
Int. J. Sensor Networks, Vol. 19, Nos. 3/4, 2015 251

Modular remote reprogramming of sensor nodes

Waqaas Munawar
Karlsruhe Institute of Technology,
P.O. Box 3640, Karlsruhe 76021, Germany
Email: munawar@kit.edu

Muhammad Hamad Alizai*
Department of Computer Science,
LUMS SBASSE, 54792 Lahore, Pakistan
Email: hamad.alizai@lums.edu.pk
*Corresponding author

Olaf Landsiedel
Chalmers University of Technology,
SE-412 96 Göteborg, Sweden
Email: olafl@chalmers.se

Klaus Wehrle
RWTH Aachen University,
Aachen 52074, Germany
Email: wehrle@comsys.rwth-aachen.de

Abstract: Wireless sensor networks are envisioned to be deployed in the absence of permanent
network infrastructure and in environments with limited or no human accessibility. Hence, such
deployments demand mechanisms to remotely (i.e., over the air) reconfigure and update the software
on the nodes. In this paper we introduce DyTOS, a TinyOS based remote reprogramming approach
that enables the dynamic exchange of software components and thus incrementally update the
operating system and its applications. The core idea is to preserve the modularity of TinyOS,
i.e., its componentisation, which is lost during the normal compilation process, and enable runtime
composition of TinyOS components on the sensor node. The proposed solution integrates seamlessly
into the system architecture of TinyOS: It does not require any changes to the programming model of
TinyOS and all existing components can be reused transparently. Our evaluation shows that DyTOS
incurs a low performance overhead while keeping a smaller – up to one third – memory footprint
than other comparable solutions.

Keywords: in situ reprogramming; software updates; modular development; incremental updates;
remote reprogramming; transparent code integration; TinyOS.

Reference to this paper should be made as follows: Munawar, W., Alizai, M.H., Landsiedel, O.
and Wehrle, K. (2015) ‘Modular remote reprogramming of sensor nodes’, Int. J. Sensor Networks,
Vol. 19, Nos. 3/4, pp.251–265.

Biographical notes: Waqaas Munawar is a PhD student at the Institute of Process Control and
Robotics at KIT, Germany. His research interests include cyber physical systems and real time
operating systems. He graduated from the RWTH Aachen University and holds double Master’s
degree in Computer Science and Artificial Intelligence.

Muhammad Hamad Alizai is an Assistant Professor at the Department of Computer Science, LUMS.
Previously, he was a Research Assistant at ComSys Group, RWTH Aachen University, Germany.
He received his PhD and MSc from RWTH Aachen University in 2012 and 2007, respectively.
His research interests are in mobile applications, internet of things, sensornets, and delay tolerant
networking. He is particularly interested in applications, protocols, architectures, and evaluation tools
for future networks.

Olaf Landsiedel is an Assistant Professor at Chalmers University of Technology in Gothenburg,
Sweden. He received his PhD from the RWTH Aachen University, Germany, and was a Post-Doctoral
at the KTH Royal Institute of Technology, Sweden, and the Swedish Institute of Computer Science
(SICS). His work focuses on cyber physical systems, wireless sensor networks, and the internet of
things.

Copyright © 2015 Inderscience Enterprises Ltd.

252 W. Munawar et al.

Klaus Wehrle is a Professor of Computer Science and Head of the Chair of Communication and
Distributed Systems at the RWTH Aachen University, Germany. He received his Diploma (1999) and
PhD (2002) degrees from the University of Karlsruhe (now KIT), both with honours. He joined the
International Computer Science Institute at University of California at Berkeley from 2002 to 2003.
In 2006, he joined the RWTH Aachen University as an Associate Professor, later as Full Professor.
His research activities are focused on engineering of networking protocols, (formal) methods for
protocol engineering, sensor networks, peer-to-peer-networking as well as all operating system issues
of networking.

This paper is a revised and expanded version of a paper entitled ‘Dynamic tinyos: modular
and transparent incremental code-updates for sensor networks’ presented at IEEE International
Conference on Communications (ICC), Cape Town, South Africa, 23–27 May, 2010.

1 Introduction

The ability to remotely update (or reprogram) the software on
sensor nodes is pivotal in providing incremental, application
development support for wireless sensor networks. The need
for incremental software update could arise for example to
fix a bug, to update a set of features or parameters, or even
to reprogram sensor nodes with a complete new application
due to changes in the environmental requirements (Deng and
Nickerson, 2013; Yick et al., 2008). However, a common
understanding in the research community exists that in situ
reprogramming of sensor nodes is challenged by:

• The lack of permanent network infrastructure
(e.g., cables) and physical inaccessibility in most
sensor network deployments (Pompili et al., 2006;
Juang et al., 2002; Szewczyk et al., 2004; Werner-Allen
et al., 2006), leaving the wireless medium as
the only choice to access the nodes in the
network.

• The embedded nature and the scale of deployment that
could surpass hundreds or even thousands of sensor
nodes resulting in increasingly long network downtime
due to reprogramming operation.

• The limited nature of sensor nodes because of severe
resource constraints in terms of communication
bandwidth, memory capacity, processing power and
energy.

• The complexity of reprogramming tool that often
results in steep learning curves and thus the lack of
interest on the part of developers in exercising such an
incremental development facility.

• The need for transparent integration of the
reprogramming tool in the existing system architecture
to enable code reuse.

