5 most frequently occurring previous

and next words (rather than just one representation as used in other experiments).

We identify corresponding weights for contexts based on word IDs and UrduPhone355

IDs as αC1 and αC2 , respectively. The weights for phonetic and string features are

αP and αS , respectively.
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Algorithm 3: Similarity measure with weighted feature combination
Input: wi, wj (input words), F (set of features used), α (set of feature weights)
Output: sim (similarity between wi & wj)

1 total weight = 0;
2 sum = 0;
3 if phonetic ∈ F then
4 encodedi = urduphone(wi);
5 encodedj = urduphone(wj);

6 σP
ij = phoneticsim(encodedi == encodedj);// see Eq. 2

7 sum = sum+ αP × σP
ij ;

8 total weight = total weight+ αP ;

9 end
10 if string ∈ F then

11 σS
ij = stringsim(wi, wj);// see Eq. 3

12 sum = sum+ αS × σS
ij ;

13 total weight = total weight+ αS ;

14 end
15 if context ∈ F then
16 previ = top5prev(wi);
17 prevj = top5prev(wj);

18 σ
C1
ij = contextsim(previ, prevj);// see Eq. 4

19 sum = sum+ αC1 × σC1
ij ;

20 total weight = total weight+ αC1 ;
21 nexti = top5next(wi);
22 nextj = top5next(wj);

23 σ
C2
ij = context sim(nexti, nextj);// see Eq. 4

24 sum = sum+ αC2 × σC2
ij ;

25 total weight = total weight+ αC2 ;

26 end
27 if word2vec ∈ F then
28 veci = word vector(wi);// see Section 4.3.5
29 vecj = word vector(wj);

30 σW
ij = cosine(veci, vecj);

31 sum = sum+ αW × σW
ij ;

32 total weight = total weight+ αW ;

33 end
34 if 2skip1gram ∈ F then

35 sigmaGij = 2skip1gram(wi, wj);// see Algorithm 5

36 sum = sum+ αG × σG
ij ;

37 total weight = total weight+ αG;

38 end
39 sim = sum

total weight ;

We also optimize n variables to maximize an objective function using the Nelder-

Mead method (Nelder and Mead, 1965). We use the Nelder-Mead method to max-

imize the F-measure by optimizing the feature weights of our Similarity function360

in Eq. 1, as well as the hyperparameter, threshold t, mentioned in Line 21 of

Algorithm 1. We apply 10-fold cross-validation on the SMS (small) dataset (Table

9). We will describe the results in Section 4.3.4.

4 Experiments

In this section, we first describe our evaluation setup and the datasets used for the365

experiments. Later, we present the results.
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4.1 Evaluation Criteria

Since the lexical normalization of Roman Urdu is equivalent to a clustering task,

we can adopt measures for evaluating clustering performance. We need a gold stan-

dard database defining the correct groupings of words for evaluation. This database370

contains groups of words such that all words in a given group are considered lex-

ical variations of a lexical entry. In clustering terminology, all words in a cluster

are considered more similar to each other than to words in other clusters. On the

other hand, accuracy (i.e., the proportion of OOV words that correctly match to

IV words) is typically used to evaluate lexical normalization of a standardized lan-375

guage like English. This measure is appropriate because we know the IV words and

can be compared to every OOV word.

Bagga and Baldwin (Vilain et al., 1995) discussed measures for evaluating clus-

tering performance and recommend the use of BCubed precision, recall, and F-

measure. These measures possess all four desirable characteristics for clustering380

evaluation (homogeneity, completeness, rag bag, and cluster size vs. number of

clusters – see (Vilain et al., 1995) for details). In the context of lexical normaliza-

tion of non-standard languages, they provide the additional benefit that they are

computed for each word separately, and then averaged for all words. For example,

if a cluster contains all variants of a word and nothing else, then it is consid-385

ered homogeneous and complete, and this is reflected in its performance measures.

These measures are robust in the sense that incorporating small impurities in an

otherwise pure cluster impacts the measures significantly (rag bag characteristic),

and trade-off between cluster size and number of clusters is reflected appropriately.

Other clustering evaluation measures do not possess all these characteristics and,390

in particular, commonly-used measures like entropy and purity are not based on

individual words.

Let L = {`1, · · · , `K} be the set of output clusters and L′ = {`′1, · · · , `′K} be the

set of actual or correct clusters in the gold standard. Then we define correctness

for word pair wi and wj as395

C(wi, wj) =

{
1 iff (∃ `m ∈ L& `′n ∈ L′ such that wi & wj ∈ `m & `′n)

0 otherwise
(5)

In other words, C(wi, wj) = 1 when words wi and wj appear in the same cluster

(`m) of the clustering and the same cluster (`′n) of the gold standard; otherwise,

C(wi, wj) = 0. By definition, C(wi, wi) = 1.

The following expressions give the BCubed precision P (wi) and recall R(wi) for

a word wi:400

P (wi) =

∑N
j=1 C(wi, wj)

|`m|
(6)

R(wi) =

∑N
j=1 C(wi, wj)

|`′m|
(7)
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Here, `m and `′m identify the cluster in the clustering and gold standard, respec-

tively, that contain word wi. The summation for Eq. 6 & Eq. 7 is over all the words

j. Finally, we define the BCubed F-measure F (wi) of word wi in the usual manner

as:

F (wi) = 2× P (wi)×R(wi)

P (wi) +R(wi)
(8)

We compute the overall BCubed precision, recall, and F-measure of the clustering405

as the average of the respective values for each word. For example, we calculate the

F-measure of the clustering as
∑N

i=1 F (wi)

N .

