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Abstract. The accurate prediction of user behavior on the Web has immense 
commercial value as the Web evolves into a primary medium for marketing and 
sales for many businesses. This broad and complex problem can be broken 
down into three more understandable problems: predicting (1) short and long 
visit sessions, (2) first three most probable categories of pages visited in a 
session, and (3) number of page views per category in a visit session. We 
present Bayesian solutions to these problems. The focus in our solutions is 
accuracy and computational efficiency rather than modeling the complex Web 
surfer behavior. We evaluate our solutions on four weeks of surfer data made 
available by the ECML/PKDD Discovery Challenge. Probabilities are 
estimated from the first three weeks of data and the resulting Bayesian models 
tested on last week’s data. The results confirm the high accuracy and good 
efficiency of our solutions.  

1 Introduction 

Web users definitely exhibit patterns of surfing behavior. Discovering such patterns 
have immense commercial value as the Web evolves into a primary medium for 
marketing and sales for many businesses. Web-based businesses seek useful users’ 
patterns to help identify promising events, potential risks, and make strategic 
decisions. Web surfer behavior modeling and prediction has been a popular research 
topic. Over the years numerous approaches have been proposed for solving various 
aspects of the problem with varying degrees of success. In general, the problem 
involves the prediction of a user’s sequence of page views based on previous history 
of the user. Oftentimes, to simplify the problem somewhat, Web pages are abstracted 
and grouped into categories and the problem is reduced to the prediction of a user’s 
sequence of categories visited. Nonetheless, this is a complex machine learning 
problem that requires careful consideration from the technical and practical points of 
view.  

Among the various approaches used for the modeling and prediction of Web surfer 
behavior, probabilistic approaches have been very common [1-5]. Borges and Levene 
[1] propose the use of N-gram probabilistic models which assume that the probability 
of a page visit depends only on the last N pages browsed. Similarly, Manavoglu et al. 
[2] present probabilistic user behavior models by applying maximum entropy and 
Markov mixture models.  For prediction for known users, they propose a Markov 

21



model. Another probabilistic solution is presented by Deshpande and Karypis [3]. 
They try to reduce the state complexity resulting from all kth-order Markov models 
by pruning many of the non-affecting states. Eirinaki et al. [4] present a hybrid 
probabilistic predictive model by extending the properties of Markov models with 
link-based methods such as PageRank. Such an approach is applicable only when 
structural link information of the pages is known. Lu et al. [5] group or cluster 
clickstream data using a pair-wise alignment algorithm. Then, a first-order Markov 
model is built for each cluster of sessions.  

The majority of the approaches try to tackle the general Web surfer behavior 
modeling problem rather than specific prediction problems. This often makes the 
solutions complex and difficult to interpret. The Web surfer behavior prediction 
problem can be broken down into three sub-problems: (1) predicting short and long 
visit sessions by users, (2) predicting first three most probable categories of pages 
visited by users, and (3) predicting range of page views per category made by users. 
These sub-problems capture key Web surfer behaviors of practical value. Moreover, 
they represent simpler problems in comparison to the general Web surfer behavior 
prediction problem.  

In this paper, we present Bayesian solutions to these problems. In particular, we 
develop Bayes classifiers for each sub-problem, invoking the naïve Bayes assumption 
of conditional independence of the input given the class. We model the sequence of 
page categories visited as a Markov chain. The naïve Bayes assumption and the first-
order Markov property are made to improve space and time efficiency of the 
solutions. The performance of our solutions is evaluated on four weeks of data made 
available by the ECML/PKDD Discovery Challenge [6]. The results show high 
prediction performance identical to those produced by a support vector machine (for 
problem 1).  Moreover, our solutions are time and space efficient.  

The rest of the paper is organized as follows. We formally describe the Web surfer 
prediction problems in Section 2. Our solutions to the problems are described in 
Section 3. Experimental evaluation of the solutions, including their complexity 
analysis, is presented in Section 4.  We conclude in Section 5.  

2 Problem Description and Notation  

Let variable X = {U, T} identify a visit session, where variables U and T denote the 
user ID and the starting timestamp of the visit session, respectively. A visit session or 
path is described by a sequence of page categories visited during that session. 
Variable Ci identifies the category visited in position i of the sequence, and a visit 
session has one or more positions in the sequence. A particular visit session can have 
the same page category visited at different positions; however, two consecutive page 
categories must be different. Individual Web pages are abstracted and grouped into a 
finite number of page categories. The range of the number of page views made for a 
given page category is captured by the variable Ri, where i denote the ith position in 
the sequence. All variables have discrete and finite sets of possible values. The 
variable T is discretized into time slots. The historical training data available to the 
learning system contains unique visit sessions represented by instantiations of the 
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variables X, Ci’s, and Ri’s. The test data contain different instantiations of the variable 
X only.  