In the past few years, over-the-air (OTA) reprogramming has
established itself as the only relevant solution to deal with the
lack of permanent infrastructure and physical inaccessibility.
Ranging from full binary image replacement in a node’s
memory to differential reprogramming to virtual machines,
a plethora of OTA based reprogramming solutions (Jeong
et al., 2003; Hui and Culler, 2004; Panta et al., 2009;

Jeong, 2004; Fei and Magill, 2012; Müller et al., 2007;
Bohli et al., 2009, 2011) has been proposed in the literature.
However, we believe that these solutions have failed to address
the aforementioned challenges in entirety. For example, full-
image replacement (Jeong et al., 2003; Hui and Culler, 2004)
results in a very high transmission overhead while showing
low processing demands. In contrast, other approaches such
as transmitting the deltas between new and old binary image
(Panta et al., 2011, 2009; Jeong, 2004) can sometime reduce
the transmission cost but in worst case scenario, just emulate
the full image replacement. On the other hand, virtual
machines (Levis and Culler, 2002; Müller et al., 2007) reduce
transmission costs as well as post processing requirements
but incur a major energy-cost overhead due to interpretation
instead of execution. Moreover, the majority of these solutions
does not transparently integrate into the existing development
environments resulting in new and complex programming
models rendering the application repositories developed over
the years, useless.

Hence, an efficient solution for remote reprogramming
is desired that collectively addresses the aforementioned
challenges. This paper establishes such a solution in the form
of DyTOS – a dynamic operating system extension for TinyOS
to support runtime adaptation of the OS and its applications.
Our choice of TinyOS platform is motivated by the fact that it
is one of the most widely used (Levis, 2012) operating system
and owns a very rich repository of applications and protocols.
However, its remote reprogramming mechanism is still limited
to full image replacement as nodes execute a statically-linked
system-image generated at compilation time (Munawar et al.,
2010).

Our system design preserves the component model of
TinyOS: TinyOS applications and the OS itself are built
by connecting so called components. Components represent
functional building blocks such as communication protocols,
device drivers, or data analysis modules. During the default
compilation process of TinyOS, these building blocks are
converted into a single, static binary. While this enables code
optimisation and ensures a small memory footprint, it omits the
modularity of the OS and its applications. In contrast, this work
introduces dynamic extensions to TinyOS allowing the user
to define TinyOS components that should be kept modular in
the resulting executable. As a result, Dynamic TinyOS allows
to replace these components dynamically at runtime.

Modular remote reprogramming of sensor nodes 253

We now pinpoint the following requirements for an
efficient remote reprogramming solution, thereby marking
the contributions of this paper by highlighting how DyTOS
achieves these requirements.

• Flexibility (reprogramming granularity): The
granularity of a reprogramming facility should be a user
definable parameter. This allows the users to trade-off
communication overhead for processing (e.g., linking of
components on sensor nodes) and vice versa, depending
upon the future requirements of a particular deployment.
DyTOS allows the user to control the reprogramming
granularity by defining TinyOS components that should
be kept modular, and hence, independently
reprogrammable in the resulting executable.

• Transparency (seamless integration): An ideal in situ
reprogramming solution should not necessitate any
change in the existing, developed code base. It should
transparently integrate with existing development
platforms enabling code-reuse of large code repositories
which are result of a substantial, decade long research
and development effort. The operation of DyTOS does
not require any changes in the existing sources.
Thereby, it enables the reuse of existing application
repositories by integrating seamlessly into the existing
TinyOS architecture.

• Usability (no new programming model): It should be
easy to use, and hence, should not introduce new and
complex programming models. DyTOS is based on
unmodified nesC-programming constructs and its
semantics are deeply embedded in the TinyOS
compilation process remaining transparent to an
application developer.

• Efficiency (limited resource consumption): It should
minimise energy consumption, incur minimal
processing and communication overhead, and embrace
reduced memory footprint. DyTOS’s optimisations to
the binary executables (i.e., ELF files) results in
significant reduction of the communication and
processing overhead, while keeping a smaller – up to
one third – memory footprint than other comparable
solutions.

The rest of this paper is structured as follows: The detailed
architecture of DyTOS is presented in Section 2. We discuss
our evaluation results in Section 3. Finally, we discuss the
related work in Section 4 before concluding the discussion in
Section 5.

2 DyTOS architecture

TinyOS based sensor network applications consist of a
large selection of individual software components which are
‘wired’ together to achieve the desired functionality. In the
standard TinyOS compilation process, these building blocks
are mashed-up to form a single, monolithic binary-image of the
application. However, as each component provides a dedicated

functionality to the overall system, updates such as the
deployment of a new functionality or a bug fix are commonly
limited to a small number of neighbouring components or
even a single component. Hence, the modularity of TinyOS
forms a natural starting point for a dynamic operating system:
DyTOS alters the compilation process of TinyOS to preserve
user selected parts of the component structure across the
compilation phase. The result is an executable consisting
of multiple, replaceable objects. Hence, during deployment,
updates of applications or of the OS itself can be disseminated
in the network to replace existing objects on the sensor node.

Code updates in DyTOS work in three phases, see Figure 1:

• Via extensions to the NesC compiler of TinyOS we
compile components, i.e., applications and system
components, into multiple objects. As a result, the
component based structure of the TinyOS application is
preserved during the compilation process.

• Using a standard dissemination algorithm, such as the
one of Deluge (Hui and Culler, 2004) or others
(Stathopoulos et al., 2003; Levis et al., 2004), updates –
i.e., binary objects – are transferred to the sensor node
over the radio.

• A thin runtime on the node stores these updates and
integrates new components into applications or the OS.

Moreover, DyTOS allows users to define the granularity of
replacements in a simple configuration file for NesC compiler.
Hence, a user can combine multiple TinyOS components
into a single object. While this increases the size of updates,
it reduces the overhead of run-time linking on the sensor
node and enables compiler optimisations inside this object.
As an example, Figure 1 shows the process of dividing an
application. It can be one of the applications shown in Table 2
with its respective components. Here the application is divided
into two blocks, one containing components A and B and the
other containing component C. Any updates to component C
will only require the retransmission of this single component
for updates, while updates to A require the block containing
A and B to be disseminated in the network. Thus, the trade-
off between transmission energy and linking overhead can be
adapted based on expected future application and deployment
requirements.