4.2 Datasets

We utilize four datasets in our experimental evaluation. The first and second

datasets, SMS (small) and SMS (large), are obtained from Chopaal, an internet-410

based group SMS service.4 These two versions are from two different time peri-

ods and do not overlap. The third dataset, Citizen Feedback Monitoring Program

(CFMP) dataset, is a collection of SMS messages sent by citizens as feedback on the

quality of government services (e.g., healthcare facilities, property registration).5

The fourth dataset, Web dataset, is scraped from Roman Urdu websites on news,6415

poetry,7 SMS,8 and blogs.9 Unless mentioned otherwise, the SMS (small) dataset

is used for the experiment. All four datasets are preprocessed with the following

steps: (1) Remove single-word sentences; (2) add tags to URLs, email addresses,

time, year, and numbers with at least 4 digits; (3) Collapse more than two repeating

groups to only two (e.g., hahahaha to haha); (4) Replace punctuations with space;420

(5) Replace multiple spaces with single space. For the SMS (small) and SMS (large)

datasets, we carry out an additional step of removing group messaging commands.

We evaluate the performance of our framework against a manually annotated

database of Roman Urdu variations developed by Khan and Karim (2012). This

database, which we refer to as the ‘gold standard’, is developed from a sample of the425

SMS (small) dataset. It maps each word to a unique ID representing its standard or

normal form. There are 61,000 distinct variations in the database, which map onto

22,700 unique IDs. The number of variations differs widely for different unique IDs.

For example, mahabbat [love] has over 70 variations such as muhabaat, muhabbat,

and mhbt. The gold standard database also includes variations of English language430

words that are present in the dataset.

Table 3 shows statistics of the datasets in comparison with the evaluation gold

standard database. The overlap of a dataset with the gold standard gives the num-

ber of words in the dataset that also appear in the standard database. The table

4 http://chopaal.org
5 http://cfmp.punjab.gov.pk/
6 http://www.shashca.com, http://stepforwardpak.com/
7 https://hadi763.wordpress.com/
8 http://www.replysms.com/
9 http://roman.urdu.co/
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Table 3. Datasets and gold standard database statistics

Dataset SMS (small) SMS (large) CFMP Web

Message Count 159,158 1,994,136 183,083 5,423

Unique words 89,692 366,583 101,395 21,800

Overlap with

Gold Standard (OGS)
57,699 51,477 23,112 12,634

OGS and context

information ≥ 1
51,133 49,272 18,516 9,773

UrduPhone IDs

Previous Case
11,146 9,738 4,683 6,171

OGS and

context information ≥ 5
12,852 30,856 1,414 2,479

UrduPhone IDs for

Previous Case
4,218 6,681 1,305 2,175

also gives the number of words that appear in the gold standard and have at least435

(1) one preceding and at least one following word (context size ≥ 1), and (2) five

distinct preceding and following words in the dataset (context size ≥ 5). We eval-

uate these numbers of words for the respective datasets. The UrduPhone IDs of a

dataset give the number of distinct encodings of the evaluation words in the dataset

(corresponding to the number of initial clusters).440

4.3 Experimental Results and Analysis

We conduct different experiments to evaluate the performance of our clustering

framework for lexical normalization of Roman Urdu. We test different combina-

tions of features (UrduPhone, string, and/or, context) and different representa-

tions of contextual information (UrduPhone IDs or word IDs). We also establish445

two baseline methods for comparisons.

Table 4 gives the details of each experiment’s setting. Exp. 1 and 2 are baselines

corresponding to segmentation using UrduPhone encoding and string similarity-

based clustering (with initial random clusters equal to the number of UrduPhone

segments), respectively. The remaining experiments utilize different combinations of450

features (string, phonetic, and context) in our clustering framework. Here, for string-

based features, we used manually defined edit distance rules.10 The initial clustering

in these experiments is given by segmentation via UrduPhone encoding. In Exp. 3 no

contextual information is utilized, while in Exp. 4 and Exp. 5 the context is defined

by the top-5 most frequently occurring previous and next words (context size ≥455

5) represented by their UrduPhone IDs and word IDs, respectively. In Exp. 2 to

5, we select the similarity threshold t such that the number of discovered clusters

10 Section 3.3.2 presents a comparison of using automatically learned edit distance rules
with manually defined rules.
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Table 4. Details of experiments’ settings

Exp. Initial clusters String Phonetic Context

1 UrduPhone 7 7 –

2 Random 3 7 –

3 UrduPhone 3 3 –

4 UrduPhone 3 3 UrduPhone ID

5 UrduPhone 3 3 Word ID

is as close as possible to the number of actual clusters in the gold standard for

each dataset. This is done to make the results comparable across different settings.

During our experiments we observed that a threshold within a range of 0.25− 0.3460

was optimal for smaller datasets, including Web & CFMP, and 0.4 − 0.45 gave

the best performance for larger datasets, including SMS (small) & SMS (large).

However, we also tried to find the optimum threshold value using the Nelder-Mead

method (see Table 9), which maximizes the F-Measure.

Figures 4a, 4b, 4c, and 4d show performance results on SMS (small), SMS (large),465

CFMP, and Web datasets, respectively. The x-axes in these figures show the ex-

periment IDs from Table 4, while the left y-axes give the BCubed precision, recall,

and F-measure, and the right y-axes describe the difference between the number of

predicted and actual clusters.

The baseline experiment of segmentation via UrduPhone encoding (Exp. 1) pro-470

duces a high recall and a low precision value. This is because UrduPhone tends to

group more words in a single cluster, which decreases the total number of clusters

and results in an overall low F-measure. The second baseline of string-based clus-

tering (Exp. 2) gives similar values for precision and recall since the average number

of clusters is closer to that of the gold standard. Although the F-measure increases475

over Exp. 1, string-based similarity alone does not result in sound clustering.