The Web surfer behavior prediction problem is divided into three sub-problems. 
Problem 1 is to learn to predict whether a visit session X is short or long. A visit 
session is said to be short if it contains one sequence position only; otherwise, it is 
said to be long. Problem 2 is to learn to predict the first three page categories for a 
given visit session X. Problem 3 is to learn to predict the range of page views for each 
page category in positions 1, 2, and 3 for a visit session X. All three problems are 
classification problems. The objective in each is to predict the output as accurately as 
possible.  

3 Our Solution  

We present Bayesian solutions to the three problems described in the previous 
section. The Bayesian approach has been adopted for the following reasons: (1) it is 
simple and intuitive, providing insight into the problem and its solution, (2) it is 
adaptable to concept drift, and (3) it is computationally efficient and acceptably 
accurate. In particular, we use a Bayesian classifier for each of the three problems, as 
described in the following sub-sections.  

3.1 Problem 1 

This is a two-class classification problem. We present a naïve Bayes classifier for its 
solution. Given a visit session X, the most probable class { , }z Z long shart= ∈ is 
given by  

 
{ , }
arg max ( ) ( | )

z long short
z P Z z P X Z z

∈
= = =  (1) 

where P(.) denotes the probability of the enclosed event. If we assume that the user ID 
U and the timestamp T are conditionally independent of each other given class Z, we 
get the naïve Bayes classification: 

 
{ , }
arg max ( ) ( | ) ( | )

z long short
z P Z z P U Z z P T Z z

∈
= = = =  (2) 

This represents the most probable class under the naïve Bayes assumption. If we do 
not consider the timestamp T of a visit session, the last probability in Equation (2) 
drops out further simplifying the solution.  

3.2 Problem 2 

This problem involves the prediction of the first three page categories of a visit 
session. To solve this problem, we model the sequence of page categories visited as a 
Markov chain. The chain start state (the first page category) is determined by a Bayes 
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classifier. Subsequent states are determined by combining the posterior probability 
estimates given by the Markov chain with that of the Bayes classifier for that 
particular position. The reason for selecting the first-order Markov model over the 
kth-order model is two fold: (1) The problem involves the prediction of only the first 
three states for which a first-order Markov model is sufficient. and (2) The first-order 
Markov model is computationally efficient. Moreover, we believe that a kth-order 
model is more realistic for modeling page view transitions rather than page category 
transitions.  

According to the Bayes rule, the posterior probability of page category Ci visited in 
position i (i = 1, 2, or 3) of a visit session X is given by  

 ( | ) ( ) ( | ) / ( )B
i i iP C X P C P X C P X=  (3) 

The most probable page category visited at the start of the sequence (c1 = C1) is then 
given by  

 1 1 1 1 1
1

arg max ( ) ( | )
c

c P C c P X C c= = =  (4) 

This fixes the start state of the Markov chain. The subsequent states can be found by 
combining the predictions of the Bayes classifier (Equation 3) and the Markov model. 
According to the Markovian property, for a given visit session X the posterior 
probability of page category Ci visited in position i (i = 2, 3) depends only on Ci-1 and 
can be expressed as  

 1 1 1 1( | , ) ( | ) ( | , ) / ( , )M
i i i i i i iP C C X P C C P X C C P C X− − − −=  (5) 

The page category visited at position i (i = 2, 3) is then given by 

 1arg max ( | ) ( | , )
i

B M
i i i i i i

c
c P C c X P C c C X−= = =  (6) 

Notice that in evaluating Equation (6), we do not need to estimate the unconditional 
probabilities in the denominator of Equations (3) and (5).  

If a visit session X is described by user ID U and timestamp T, the naïve Bayes 
assumption can be invoked to simplify the expressions above, as shown for problem 
1.  