The overall architecture of DyTOS has two main
components:

• On the host, we isolate a single TinyOS component or a
group of components and compile them into an ELF
object.

• We provide Tiny Manager, a runtime system executing
on the sensor node. It handles storage and integration of
new components, i.e., code updates.

These new ELF objects are linked into an executable binary-
image and loaded in program memory. After discussing
these two core components of DyTOS, we conclude this
Section by presenting optimisations for ELF objects to
minimise transmission and linking overhead.

254 W. Munawar et al.

Figure 1 Overview of code updates in DyTOS in comparison with the traditional TinyOS: In the first step a user chooses boundaries among
the building blocks of an application and the OS. In the second step, ELF files are generated according to the specified boundaries.
These ELF file are disseminated in the network and linked on the mote to form the application

CompA

CompB

CompC

Mote Hardware

Application

Mote Hardware

T
ra
d
itio
n
a
l
T
in
y
O
S

D
y
n
a
m
ic
T
in
y
O
S

Block

A&B

BlockC
Compilation Network wide

Dissemination

CompA

CompB

CompC

CompA

CompB

CompC

CompA

CompB

CompC

Host machine execution Sensor node execution

User

specified

boundaries

CompA

CompB

CompC

main.exe

CompA

CompB

CompC

ELF

file

ELF

file

2.1 Compile time system

First, DyTOS compiles an application and the OS core into
separate ELF files based on user specified boundaries for
incremental updates. Compiling parts of a TinyOS application
in isolation from the rest has two side effects:

• it introduces ambiguities, such as the parameterisation
of NesC generics and default event handlers

• it limits compiler optimisations. To address the first
issue, DyTOS provides a compiler extension, so called
component isolation, which resolves these ambiguities
and enables automated compilation of TinyOS
components into solitary ELF objects.

Moreover, we introduce component over-provisioning
that establishes additional functionality into the existing
components on the sensor node to achieve maximum benefits
from our approach, as discussed in the following sections.
DyTOS addresses the second issue by allowing the user
to group multiple TinyOS components into a single object
limiting modularisation to user required parts. While these
larger objects increase optimisation possibilities, such as code
in-lining and loop un-rollments, they increase the size of
updates. Hence, DyTOS allows users to balance the cost of
updates and their performance penalties.

2.1.1 Component isolation

The main issues faced during isolation of TinyOS components
is the non-availability of system information which is hidden
in parts of the application that are not being compiled at
the moment. For example, the timer dispatch component
needs to be parameterised with the number of timers used
in the OS and applications. Similarly, the scheduler needs
to be parameterised with the number of threads in the
system. Component Isolation of DyTOS parameterises such
components by collecting information from other modules in
the system and user requirements with which it configures
the NesC compiler of TinyOS. This parameterisation consists
of two main parts for each component to be isolated: a

component-wrapper and an application side place holder. The
component wrapper ensures that the component being isolated
is provided with the required knowledge of the rest of the
application for correct compilation. Likewise, the application
side place-holder ensures that the application gets the required
knowledge about the component which will be linked-in
at runtime. During this process, the actual source code of
both the application and its component is not changed. This
transparent integration allows the reuse of existing TinyOS
based applications and seamless integration of DyTOS into
the existing TinyOS skeleton, thereby remaining transparent
to the application developer.

2.1.2 Component over-provisioning

Component over-provisioning allows to provide additional
functionality for expected future updates. For example, the
OS core can provide additional timers or slots for additional
threads expected to be required by future deployments of new
functionality. Additionally, over-provisioning can be used to
configure a base block to provide the functionality needed by
typical sensor network applications, i.e., consisting of timers,
scheduler, radio and other hardware drivers. This design
ensures that a currently deployed application can be changed
to radically different tasks by merely communicating the user
implemented part of the new application (see our evaluation in
Section 3 for an example). Nonetheless, unlike TOSThreads,
the proposed system is completely dynamic and supports the
exchange of both user and OS related components including
low-level device drivers etc. Similarly, the presented system
imitates dynamic reconfiguration behaviour of Contiki.
Hence, the former can be seen as a generalised case of the
latter.

2.2 Node runtime: tiny manager

After the compilation of components, the next step consists of
their dissemination and integration in the sensor application
executing on the sensor node.

We currently use Deluge data dissemination protocol.
However, other well established and widely used protocols
(Hui and Culler, 2004; Stathopoulos et al., 2003; Levis et al.,

Modular remote reprogramming of sensor nodes 255

2004) would work as well. Since the dissemination protocol
is also treated as a part of the loaded application on the
sensor node, it can also be replaced remotely on runtime.
This design approach makes data dissemination a concurrent
process along with the normal execution of loaded application
resulting in reduced downtime due to an update in progress.
It is important to point out that the efficient distribution of
code is completely orthogonal to the challenges address in
this paper, which aims at reducing the size of such updates
and adding the flexibility needed for adaptation. Therefore, a
comprehensive exploration of all the existing dissemination
techniques is beyond the scope of this paper.

Once the updates have been received on the sensor node,
the dissemination protocol invokes the linker to integrate the
received modules and place the resulting new binary image in
the program memory of the sensor node. To accomplish this,
DyTOS provides a runtime on the sensor node, called Tiny
Manager (see Figure 2). It consists of the following four main
components.

Figure 2 Architectural elements of Tiny Manager. Only the
interrupt router is active during the normal execution of a
loaded application. Linker, file system and symbol table
handle storage and integration of newly received code

Module A

Module C

Module B

Mote Hardware, e.g. TelosB

File Sys

Linker

Symbol

Table

Runtime

Initialization

Int Router

L
o
a
d
e
d
A
p
p
.