Combining string and phonetic features in our clustering framework (Exp. 3)

results in an increase in precision and recall values as well as a marked increase in

F-measure from the baselines (e.g., there is an increase of 9% for the SMS (small)

dataset, see Fig. 4a). When contextual information is added (via UrduPhone IDs480

in Exp. 4 and word IDs in Exp. 5), precision, recall, and F-measure values increase

further. For example, for the SMS (small) dataset, the F-measure increases from

77.4% to 79.7% (2% gain) and from 77.4% to 80.3% (3% gain) from Exp. 3 to Exp.

4 and Exp. 5, respectively.

The higher performance values obtained for the CFMP and Web datasets (Fig.485

4c and Fig. 4d) are due to fewer variations in these datasets, as evidenced by their

fewer numbers of unique words in comparison to the SMS datasets.

Overall, our clustering framework using string, phonetic, and contextual features

shows a significant F-measure gain when compared to baselines Exp. 1 and Exp.

2. We obtain the best performances when we use UrduPhone and string similarity,490

and when the context is defined using Word IDs (Exp. 5).
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Fig. 3. Performance results for experiments in Table 4
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(a) SMS (small) dataset
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(b) SMS (large) dataset
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(c) CFMP dataset
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(d) Web dataset

4.3.1 UrduPhone

We compare UrduPhone with Soundex and its variants11 for lexical normalization

of Roman Urdu. All the phonetic encoding algorithms are used to group/segment

words based on their encoding and then evaluated against the gold standard. Table495

5 shows the results of this experiment on the SMS (small) dataset.

We observe that UrduPhone outperforms Soundex, Caverphone, and Metaphone

while NYSIIS’s F-measure is comparable to that of UrduPhone. NYSIIS produces a

large number of single-word clusters (4,376 have only one word out of 6,550 groups),

which negatively impacts its recall. UrduPhone produces fewer clusters (and fewer500

one-word clusters) giving high recall. This property of UrduPhone is desirable for

initial clustering in our clustering framework, as Lex-Var can split them but cannot

collapse them.

We also test our clustering framework by replacing UrduPhone with NYSIIS as

the phonetic algorithm. In Exp. 5 on the SMS (small) dataset, we find that the505

11 We use Apache Commons Codec for DoubleMetaphone (http://bit.ly/2fHTUBB) &
NLTK-Trainer’s phonetic library (http://bit.ly/1OJGL9Q) for the remaining
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Table 5. Comparison of UrduPhone with other algorithms on the SMS (small)

dataset. Single clusters are clusters with one word only. Actual clusters = 7,589

Algorithm Precision Recall F-measure Clusters
Single

Clusters

Soundex 0.216 0.960 0.353 1,647 525

Metaphone 0.468 0.871 0.601 3,906 2,061

Double Metaphone

Primary Encoding
0.295 0.931 0.448 2388 1008

Double Metaphone

Alternative Encoding
0.280 0.927 0.430 2291 964

Caverphone 0.286 0.885 0.433 2,498 1,315

NYSIIS 0.584 0.668 0.623 6,550 4,376

UrduPhone 0.508 0.923 0.655 4,272 2,399

F-measure increases by only 5% over the NYSIIS baseline (Table 5), which is lower

than the F-measure achieved with UrduPhone (Fig. 4a).

In another experiment, we analyze the effect of encoding length on the perfor-

mance of the algorithm. We use the SMS (small) dataset to generate UrduPhone

encodings of different sizes and cluster the words accordingly. Fig. 4 summarizes510

the results. We see an increase in F-measure with an increase in encoding length

until length seven and eight where we achieve similar performance.

Fig. 4. Effect of varying UrduPhone encoding length on SMS (small) dataset (Exp 5)
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Table 2 defines the UrduPhone rules based on well known techniques used for

phonetic encoding schemes (dropping vowels) and on common knowledge of how

people write Roman Urdu. As an additional experiment, we try to learn these515

rules from some dataset and use them to define our encoding scheme. We call this
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Table 6. Experiments using UrduPhone, learning rules from Urdu-Roman Urdu

transliteration corpus

Features Precision Recall F-measure

UrduPhone (Exp. 1) 0.508 0.923 0.655

UrduPhone + String + Context (Exp. 5) 0.790 0.817 0.803

UrduPhoneprob 0.503 0.922 0.651

UrduPhoneprob + String + Context 0.512 0.919 0.658

approach UrduPhoneprob. Jiampojamarn et al. (2007) propose an alignment tool12

based on the initial work of Ristad and Yianilos (1998). Instead of mapping each

grapheme to a single phoneme, their method creates a many-to-many mapping. We

use an Urdu script and Roman Urdu transliteration parallel corpus scraped from520

the internet.13 Unlike the Roman Urdu words in our experiment dataset, these have

more standardized spellings. We use maximum length 2 as a parameter for training

the model. Our output is probabilities of Roman Urdu characters mapping to Urdu

script characters or to null.

We use the maximum probability mapping rules to define our UrduPhoneprob525

encodings. We experimented with using UrduPhoneprob as the feature in our system

and also in combination with other string and context features. Table 6 shows the

results.