3.3 Problem 3 

This problem involves the prediction of the range of the number of page views for the 
first three page categories visited in a visit session. The page categories ci (i = 1, 2, 3) 
visited have been determined in problem 2. We use a Bayes classifier to predict the 
range ri = Ri of page views made at position i (i = 1, 2, 3) in visit session X as  

 arg max ( | ) ( | , )
i

i i i i i i i i i
r

r P R r C c P X R r C c= = = = =  (7) 

The page category ci is the one predicted in problem 2.  
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3.4 Estimating the Probabilities  

The various probabilities used in our solution are estimated from the historical 
training data by maximum likelihood estimation. Since all variables are observed in 
the training data, maximum likelihood estimates are equivalent to the frequencies in 
the data. Specifically, the probability estimate of P(X = x|Y = y) is given by  

 no. of examples with ,( | )
no. of examples with 

X x Y yP X x Y y
Y y
= =

= = ≈
=

 (8) 

For an unconditional probability, the denominator will be the total number of 
examples in the training data. To estimate the transition probabilities in Equation (5), 
we count an example if it contains the given transition at any position of the sequence.  

4 Evaluation  

We carry out a number of experiments to demonstrate the efficiency and effectiveness 
of our solution to the Web surfer behavior prediction problem.  The evaluations are 
performed on a desktop PC with an Intel 2.4 GHz Pentium 4 processor and 512 MB 
of memory.  

4.1 Data and its Characteristics  

We use the data provided by the 2007 ECML/PKDD Discovery Challenge [6]. The 
data were collected by Gemius SA, an Internet market research agency in Central and 
Eastern Europe, over a period of 4 weeks through use of scripts placed in code of the 
monitored Web pages. Web users were identified using cookies technology. The first 
3 weeks of data are used for training while the last week of data are reserved for 
testing.  

The data records individual visit sessions described by the fields: path_id, user_id, 
timestamp, {category_id, pageviews_number},…. An example visit session is shown 
below: 

 
path_id user_id timestamp path 

(category_id, pageviews_number) …, … … 
27 1 1169814548 7,1 16,2 17,9 16,1 … 

 
The timestamp field records the time at which a visit session starts and the category 
ID field identifies a group of Web pages with similar theme such as entertainment, 
technology, or news. There are 20 page categories in the data. The entire data contain 
545,784 visit sessions from which 379,485 visit sessions are used for training and the 
remaining 166,299 visit sessions are used for testing. There are 4,882 distinct users in 
the data.  

An analysis of the training and test data reveals non-uniform data distribution. The 
minimum and maximum number of visits by a user in the training data is 7 and 497, 
respectively, with an average of 77.7 visits per user. The minimum and maximum 
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number of visits by a user in the test data is 1 and 215, respectively. Similarly, the 
distribution of page categories is uneven. Some categories are being visited more 
frequently than others. This is evident from Figures 1 and 2 which show the 
probability of the categories in the training and test data, respectively. About 73% of 
the visit sessions in the training and data data are short, i.e., a visit where only one 
category is surfed. These statistics confirm that the data distributions of the test and 
training sets are similar.  

Fig. 1.  Probability of categories in training data  

Fig. 2.  Probability of categories in test data  
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4.2 Evaluation Criteria 

Problem 1 is a two-class classification problem. The classification score, defined as 
the number of correct classifications, is used to evaluate this problem. Problem 2 is 
evaluated by computing a score. This score is the sum of scores of each prediction, 
where each prediction score is defined as follows: The prediction score is the sum of 
weights assigned to the 3 predicted categories. If the first, second, and third categories 
are predicted correctly, then assign weights 5, 4, and 3, respectively, to these 
positions. If a prediction is incorrect, then it is assigned a weight of 4 if that category 
occurs in the second position, 3 if it occurs in the third position, 2 if it occurs in the 
fourth position, 1 if it occurs in position five and beyond, and zero if it does not occur.  
The weight assigned cannot be greater than the maximum possible for that position 
(e.g. the weight assigned to position 2 cannot be greater than 4). Problem 3 is also 
evaluated by computing a score. This score computation is identical to that for 
problem 2 except that the weights are incremented by one if the predicted range is 
correct; otherwise they are not incremented. For all problems, higher scores signify 
better performance. The maximum possible score for each problem is also presented 
in our results 

We present time and space complexity results in Sections 4.3 and 4.4.  

4.3 Results  

We present results for problems 1, 2 and 3 under two settings. In the first setting, we 
consider only the user ID as input while in the second setting we consider both the 
user ID and timestamp as input. We discretize the timestamp field into four values: 
weekday-day, weekday-night, weekend-day, and weekend-night. Daytime starts from 
8AM and ends at 6PM. We tried several discretizations for timestamp but present 
results for the above defined discretization only. Problem 1 is also solved using a 
support vector machine (SVM) through SVMLight [7]. The default parameters’ settings 
of SVMLight are used for this result.  