T
in
y
M
a
n
a
g
e
r

Component Type:

2.2.1 File system

It is used to store and retrieve the new building blocks (ELF
modules) which were received by the dissemination protocol.
It is implemented by the Tiny Manager and the API is available
to the loaded application. Our file systems is based on the
Coffee file system (Tsiftes et al., 2009) for managing large
chunks of data. Coffee is shipped with Contiki operating
system and utilises the external flash ROM for storage. It
provides a POSIX style API for read/write access to the files.

Our file system uses a combination of micro log files and
extents. When a new file is opened, it starts with an extent
structure that consists of consecutive allocation pages. When
the file is modified, a log file is created and linked with the
initial extent structure. The log file stores modifications to the
original file as log records. When the log file fills up, a fresh
extent file is created with the most recent data merged from
old log and extent files. The old files are then deleted.

Resource usage of our file system is quite modest:
It consumes approximately 6 KB of flash memory. The

maximum RAM footprint depends upon the configuration of
the file system. In its default setup, our system uses 173 bytes
of static memory and a maximum stack size of approximately
600 bytes. Memory usage can be further optimised by adapting
the configuration.

2.2.2 Linker

It is responsible for linking the new ELF modules and placing
the instructions in the designated code memory. It is divided
into two parts; the platform specific part to cater for platform
level details of linking, and the platform independent part for
high level processing shared by all platforms.

After receiving all the components of the application,
the linker is invoked. The role of the linker is to link the
components and then load them into the program memory
of the sensor node. Considering the role of the linker, it
needs to fulfil two distinct sets of requirements; firstly, intra-
object requirements or the micro requirements, and secondly,
inter-object requirements or macro requirements. The micro
requirements deal with the linkers operation on per object
basis. This includes the operations it needs to perform in order
to successfully load and execute a single object. The macro
requirements, on the other hand, deals with the operations
it needs to perform in order to make all objects work with
each other successfully. The mechanism chosen for linking has
notable effect on system properties like performance overhead,
latency and memory requirements.

Micro requirements: To integrate an object into the existing
executable core, the linker performs four steps on each ELF
object. Sometimes, these steps are performed multiple times
to resolve the addresses of undefined symbols. The decision
to repeat the procedure is made by the linker on basis of an
algorithm to resolve the missing dependencies. These steps
include;

• Memory allocation: Depending upon the size of the
different sections mentioned in the ELF object being
processed, the memory is allocated for them both in
RAM and internal flash.

• Relocation: On the basis of the addresses obtained in
the previous step and the contents of the relocation
segments, the relocations are calculated and applied to
the code and the data segments in the ELF object.

• Linking: The relocation and linking phases are
interleaved. During relocation, when the linker finds an
undefined symbol, it resolves its address in the global
symbol table and links it to a symbol having the same
name in another ELF object or in the existing
executable core.

• Placement: Lastly, the appropriate segments of an ELF
file are placed in the program memory. All the available
symbols from the file are added to the global symbol
table.

The linker also needs to handle interrupt routines. This
involves use of ‘interrupt router’ and it is done in the last phase
before placement (cf. Section 2.2.4).

256 W. Munawar et al.

Macro requirements: An application in TinyOS consists of
small components, which communicate with each other via
interfaces. Figure 3 shows internal structure of a TinyOS
application. The flow of control is bidirectional, i.e., it moves
‘down’ via commands and ‘up’ via events. To recreate this
using binary components, the linker needs to fulfil two
requirements; Firstly, it should be able to recreate the links
as in the original application. Secondly, the system should
provide a mechanism to route the interrupts to the appropriate
component in the application. In the proposed system these
requirements are fulfilled with the help of a global symbol
table and an interrupt router.

Figure 3 Internal structure of a TinyOS application: (a) TinyOS
and (b) DyTOS (see online version for colours)

Top level Conf

Conf B Conf C Module D

Hardware

Module E

Top level Conf

Conf B Conf C Module D

Module E

Top level Conf

Conf B Conf C

Module E

Module D

(a)

Top level Conf

Conf B Conf C Module D

Hardware

Module E

Top level Conf

Int. Router

Conf B Conf C

Module E

Module D

(b)

2.2.3 Global symbol table

The ELF modules of an application are mutually dependent
on each other for resolution of all the required symbols. These
dependencies can be data objects or function implementations.
These are transitive and can even be cyclic. However, all
of these dependencies can be fully resolved among the
components belonging to a single application. A naive solution
to resolve them could be to start a search among all the
components whenever a missing dependency is to be resolved.
Although this method is efficient in terms of the required
memory, but the time taken to resolve all the dependencies
is significantly long: The space complexity is constant but
the time complexity is exponential. The other method is to
populate a global symbol table with the available symbols in
all the components and then load these components. It imposes
a time and space complexity of O(n). In this method, all the
files are parsed twice i.e., 2n operations for n files.

We employ this latter approach for resolving object
dependencies in DyTOS. We parse all the files twice, except
the last file that is parsed only once since the global symbol
table already contains all the symbols that the last file needs
at the time when it is loaded. This procedure uses a total of
2n− 1 parse-operations for n files. The symbols provided
by the executable core are added to the global symbol table
during the process of compilation. These symbols include
the file system’s API and the linker’s API. This is to ensure
that the application can parse and store new ELF files that
it might receive for next application update, for example.
After resolving dependencies, the components are loaded into
program memory. At this point the application is completely
linked and ready to run, except interrupts (bottom layer of
upward pointing triangles in Figure 3) which need to be routed
to the component providing the appropriate interrupt service
routing (ISR).