4.3.2 String-similarity

In section 3.3.2, using the SMS (small) dataset, we compare the performance of530

three methods used to calculate edit distance cost – manually defined (edistman),

automatically learned using GIZA++ (edistgiza), and automatically learned using

unsupervised transliteration mining (edistminer).
14

For each word in our vocabulary, we found 100 closest pairs, where closeness here

is defined by our similarity function as described in Eq. 1 using UrduPhone, edistman535

for the string similarity, and context of previous and next Word IDs as the feature

set. We created a list of candidate word pairs by pairing every word with every other

word in the cluster of 100 closest words. We use the candidate word list as input

to the EM-based character alignment tools, GIZA++, and unsupervised translit-

eration mining. Here, GIZA++ considers every word pair in the list of candidate540

pairs as a correct word pair to learn character alignments, whereas the translitera-

tion mining tool penalizes the pairs that are less likely to be transliterations of each

other during the training process. Since our list of candidate pairs is a mix of correct

and incorrect pairs, the character alignments learned by the transliteration miner

12 https://github.com/letter-to-phoneme/m2m-aligner
13 http://www.ijunoon.com/transliteration/
14 The experiment reported in previous sections used the manually defined edit distance

cost which associates cost of 1 for each insertion, deletion and substitution operation.
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Table 7. Varying edit distance cost for SMS (small) dataset. Learning character

pair alignment probabilities

String feature Precision Recall F-measure

edistman (Exp. 5) 0.790 0.817 0.803

edistgiza 0.786 0.817 0.802

edistminer 0.794 0.813 0.803

are likely to be better. The edit distance cost for each pair of characters can be545

computed from character alignments as cost(chari, charj) = |1− P (chari, charj)|.
Our string similarity function uses these edit distance costs instead of manually de-

fined costs. Table 7 reports the results for both of these experiments using the SMS

(small) dataset. The F-measure of the cost learned by the miner and GIZA++ are

competitive with the manually defined cost. edistgiza is affected by the noise in the550

data, which can be seen in its low precision compared to other methods. edistminer
achieved the highest precision, though it has the lowest recall.

4.3.3 Context Size

The experiments presented in the previous section used a context of top-5 frequently

occurring previous and next words. Here, we study the effect of varying context size555

on the performance of our clustering framework. Table 8 shows the F-measure for all

experiments with two different context sizes on the SMS (small) dataset. Decreasing

the minimum context list size to one increases the number of words to evaluate;

therefore, results are reported for all experiments with context size between 1 and

5, even though Exp. 1 to 3 do not use contextual information. Decreasing the560

minimum context list size to one also explains the lower performance values for

these experiments as compared to those with context size of at least 5.

We see that context size of 1 to 5 (including words with contexts defined by at

least 1 to 5 top previous/next words) is less effective in lexical normalization and

sometimes even negatively impacts performance. For example, for the SMS (small)565

and CFMP datasets, Exp. 3 (no contextual information) performs better than Exp.

4 and Exp. 5 due to the noisy nature of shorter contexts.

For further analysis, we carried out experiments where we changed the context

length from 1 to 5; an approach that differs from the previous experiments in which

we used context size = 5 & ≥ 1. Fig. 5 describes the results of the tests carried570

out on the SMS (small) dataset. We see a significant increase in performance when

context size changes from 2 to 3. After 3, there is a slight performance increase.

The best F-measure is from context size of 4 and 5.

4.3.4 Parameters: Feature Weights and Clustering Threshold

Feature Weights As discussed in Section 3.4, we test the impact of changing the575

weights in our clustering framework (see Eq. 1). We assumed that all features have
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Table 8. Performance (F-measure) with two different context sizes. Details of the

experiments are given in Table 4.

Exp. SMS (small) SMS (large) CFMP Web

Context Size = 5

1 0.651 0.588 0.852 0.831

2 0.683 0.567 0.857 0.845

3 0.774 0.692 0.891 0.867

4 0.797 0.693 0.900 0.876

5 0.803 0.690 0.917 0.881

Context Size = 1 to 5

1 0.593 0.576 0.616 0.641

2 0.542 0.537 0.598 0.756

3 0.658 0.645 0.712 0.785

4 0.617 0.642 0.692 0.778

5 0.637 0.640 0.695 0.794

Fig. 5. Effect of varying context size on SMS (small) dataset (Exp 5)
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equal weights in experiments presented in Section 4.3. Then, we change the feature

weights to emphasize different features. The increased weights caused words to

break their initial UrduPhone clusters in favor of better contextual similarity, but

the overall performance did not change. We tried several combinations, including580

using both the contexts (i.e., word IDs and UrduPhone IDs).

Table 9 shows the performance of our clustering framework on the SMS (small)

dataset with different feature weight combinations. As a comparison, we show re-

sults for Exp. 5 (context represented by word IDs only) and have the following

observations with respect to F-Measure. (1) F-measure does not improve when us-585

ing both word IDs and UrduPhone IDs to represent context. (2) F-measure degrades
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Table 9. Performance with different weights for features (Exp. 5 on SMS (small)

dataset). αP = Weight of phonetic feature, αS = Weight of string feature, αC1 =

Weight of context using Word ID , αC2 = Weight of context using UrduPhone ID.