The results for problems 1, 2, and 3 without and with timestamps are given in 
Tables 1 and 2, respectively. The accuracy of our solution without considering 
timestamps for problem 1 is 76.64%. The SVM also produces an accuracy of 76.64% 
for the same setting. Our achievement here is in terms of computational efficiency. 
For our hardware setup, our solution takes less than 1 minute to learn from the 
training data and classify the test data. In contrast, the SVM takes several hours to 
learn. When both user ID and timestamp are considered, the prediction performance 
of our solution drops slightly to 76.60% while that of SVM increases slightly to 
76.68%. Including the timestamp field, however, decreases the time and space 
efficiency of the solutions.  

A similar pattern of results is seen for the two settings of problems 2 and 3. For 
problem 2, the percentage score drops slightly from 83.2% to 83.17% when 
timestamp is considered together with user ID. On our hardware setup, it takes about 
6 minutes without timestamps and about 15 minutes with timestamps to solve this 
problem (learning plus testing). For problem 3, the percentage score drops slightly 
from 72.53% to 72.42% when both timestamp and user ID are considered. Similarly, 
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the running time increases from about 1 minute to about 1.5 minutes when both 
timestamp and user ID are considered.  

The interesting result is that considering timestamp decreases prediction 
performance (very) slightly (this drop may not be statistically significant). This is 
probably due to the greater chance of a probability estimate in our solution turning out 
to be zero adversely affecting the prediction. The SVM for problem 1 did show a 
slight increase in prediction performance. However, our solution is orders of 
magnitude more efficient than SVM.  

4.4 Complexity Analysis 

In this section, we discuss the computational complexity of our solution and 
demonstrate its efficiency.  

The time complexity of our solution for all three problems is O(N) where N is the 
total number of visit sessions in the data. The model is learned in O(N) time and 
constant time is required to classify every test example as all the probabilities have 
been pre-computed.  

The space complexity of our solution is defined by the number of probability 
estimates required. For problem 1, we require 2 + (4882 × 2) estimates when 
timestamp is not considered and 2 + (4882 × 2) + (4 × 2) when timestamp is 
considered. In these expressions, 2 is the number of classes, 4882 is the number of 
distinct users, and 4 is the number of distinct timestamps. For problem 2 when 
timestamp is not considered, the number of probability estimates required is (20 × 3) 
+ (4882 × 20 × 3) + (20 × 20) + (4882 × 20 × 20). The first two terms correspond to 
the probabilities in Equation (3) and the last two terms correspond to the probabilities 
in Equation (5). When timestamp is considered an additional (4 × 20 × 3) + (4 × 20 × 
20) estimates are required. In these expressions, 20 is the number of categories and 3 
is the number of positions. 

Table 1. Prediction performance results for our solution without considering timestamp 

 
 Problem 1 Problem 2 Problem 3 
Score 127457 903145 958643 
Max. possible score 166299 1085494 1321706 
Percentage score 76.64% 83.20% 72.53% 

 

Table 2. Prediction performance results for our solution when considering timestamp 

 
 Problem 1 Problem 2 Problem 3 
Score 127383 902849 957235 
Max. possible score 166299 1085494 1321706 
Percentage score 76.6% 83.17% 72.42% 
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For problem 3 without timestamp, the number of probability estimates required is 
(3 × 20) + (4882 × 3 × 20), where 3 is the number of page view ranges. When 
timestamp is considered, an additional (4 × 3 × 20) estimates are required.  

From the above results we see that space complexity is O(N). As discussed earlier, 
the data is sparse and many probability estimates are zero. Hence smart selection of 
data structures can reduce the space requirements further. In our implementations, we 
use hash maps instead of matrices to store the non-zero probability values only. 

5 Conclusion  

In this paper, we present our solution to the 2007 ECML/PKDD Discovery Challenge 
on Web surfer behavior prediction. We adopt Bayesian approaches for all three 
problems of the challenge. For problems 1 and 3, which are standard classification 
problems, we use Bayes classifiers for their solution. For problem 2, which requires 
predicting the sequence of page categories visited, we combine Bayesian 
classification with Markov chain prediction. The solutions are evaluated on four 
weeks of data collected from Polish websites. The results show that our solutions are 
accurate and efficient. In particular, our solution to problem 1 has the same prediction 
accuracy as SVM but is orders of magnitude faster. We also find that incorporating 
the start time of visit sessions does not have any practical impact on prediction 
accuracy.  

The problem of Web surfer behavior prediction is of immense commercial value. 
We believe that a direct solution to the problem is more practical than those involving 
complex Web surfer behavior modeling. As part of future work, we will explore other 
probability estimating approaches suitable for limited data and ways of boosting 
prediction performance.  
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