2.2.4 Interrupt router

TinyOS applications are reactive and allow a bidirectional flow
of control. Most of the events are generated by the hardware
and are driven ‘up’ towards the software components that
provide the corresponding service routines. When hardware
generates an event (interrupt), it saves the context of current
execution and jumps to a predefined, hardwired address in
the program memory and starts executing the instructions
from that address onwards. This address is different for all
the interrupts that can be generated. The software routines
that are meant to handle the interrupts are placed at these
addresses. As the placement of the different routines in the
memory is done by the offline linker (i.e., during compilation
at a host machine), the appropriate routines in the code are
marked by a specified keyword to communicate this fact to
the linker. However, since in DyTOS, the modules are loaded
dynamically, placing different routines at different addresses
at run time could generate memory conflicts among interrupt
service routines. We use an interrupt router to avoid such
conflicts.

The interrupt router employs an additional indirection
layer of abstraction by using a dummy ISR for each hardware
interrupt. Later when linking a component, if one of its routines
is an ISR, the interrupt router stores its address in the memory.
When an interrupt occurs, the interrupt router is invoked which
starts the execution of the instructions from the stored address.
This extra indirection causes a nominal delay in the service of
an interrupt but simplifies memory management.

Apart from the interrupt router, all components are inactive
during the normal execution of application. This minimises
the runtime overhead of the Tiny Manager.

2.3 ELF optimisations

After discussing the design of DyTOS in detail, we discuss
optimisations to ELF files to reduce their size. These
optimisations reduce transmission overhead and storage
requirements which are both scarce resources on sensor
nodes. The two main hindrances curtailing the performance
of DyTOS are

Modular remote reprogramming of sensor nodes 257

• large size of ELF modules

• processor intensive linking process.

2.3.1 Reducing the size of ELF modules

The ELF format, though a widely used standard, is not
optimised for the low-power processors commonly found on
sensor network platforms. For example, in the ELF modules,
the addressing information is stored in 32 bit format whereas
majority of sensor platforms offer 8 or 16 bit addressing space.
Though this does not cause any reduction in performance but
results in inflation in the size of the modules. Similarly, the
major contribution in the size of ELF modules comes from
the string table which holds the names of all the symbols in
the ELF file. These names often tend to be quite long – up to
80 characters for each symbol. The contributions of different
segments of different ELF files belonging to an exemplary
sensor network application are shown in Figure 4.

Figure 4 Breakdown of contribution from different sections of
ELF file toward its total size. The string table included in
these files is the main contributor toward their size and
hence is primary candidate for optimisation. These ELF
objects belong to the trademark Blink applicationa from
TinyOS repository (see online version for colours)

BlinkAppC BlinkC LedsC
Msp430

TimerC

Misc. 422 425 423 424

String Table 2404 329 323 4914

Symbol Table 1408 240 272 1856

Relocations 2292 84 444 396

Data 2 0 0 0

Code 2724 54 390 1586

0

2000

4000

6000

8000

10000

Size

(B)

aBlink is the most basic sensor network application in TinyOS

Our optimisations deal with reducing the size of the symbol
tables because

• it offers a bigger reduction in the size of the ELF module
thereby reducing the energy cost of transmission

• it reduces processing required for all the string
comparison operations performed during the linking
which saves on the energy spent in that phase.

We decrease the size of the symbol names down to three
characters by replacing each symbol name with a unique
string based on an alphanumeric counter. The mapping of the
replaced names is stored in a database which can be used later
when recompiling parts of the application. This procedure
results in:

• significant reduction in the size of ELF file

• reduction in the size of global symbol table which is
constructed during linking

• reduction in number of string comparison operations.

For example, this technique reduces the size of the string tables
of all components of Blink application from 7970 bytes to 888
bytes and results in the 33% reduction in cumulative size of
all ELF files belonging to this application.

2.3.2 Optimising the linking process

The second set of optimisations is directed towards reducing
the amount of processing required during linking through
reducing the size of global symbol table. We split the symbol
table into two sub-tables; one containing static core symbols
and the other filled dynamically from the symbols included
within the ELF files being loaded. The static part is created at
compile time and placed in the ROM in a sorted order allowing
binary search among the symbols. This results in a fast linking
process. Secondly, instead of accumulating all the offered
symbols in the runtime portion of global symbol table, we
accumulate only the required symbols. As the generated ELF
modules typically offer more symbols than they require, this
causes significant reduction in the size of runtime portion of
the symbol table. Thereby, further reducing string comparison
operations and expediting the linking process.

These two optimisations enhance the processing speed,
resulting in energy savings of up to 66% when compared
to the original ELF file without needing to change the
overall structure of the file itself. Both these optimisations are
performed with simple scripts without using any customised
tools for this purpose. This allows the use of standard tool
chains while avoiding any maintenance and porting effort.

3 Experimental evaluation

System requirements, such as flexibility, transparency and
usability, are inherently incorporated in the design and
architecture of DyTOS discussed in the previous section.
However, the efficiency (i.e., resource consumption) of
DyTOS can only be demonstrated with the help of
experimental evaluation. Thus, we now compare the efficiency
of DyTOS with existing approaches for code updates in
TinyOS, such as Deluge and, where possible, Zephyr
and Maté. Zephyr is not (yet) open-source. Hence, –
when available – our comparison relies on the same
benchmarks as used by Zephyr to establish a base for a fair
comparison. The evaluation focuses on key factors such as the
energy consumption, size of updates, memory footprint, and
processing overhead. We implemented DyTOS for the TelosB
platform (Polastre et al., 2005) and the recent 2.1 release of
TinyOS (Levis, 2012).