Experiment Precision Recall F-measure

Exp. 5 0.790 0.817 0.803

Nelder-Mead method 0.797 0.843 0.819

αP = 1.0, αS = 1.0, αC1 = 1.0, αC2 = 1.0 0.777 0.814 0.795

αP = 1.0, αS = 1.0, αC1 = 2.0, αC2 = 0.0 0.784 0.810 0.797

αP = 1.0, αS = 1.5, αC1 = 2.0, αC2 = 0.0 0.801 0.812 0.807

αP = 1.0, αS = 1.0, αC1 = 1.5, αC2 = 0.0 0.801 0.811 0.806

αP = 1.5, αS = 1.0, αC1 = 2.0, αC2 = 0.0 0.701 0.819 0.805

αP = 1.0, αS = 1.0, αC1 = 0.0, αC2 = 2.0 0.768 0.781 0.774

αP = 1.0, αS = 1.0, αC1 = 2.0, αC2 = 1.5 0.736 0.763 0.749

αP = 1.0, αS = 1.0, αC1 = 1.5, αC2 = 0.5 0.793 0.809 0.801

αP = 0.0, αS = 1.0, αC1 = 1.0, αC2 = 0.0 0.754 0.758 0.756

αP = 0.0, αS = 1.0, αC1 = 1.5, αC2 = 0.0 0.710 0.726 0.717

αP = 1.5, αS = 1.0, αC1 = 1.0, αC2 = 0.0 0.802 0.811 0.807

αP = 1.5, αS = 1.0, αC1 = 1.5, αC2 = 0.0 0.804 0.813 0.808

αP = 2.0, αS = 1.0, αC1 = 2.0, αC2 = 0.0 0.813 0.809 0.811

αP = 2.0, αS = 1.5, αC1 = 2.0, αC2 = 0.0 0.791 0.815 0.803

when removing the phonetic similarity feature. (3) F-measure achieves the highest

value when we set a higher weight to phonetic and contextual similarity than to

string similarity.

We also use the Nelder-Mead method to maximize the F-measure by optimizing590

the feature weights of our similarity function in Eq. 1, as well as the threshold

mentioned in line 21 of Algorithm 1 on cross-validation set (see Section 3.4). The

average F-measure is slightly better than what we observed with manual selection

of weights in Exp. 5 (described in Table 4).

Clustering Threshold We analyze the performance of Exp. 5 (best setting) for the595

SMS (small) dataset with varying threshold t (Fig. 6). The value of t controls the

number of clusters smoothly, and precision increases with this number while F-

measure reaches a peak when the number of predicted groups is close to that of the

gold standard.

4.3.5 Comparison with Other Clustering Methods and Variations600

In addition to our k-medoids based Lex-Var clustering method, we propose us-

ing agglomerative hierarchical clustering (Hierarchical Lex-Var) as our clustering

framework for lexical normalization. To reduce the search complexity at each merge

decision, we form (once) and search within the 10 most similar words for each word

(neighborhood). At each merge decision, we merge the two most similar words605
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Fig. 6. Effect of varying threshold t on SMS (small) dataset (Exp 5)
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Table 10. Performance of Hierarchical Lex-Var on SMS (small) dataset.

Experiment Precision Recall F-measure

Exp. 5 0.790 0.817 0.803

Nelder-Mead method 0.797 0.843 0.819

Neighborhood= 10 0.793 0.837 0.815

Neighborhood= 100 0.771 0.849 0.808

and/or groups (if either word is part of a group) in their respective neighborhoods.

Algorithm 4 describes the Hierarchical Lex-Var Clustering algorithm. We tested

with a neighborhood size of 10 and 100. The results are mentioned in Table 10.

Hierarchical Lex-Var, when used instead of Lex-Var, results in slightly bet-

ter performance, however, it is significantly slower than Lex-Var. Even with our610

neighborhood-based optimization, hierarchical clustering takes hours to converge,

while our Lex-Var algorithm converges in minutes when processing the SMS (small)

dataset.

Additionally, we compare our clustering framework with other clustering methods

as independent approaches. We also test with variations in similarity features of our615

clustering framework. We report the following experiments:

1. Rule-based transliteration: Each word in the vocabulary was transliterated

based on method by (Ahmed, 2009). The final words were mapped to an

Urdu word dictionary of around 150,000 words 15. Each Urdu word acted as

a cluster label.620

2. Brown clustering: Brown clustering is a hierarchical clustering method for

grouping words based on their contextual usage in a corpus (Brown et al.,

15 https://raw.githubusercontent.com/urduhack/urdu-words/master/words.txt
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Algorithm 4: Hierarchical Lex-Var
Input: W = {w1, w2, . . . , wN} (words), t (similarity threshold), K (neighborhood size)
Output: L = {`1, `2, . . . , `K} (predicted clusters)

1 L =W;
/* Create a similarity matrix */

2 for ∀ wi ∈ W do
3 for ∀ wj ∈ W \ wi do
4 Sim matrixi,j = S(wi, wj);
5 end

6 end
/* Create K sized neighborhoods for each word */

7 N = {};
8 for ∀ wi ∈ W do
9 ni = get max k(Sim matrixi,, K); // Get K most similar words to wi

10 N = N ∪ {ni};
11 end
12 repeat

/* Assign word to clusters */
13 for ∀ wi ∈ W do
14 closest = null;
15 maxSim = 0;
16 for ∀ wj ∈ Ni do
17 if S(wi, nj) > t and S(wi, nj) > maxSim then
18 maxSim = S(wi, nj);
19 closest = nj ;

20 end

21 end
22 if closest ! = null then // Move word wi to cluster `j
23 `j = `j ∪ {wi} | closest ∈ `j ;
24 end

25 end

26 until stop condition Satisfied;

1992). We use this as an independent approach for lexical normalization of

Roman Urdu.

3. Word2Vec clustering: Word2Vec represents words appearing in a corpus by625

fixed length vectors that capture their contextual usage in the corpus (Mikolov

et al., 2013). The Word2Vec model is generated using the gensim16 python

package to learn vectors for each Roman word. For learning the word vectors,

we used the minimum count of 5, dimension size of 100, and 10 iterations.

Words are clustered using K-Means clustering on word vectors and we report630

the performance for lexical normalization of Roman Urdu.

4. 2-skip-1-grams: In our clustering framework for lexical normalization, we use

the 2-skip-1-gram approach with Jaccard coefficient (Jin, 2015) to compute

string similarity (rather than our string similarity function (Eq. 3)). Algorihtm

5 shows the 2-skip-1-gram algorithm.635

5. 2-skip-1-gram + String feature: We use both 2-skip-1-gram and our string

similarity functions for computing string similarity in our clustering frame-

work for lexical normalization.

6. ‘h’ omitted UrduPhone: We use a modified version of UrduPhone in our clus-

tering framework for lexical normalization. The modified version discards as-640

pirated characters in the encoding. For example, encoding for mujhay [me]

becomes identical to that for mujay [me] to handle ’h’ omission.

16 https://github.com/RaRe-Technologies/gensim
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7. Word2Vec Vectors (50): We generate Word2Vec vectors of size 50. We use the

cosine similarity of these vectors instead of the contextual similarity described

in Eq. 4.645

8. Word2Vec Vectors (100): We increase the size of Word2Vec vectors to 100.

9. Word2Vec Words: Word2Vec vectors are used to find the 10 most similar

words for each word. These neighboring words define the context of each

word, and contextual similarity is computed using Eq. 4. We use our clustering

framework for lexical normalization.650

10. Word IDs + Word2Vec Words: We use two contextual features: top-5 fre-

quently occurring previous/next words represented by word IDs (like in Exp.

5) and top-10 most-similar words according to Word2Vec (as above).

Table 11 summarizes the results. Experiment 1 is a rule-based lexical normalization

method. Experiments 2 and 3 are independent clustering methods for lexical nor-655

malization. We also modify string feature (experiments 4 and 5), phonetic feature

(experiment 6), and contextual feature (experiments 7, 8, 9, and 10), respectively,

in our clustering framework.

Algorithm 5: 2-skip-1-gram
Input: wi, wj (pair of words)

Output: σG
ij (2-skip-1-gram similarity)

1 m = length(wordi);
2 A = φ;
3 for k ∈ 1,m− 2 do
4 X = {wordi[k]}, {wordi[k + 2]};
5 A = A ∪X;

6 end
7 n = length(wordj);
8 B = φ;
9 for l ∈ {1 · · ·n− 2} do

10 Y = {wordj [l]}, {wordj [l + 2]};
11 B = B ∪ Y ;

12 end

13 σG
ij =

|A∩B|
|A∪B| ;

We can make the following observations from these experiments. (1) Rule-based

transliteration performs slightly lower than our clustering method (2) Brown clus-660

tering and Word2Vec clustering are unsuitable for lexical normalization as evi-

denced by their poor performance. (3) Word2Vec-based context (either Word2Vec

vectors or similar words) and 2-skip-1-gram-based string feature do not outperform

our context and string features. One possible reason for the low performance of

Brown clustering and Word2Vec could be the small size of the training data. These665

algorithms require a huge amount of data to learn.

4.3.6 Lexical Normalization of English Text

To test the robustness of our dataset for other languages, we experimented with an

English dataset provided by Derczynski et al. (2013) and used in the W-NUT 2015
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Table 11. Performance of other clustering methods and variations in our

framework on SMS (small) dataset.

Experiment Precision Recall F-measure

Rule-based (Ahmed (2009)) 0.833 0.765 0.797

Other methods
Brown clustering 0.024 0.447 0.046

Word2Vec clustering 0.350 0.221 0.271

Additional features

2-skip-1-gram 0.782 0.810 0.796

2-skip-1-gram + String feature 0.791 0.799 0.795

’h’ omitted UrduPhone 0.796 0.808 0.802

Word2Vec Vectors (50) 0.782 0.802 0.792

Word2Vec Vectors (100) 0.795 0.803 0.799

Word2Vec Words 0.777 0.779 0.778

Word IDs + Word2Vec Words 0.780 0.808 0.793

Table 12. Performance of Lex-Var on English dataset. We used Soundex &

UrduPhone encodings as phonetic features

Language Phonetic Encoding Precision Recall F-measure

Roman Urdu (Exp. 5) UrduPhone 0.790 0.817 0.803

English Soundex 0.950 0.948 0.949

English UrduPhone 0.967 0.961 0.965

task.17 The gold standard we used is the lexical normalization dictionary provided670

by the University of Melbourne.18 The dataset has more than 160,000 messages

containing 60,000 unique words. After pre-processing (the same pre-processing steps

as for the Roman Urdu datasets) we get a 2,700 word overlap with the gold standard.

For the phonetic encoding, we tested with Soundex and UrduPhone.

Table 12 summarizes the results along with the best results for the Roman Urdu675

dataset from Table 4. We observe an F-measure of more than 90% with both en-

coding schemes, with UrduPhone performing better than Soundex. This difference

in performance is presumably due to the extended encoding size in UrduPhone,

which makes it possible to keep more information about the original word.

4.4 Error Analysis680

To gain a better understanding of our clustering framework, we analyze the output

of different experiments with examples of correct and incorrect lexical normaliza-

tion. While lexical normalization based on UrduPhone mappings (Exp. 1) is a good

starting point for finding word variations, it produces some erroneous groupings.

We summarize these groupings as follows:685

17 https://noisy-text.github.io/norm-shared-task.html
18 available on the W-NUT 2015 website
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1. Words that differ only in their vowels are in the same cluster:

• takiya [pillow], tikka [grilled meat], take

• khalish [pain], khuloos [sincerity]

• baatain [conversations], button

• doosra [another], desire690

• separate, spirit, support

2. Same words having different consonants map to different groups:

• mujhse, mujse meaning [from me]

• kuto, kuton meaning [dogs]

• whose, whoze695

• skool, school

3. Words whose abbreviations or short forms do not have the same UrduPhone

mapping:

• government, govt

• private, pvt700

• because, coz

• forward, fwd

Exp. 4 and Exp. 5 can separate words initially clustered incorrectly (group 1.)