Our comparative evaluation covers a broad range of
standard applications from the TinyOS repository, underlining
the feasibility of our approach. These applications, for
example, include simple applications, such as Blink and

258 W. Munawar et al.

BlinkTask – which toggle the LEDs of a sensor platform
– and complex applications, such as MultihopOscilloscope
– which uses the standard collect tree protocol (Gnawali
et al., 2009) in TinyOS. However, for our detailed analysis of
energy and processing overhead, we use a simple BlinkTask
application. The reason is that the BlinkTask application
contains most of the programming constructs of nesC (i.e.,
tasks, commands, events, generic components, scheduler etc.)
and can be used as a representative to calculate the detailed
communication, processing and linking overhead. We show
that this simple application can provide us with useful hints
about the significance of our approach when compared to other
existing approaches.

Deriving energy consumption of a remote reprogramming
solution involves complex operations such as multi-hop
communication and code integration. We therefore need a
simple energy model to efficiently compare DyTOS with other
state-of-the-art solutions. Hence, before presenting detailed
evaluation results, we thoroughly present our experimental
setup and the energy model.

3.1 Experimental setup

The circuit employed for the empirical measurements of
different values of interest such as input current, energy
consumption and delays is shown in Figure 5.

Figure 5 Current measurement setup

3.3 V

R = 50 �

telos
+
-

Iin

Vin

VR

The input current (Iin) is significantly important since it can
be used for measuring energy consumption and the timing
information of different events. To facilitate the measurement
of Iin, we add a resistor in series with the TelosB and the
fixed voltage supply of 3.3 V. The operating voltage for TelosB
board ranges from 1.8 V to a maximum of 3.6 V. However,
when the input voltage drops below 2.4 V, the internal and
external flash memories cannot be reprogrammed. Hence, with
a 50 Ω resistor in series, the maximum allowed current for
reliable operation is 18 mA. If the TelosB sinks more than 18
mA, it’s input voltage decreases below 2.4 V.

During our evaluation, we observed that TelosB requires
12 mA to execute a TinyOS application that does not use radio
hardware. However, during the operation of the CC2420 radio,
the input current reaches a value of 22 mA causing a drop of
1.1 V on the series resistor. This results in the decrease ofVin to
2.2 V. However, as applications typically do not re-configure
flash memories during the operation of the radio chip, the
circuit shown in Figure 5 fulfils our requirements. With this
setup, the instantaneous value of power consumption (Pt) of
TelosB board can be derived as:

Pt = VinIin ⇒ VinVR

R
(1)

Energy consumption (E) during any phase of the operation
of any application can be calculated by integrating the
instantaneous power curve over that period (T).

E =

∫
T

Ptdt ⇒
1

R

∫
T

(VinVR)dt (2)

VR and Vin are logged using a storage oscilloscope and stored
for further analysis. We collected 2500 sample points for each
reading. Timing information is also retrieved from the Iin
logs. Distinct peaks are generated in the current being sinked
by blinking the three on board LEDs simultaneously. This
blinking process is used as markers for measuring the elapsed
time between different events.

3.2 The energy model

To evaluate the per-node energy consumption caused due to
a network wide reconfiguration, we devise an energy model
and calibrate it using the readings taken empirically. The two
main factors that contribute to the overall energy overhead of
any remote reprogramming solution are:

• dissemination of component updates

• linking of newly received components with the
application on the sensor node.

We model the energy cost as:

ET = EC + EP (3)

where
ET is the total energy consumed
EC is the energy cost of multihop communication
EP is the energy consumed during processing.

The total energy consumed during the complete process
is the sum of energy consumed during the transfer of the
updated component and its integration into the existing core.
Assuming each node receives the update and then propagates
it, the energy consumed during multi-hop communication can
further be divided into transmission cost and the reception cost.
For the sake of simplicity, we currently ignore the fact that
the bordering nodes that do not need to propagate the update
further.

Since TelosB’s radio hardware, when tuned to the
maximum output power, consumes nearly the same amount
of energy (cf. Table 1) for both transmission and reception
operations, we treat the energy cost of transmission and
reception as equal;

EC = ETx + ERx = 2ETx (4)

The energy consumed to transmit a component is proportional
to the size of the component, and a constant factor due to
the overhead introduced by the protocol employed for reliably
disseminating the updated component across multiple hops.

ETx = KFSCKBT (5)
⇒ EC = 2KFSCKBT (6)

Modular remote reprogramming of sensor nodes 259

where
KF is the average overhead of the protocol used
SC is the size of the component to be transferred in bytes
KBT is the energy consumption required for the transmission
of each byte.

Table 1 Energy consumption for communicating 3000 bytes on
TelosB. Measurement methodology is outlined in
Section 3.3

Energy (mJ) Per byte (mJ)
Transmission 31.56 0.0105
Reception 31.80 0.0106

The second contribution in the total consumption of energy
comes from the processing overhead associated with the
integration of the received component into the main executable
core at the sensor node. The different phases of this operation
include storage of received component, linking and relocation
of all the received components and loading the components
into program memory. Hence, the corresponding energy cost
of these operations, i.e., the cost of storage, the cost of
linking/relocating and the cost of loading the component into
program memory is formulated as:

EP = ES + ELR + ELP (7)

where
ES is the energy required to store the component
ELR is the energy consumed in linking and relocation
operation
ELP is the energy consumed in loading the component.

These entities also depend on the size of the component being
processed. Since, all these operations take place on the same
individual sensor node, the energy consumed during these
operations can be empirically measured. The results of our
EP measurements are presented in Section 3.5.

3.3 Energy consumption during code dissemination

Our comparison in this Section compares DyTOS with the
original Deluge full image replacement mechanism (Hui and
Culler, 2004) – the widely used in-field code replacement tool.

The energy consumed during the dissemination process
include

• the energy required for the transmission of an updated
component

• the energy consumed during the reception of that
component.

Telos B employs the CC2420 radio that does not provide a
bit level interface; the received data and transmitted data is
handled through 128 byte I/O buffers. Hence, it is not possible
to measure the duration of transmission of a single byte. To
resolve this, we programmed a Telos B board to transmit 100
data packets, each with a payload of 17 bytes. The messaging

component of TinyOS adds an 11 byte header to each packet
resulting in transmission of 30 bytes every time. These packets
are sent back-to-back without any delay. After transmission of
100 packets the transmitter is switched off. The input current
of the transmitter is plotted in Figure 6. The measurement was
repeated five times but the results remained consistent.

Figure 6 Input current, instantaneous power and energy
consumption during the transmission of 3000 bytes with
the telos platform (see online version for colours)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

V
in

(V)

0

10

20

0

20

40

P
in

(mW)

0 0.2 0.4 0.6 0.8 1
0

15

30

Time (s)

E
(mJ)

I
in

(mA)

For the Deluge protocol the KF is 3.35 (Hui and Culler, 2004)
and TelosB node configured with TinyOS consumes 0.0105
mJ per byte for transmission. The second contributor to the
communication toll is ERx. However, our empirical results
(cf. Table 1) suggest that it is equal to the ETx for TelosB
platform when its transmitter is set to the maximum output
power. Summarising,

EC = ETx + ERx (8)

⇒ 2ETx

⇒ 2(KFKBTSC)

⇒ 0.0703SC(mJ)

We evaluate the energy consumption during the dissemination
process of DyTOS for a set of representative applications
from the TinyOS repository (see Table 2). These applications
utilise a broad range of TinyOS system components and
protocols – MAC, timers, LEDs, radio, and sensing hardware
– required to drive the sensor hardware-platform, allowing
us to comprehensively validate our results. To obtain these
results, we modify a certain part of an application and then
update the resulting binary on the sensor node using both
Deluge and DyTOS. For this comparison, DyTOS also uses
Deluge’s dissemination mechanism for delivering modular
code updates across the network. It is fair to conclude that
DyTOS consumes significantly less transmission energy – up
to a factor of 40 – than Deluge. However, reducing the size
of our updates introduces processing overhead at the sensor
node as discussed in Section 3.5.

260 W. Munawar et al.

Table 2 Savings in transfer energy due to incremental updates in DyTOS. The results are obtained after modifying parts of application and
updating the resulting binary on a sensor node

Application Component Size (B) Tx. Energy (mJ) Deluge size Saving factor
Blink OS-Comp 6616 465.1 33,726 5.1

Blink 824 57.93 40.9
Leds 1728 121.48 19.5
Timer 5424 381.31 6.2
Scheduler 1980 139.19 17

BlinkTask OS-Comp 6640 466.79 33,726 5
Blink 992 69.74 34
Leds 1728 121.48 19.5
Timer 5424 381.31 6.2
Scheduler 2356 165.63 14.3

Radio- OS-Comp 28,232 1984.71 33,954 1.2
CntToLeds Radio 1352 95.05 25.1

Leds 1728 121.48 19.6
Timer 4772 335.47 7.1
Scheduler 3092 217.37 10.9

Sense OS-Comp 17,040 1197.91 34,074 2
Sense 940 66.08 36.25
Leds 1728 121.48 19.7
Timer 6296 442.61 5.4
Scheduler 2576 181.09 13.2

Oscillo- OS-Comp 39,328 2764.75 34,504 0.87
scope Oscilloscope 2008 141.16 17.1

Leds 1720 120.91 20.0
Scheduler 3728 262.07 9.25

3.4 Memory requirements

We now evaluate the size of updates in DyTOS to determine
its storage requirements. Figure 7 shows the results for
our approach in comparison to Deluge and Zephyr for
different software update scenarios ranging from a simple
timer-frequency change in the Blink application to the re-
tasking of sensor nodes with a completely new application.
The results show that Zephyr, as it is based on byte level
comparison, performs better for very small changes in an
application, such as the addition of a small function to
a component. However, DyTOS shows consistent update-
sizes and outperforms existing approaches for component
level changes, such as addition of a new component to
the existing application. This is because it preserves the
high level structural knowledge of an application and its
components. For example, updating from the CntToLeds to
the RadioCntToLeds application only requires communicating
the main application component, while radio, timer and led
components can be reused.

Similarly, due to a thin runtime component, i.e., Tiny
Manager, the memory footprint of DyTOS is small in
comparison to popular existing solutions (see Figure 8).
On the TelosB platform, it consumes only 7.7% of RAM
and 32% of the program memory. Furthermore, the external
flash memory is completely available for the file system and
‘Golden Images’. Hence, it leaves the majority of the storage
resources for the OS, applications and code updates.

3.5 Processing overhead

Processing an update consists of three steps:

• storage in the external flash, i.e., file system

• linking and relocating

• loading into program memory (see Figure 9).

Figure 7 Performance in common software update scenarios.
Zephyr results in smaller updates for very small changes
in application. In contrast, DyTOS has a stable
update-size because it operates at the component level.
It outperforms Zephyr in the case of bigger changes in
applications such as the addition of a new component

0

2

4

6

8

32

34

36

Blink
freq. change

Blink
function added

Blink to
RadioCntToLeds

CntToLeds to
RadioCntToLeds

N
u
m

b
e

r
o

f
B

y
te

s
 (

K
B

)

Deluge
Zephyr
Dynamic TinyOS

The energy consumption of this processing and loading of
an updated component does not solely depend on the size of
the component but also on the symbol dependencies and the
number of relocations that need to be performed.

Deluge has a constant energy overhead because it always
disseminates the complete application and OS image. In
contrast, the energy overhead of DyTOS depends on the size
of the components to be updated and the required processing

Modular remote reprogramming of sensor nodes 261

on the sensor node. Overall, Figure 10 shows that DyTOS
outperforms Deluge in terms of the overall energy required
for code dissemination and processing of updates.