(e.g., baatain [conversations] and button, spirit and support) due to contextual

information and similarity differentiating the variations. Despite using phonetic705

variations in combination with contextual feature we see incorrect clusterings in

the two experiments. We can divide these inaccuracies into several groups.

1. Words that have different UrduPhone mappings but are in fact the same.

These are not clustered in the final outcome.

• [mujy ] and [mujhy ] meaning [me]710

• [oper ] and [uper ] meaning [up]

• [prob] and [problem]

• [mornin] and [morng ]

• [number ] and [numbers]

• [please] and [plx,plz ]715

2. Words that have the same UrduPhone mapping and are lexical variants but

are not clustered in the same group:

• [tareeka] and [tareka] meaning [way]

• [zamaane] and [zamany ] meaning [times]

• [msg ] and [message]720

• [morng ] and [morning ]

• [cmplete,complet,complete] and [cmplt ]

3. Words that are different but have the same UrduPhone mapping and are

clustered together:

• maalik [owner], malika [queen], malaika [angels]725

• nishaan [vestige], nishana [target]

• tareka [way], tariq [a common name meaning ’a night visitor’]
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• what, white

• waiter, water

A closer look at the examples reveals that some words that have the same Urdu-730

Phone mapping and should cluster together are found in separate groups (group 2.).

This result is due to low context similarity between the words, which causes them

not to group (e.g., tareeka and tareka meaning [way] have a contextual similarity

of 0.23, even though they have the same UrduPhone mapping).

Another prominent issue is that words in separate clusters in UrduPhone remain735

separated in the output of Exp. 4 and Exp. 5 (groups 2. and 3.). This observation

highlights the point that our experiments do not perform well at handeling abbre-

viations (e.g., prob and problem), plurals (e.g., number and numbers), and some

phonetic substitutes (e.g., please and plx ). Our framework separates Roman Urdu

words that can be written with an additional consonant (e.g., mujy and mujhy740

meaning [me]). It also maps words that start with a different vowel (e.g., oper and

uper meaning [up]).

To tackle the issue of low contextual similarity not overcoming the difference in

UrduPhone mapping, we doubled the weight assigned to the context feature. This

adjustment produces almost no change in overall performance when compared to745

standard (Exp. 4 and Exp. 5). However, this adjustment causes more words with

different UrduPhone mappings to be clustered together, usually incorrectly:

• acha [okay], nahaya [bathe], sucha [truthful]

• maalom [know], manzor [approve]

• chalang [jump], thapar [slap]750

• darzi [tailor], pathar [stone]

• azmaya [to try], sharminda [ashamed]

Furthermore, as the same UrduPhone mappings do not restrict the clusters, this

variation produces interesting combinations. The words in the groups below, al-

though not lexical variants of each other, have strong contextual similarity and755

sometimes can even be replaced (for the other) in the sentence.

• admi [man], larkay [boys], larki [girl]

• kufr [to unbelieve in God], shirk [to associate partners with God]

• shak [suspicion], yaqeen [certainty]

• loves, likes760

• private, pvt

• cud, may, would

• tue, tuesday, wed

• blocked, kicked

• gov, government765

5 Previous Work

Normalization of informal text messages and tweets has been a research topic of

interest (Sproat et al., 2001; Kaufmann and Kalita, 2010; Clark and Araki, 2011;



30 A. Rafae and others

Wei et al., 2011; Pinto et al., 2012; Ling et al., 2013; Sidarenka et al., 2013; Roy

et al., 2013; Chrupa la, 2014; Desai and Narvekar, 2015), with the vast majority of770

the work limited to English and other resource-rich languages. Our work focuses

on Roman Urdu, an under-resourced language, that does not have a gold standard

corpus with standard word forms. We restrict our task to finding lexical variations

in informal text, a challenging problem because every word is a possible variation

of every other word in the corpus. Additionally, the spelling variation problem of775

Roman Urdu inherits inconsistencies that occur due to the transliteration of Urdu

words from Perso-Arabic script to Roman script. In our work, we model these

inconsistencies separately and in combination with other features.

Researchers have used phonetic, string, and contextual knowledge to find lexical

variations in informal text.19 Pinto et al. (2012); Han et al. (2012); Zhang et al.780

(2015) used phonetic-based methods to find lexical variations.

Contractor et al. (2010) used string edit distance based on longest common sub-

sequence ratio and edit distance of Consonant Skeletons (Prochasson et al., 2007)

of the IV-OOV words. Gouws et al. (2011) used a sizable English corpus to ex-

tract candidate lexical variations and re-score them based on lexical similarity. We785

also use lexical similarity as a feature in our clustering framework but do not have

a reference to a Roman Urdu corpus with standard word forms. Jin (2015) also

generated an OOV-IV list by using the Jaccard Index (Levandowsky and Winter,

1971) between k -skip-n-grams of string s and standard word forms. As we do not

have these in Roman Urdu, we consider every word as a possible lexical variation790

of every other word in the corpus. Similar to Jin (2015), we use k-skip-n-grams in

our additional experiments and find that they perform slightly worse than our al-

gorithm. Chrupa la (2014) used Conditional Random Field (Lafferty, 2001) to learn

the sequence of edits from labeled data.

Han et al. (2012) used word similarity and word context to enhance performance795

by initially extracting OOV (out-of-vocabulary) – IV (in-vocabulary) pairs using

contextual similarity and then re-ranking them based on string and phonetic dis-

tances. In contrast, we define a similarity function that considers all three features

together to find lexical variations of a word. Unlike previous approaches, we have a

small corpus from which to extract contextually similar word pairs. Also, there is no800

standard Roman Urdu dictionary that can be used to annotate words as either IV

or OOV. Li and Liu (2014) defined similarity measure as a combination of longest

common subsequence, term frequency, and inner product of word embeddings. We

use longest common subsequence as part of the string similarity feature. In our

additional experiments, we test with cosine similarity of word embeddings (Table805

11). Li and Liu (2014) used a combination of string similarity and vector-based

similarity to generate a candidate list, which was re-ranked using a character-level

machine translation model (Pennell and Liu, 2011) and Jazzy Spell Checker,20 etc.

19 Spelling correction is also considered as a variant of text normalization (Damerau, 1964;
Tahira, 2004; Fossati and Di Eugenio, 2007). Here, we limit ourselves to the previous
work on short text normalization.

20 http://jazzy.sourceforge.net/



A Clustering Framework for Lexical Normalization of Roman Urdu 31

Yang and Eisenstein (2013) used an unsupervised approach that learns string edit

distance, lexical, and contextual features using a log-linear model and sequential810

Monte Carlo approximation.

(Singh et al., 2018; Bertaglia and Nunes, 2017) used word embeddings to find

similar standard and non-standard words for text normalization. Chrupa la (2014)

used character-level neural text embeddings (Chrupa la, 2013) as added information

from unlabeled data for better performance. Rangarajan Sridhar et al. (2014) used815

deep neural networks to learn distributed word representations. We experimented

with word embeddings as a feature in our similarity measure in the supplementary

experiments Table 11.

Hany Hassan (2013) used a 5-gram language model to create a contextual similar-

ity lattice and applied Markov random walk for lexicon generation. Their approach820

uses a linear combination of contextual feature and string similarity (longest com-

mon subsequence ratio and edit distance), which is very similar to our approach.

However, unlike Hany Hassan (2013), we assume that every Roman Urdu word

is a noisy word and thus can not separate nodes of the graph into standard and

non-standard forms. Sproat and Jaitly (2017) used a recurrent neural network to825

normalize text. Pennell and Liu (2011); Li and Liu (2014) used a character-level

machine translation system for the normalization task. Lusetti et al. (2018) used an

encoder-decoder architecture where different levels of granularity were used for the

target-side language model, e.g. characters and words. Wang and Ng (2013) used

a beam-search decoder with integrated normalization operations such as missing830

word recovery and punctuation correction to normalize non-standard words. Our

work, however, is limited to grouping the lexical variations of Roman Urdu words.

However, we do not have any labeled data or parallel data available to build such

a translation system. Our proposed method is robust since it learns from user data

and groups abbreviations and their complete forms together in one cluster.835

Almeida et al. (2016) used a standard English dictionary and an informal English

dictionary to normalize words to their root forms. In our case, we do not use a

standard dictionary as one does not exist for Roman Urdu words. Ling et al. (2013)

automatically learned normalization rules using a parallel corpus of informal text.

Irvine et al. (2012) used manually prepared training data to build an automatic840

normalization system for Roman Urdu script. Unlike Irvine et al. (2012), we propose

an unsupervised approach, which does not require labeled data. Additionally, our

approach to the Roman Urdu normalization problem does not require us to have a

corresponding Urdu script form for each Roman word.

Phonetic encoding schemes There have been several sound-based encoding schemes845

used in the literature to group similar sounding words together. Here, we summa-

rized a few of the schemes in the context of lexical normalization.

The Soundex algorithm (Knuth, 1973; Hall and Dowling, 1980) encodes the first

letter and the following three consonants of a word with consonants having the sim-

ilar place of articulation sharing the same code. The NYSIIS method (Taft, 1970),850

designed by the New York Police for American names, employ more sophisticated

encoding rules based on multi-character n-grams and relative vowel positioning.
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The Metaphone algorithm (Philips, 1990), developed in 1990 as a Soundex variant,

incorporates English pronunciation rules for phonetic encoding of words. Other,

more-recent variations include Caverphone (Wang, 2009) and Double Metaphone;21855

they include complex grammatical rules for phonetic encoding of words. The Dou-

ble Metaphone algorithm also differs from others in that it generates up to two

encodings for each word – one reflects the basic version of the word’s pronuncia-

tion, and the other reflects an alternative pronunciation based on other languages.

This is particularly useful when comparing foreign names with their anglicized ver-860

sions. For example, the names Catherine and Katrina have a common code KTRN.

Previous algorithms like Metaphone and Soundex do not provide such a capability.

Most of these schemes are designed for English and European languages and are

not sufficiently expressive, especially for lexical normalization or when applied to

another family of languages.865

We propose a method to find lexical variations in Roman Urdu that uses string

edit distance like Contractor et al. (2010), sound-based encoding like Pinto et al.

(2012), and contextual information like Han et al. (2012) combined in a discrimina-

tive framework. In contrast to previous work, our method does not use a resource

of standard word forms to find lexical variations.870

6 Conclusion and future work

Roman Urdu is a transliterated form of the Urdu language written in Roman script,

used in informal communication in social media and SMS texts. It does not have

a standard lexicon, which results in extensive use of lexical variations that ham-

per automatic processing. Our framework for lexical normalization of Roman Urdu875

is an unsupervised model meant to address this important issue. Our clustering

framework incorporates customized phonetic encoding, string-based matching, and

contextual similarity. Following an extensive evaluation of the framework on four

real-world datasets and evaluations using a manually created database of lexical

variations in Roman Urdu, we find that our framework effectively discovers lexi-880

cal variations in Roman Urdu corpora with significantly better performance than

baseline methods.

Our work brings us one step closer to automatically generating a normalized Ro-

man Urdu corpus. We can cluster spelling variations of a word and then map them

to the most frequent form, and can use this corpus to develop NLP applications.885

In the future, we would like to extrinsically evaluate our normalization procedure

on several NLP tasks, such as POS tagging and machine translation.
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