Figure 8 Memory-footprint comparison for DyTOS. Tiny
Manager only utilises 7.7% of the RAM and 32% of the
internal flash ROM on TelosB platform, which is
significantly less than all other comparable solutions

0 10 20 30 40 50

Tiny Manager

SOS Core

Deluge

(Golden Image)

Bombilla VM

(KB)

ROM

RAM

Figure 9 Current draw and energy utilisation during processing
and loading of the BlinkTask application on the TelosB
platform. The peaks, generated by turning on all onboard
LEDs simultaneously, mark the boundaries between the
different operations

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

Time (s)

C
u
rr

e
n
t

(m

A
)

0 5 10 15 20 25 30 35 40 45 50
0

200

400

E
n
e
rg

y
 (

m
J
)

Energy

Current

Loading in Program ROMStoring in Ex�Flash

Linking and Relocating

0 500 1000 1500 2000 2500

Monolithic

Scheduler

Timer

Leds

Blink

OS-Comp

Total Energy (mJ)

Processing Energy

Tx. Energy

Figure 10 Energy overhead comparison of DyTOS with Deluge.
DyTOS results in significantly less overhead than
Deluge for all the update scenarios. Deluge has a
constant overhead for all update scenarios

0 500 1000 1500 2000 2500

Monolithic

Binary

Scheduler

Timer

Leds

Blink

OS-Comp

D
el

u
g
e

D
y
n

am
ic

 T
in

y
O

S

Total Energy (mJ)

Processing Energy

Tx. Energy

3.6 Runtime performance overhead

The changes required to enable incremental code updates in
TinyOS impacts

• the compilation process

• requires the inclusion of an additional runtime layer,
i.e., TinyManager.

3.6.1 Compiler optimisations

Compiling parts of an application in isolation reduces
the overall code optimisation possibilities for a compiler.
Moreover, setting explicit boundaries between application
components can result in additional calls to those functions
which otherwise might have been inlined. To stress-test the
impact of isolated compilation of components, we use two
benchmarks:

• A syntactic benchmark, which uses the TestScheduler
application from the TinyOS repository, as a sanity
check for our approach. To evaluate our approach from
the worst-case point of view, we modified this
application to make 10,000 cross component calls to the
Scheduler.

• An application that calculates a 256 point FFT.

Table 3 shows that DyTOS consumes slightly more code
memory when compared with the traditional TinyOS.
Furthermore, the runtime performance overhead of DyTOS
is very small: While showing a less than 10% worst
case overhead, it takes the same execution time for a
computationally intensive real-world algorithm, i.e., FFT.

Table 3 Impact of compiler optimisations on the memory size and
execution time

DyTOS Traditional TinyOS
ROM (B) Time ROM (B) Time

TestScheduler 1810 504 ms 1754 460 ms
FFT 14,718 5.320 s 14,232 5.320 s

3.6.2 Interrupt re-routing overhead

During normal application execution, i.e., when no updates
are processed, only the interrupt routing component of Tiny
Manager is active. It introduces a short delay in the processing
of interrupts. On the TelosB platform, the worst case delay is
23 instruction cycles – equivalent to processing required for
copying eight bytes in memory. No performance depreciation
is caused by other components and hence code execution in
DyTOS remains native.

Overall, our evaluation shows that DyTOS outperforms
other approaches for code updates in TinyOS and even shows a
very small overhead when compared to a static TinyOS binary.

4 Related work and comparative analysis

Generally, any viable remote reprogramming solution consists
of two independent parts; the code integration mechanism
and the code dissemination mechanism. The code integration
mechanism comprises a node’s runtime and is responsible for

262 W. Munawar et al.

reprogramming the node, or integrating the newly received
code with existing functionality. The code distribution
mechanism, on the other hand, deals with the propagation of
the code in the network. Only the former is relevant to the
scope of this work.

We now briefly revisit and comparatively analyse existing
literature.

4.1 Discussion

We can broadly divide the related research efforts into the
following four categories.

4.1.1 Full-image replacement

These techniques such as Xnp (Jeong et al., 2003) or Deluge
(Hui and Culler, 2004) operate by disseminating a new binary
image of an application and the OS in the network. Since
the image is compiled and linked afresh in every iteration,
these solutions offer a very fine-grained control over the
possible reconfigurations. However, these approaches result
in excessive bandwidth overhead as unchanged parts of an
application need to be re-disseminated in the network.

4.1.2 Differential image replacement:

Zephyr (Panta et al., 2011, 2009) and others (Jeong, 2004;
Reijers et al., 2003) optimise the previous approach by
disseminating only the changes between the already deployed
executable in the network and the newly compiled image.
However, often a small change in the source code can result
in a large change in the compiled binary. For example, a
small increase in the size of one component can result in
an offset in memory locations for all the later instructions
in memory. This can be circumvented by two mechanisms:
either by placing ‘elastic buffer zones’ at regular intervals
in memory or by rerouting the function calls through an
indirection table. Zephyr takes the second approach. However,
both of these approaches incur a penalty: first one causes
the wastage of code memory on already resource constrained
sensor nodes and the second one causes an extra indirection for
every function in the source code. This results in an additional
performance penalty as well as a memory wastage for storage
of the additional indirection table. As these approaches work
on the final monolithic binary image of the application, they
fail to utilise high-level knowledge of the application structure.

4.1.3 Virtual machines (VM)

VMs such as Maté (Levis and Culler, 2002) or others (Müller
et al., 2007; Brouwers et al., 2009; Fei and Magill, 2012)
reduce the energy-cost of disseminating new functionality
in the network as VM code is commonly more compact
than the native code. VM based solutions also result in
minimal post processing overhead to alter their functionality
as per new supplied code. However, the performance penalty
incurred due to instruction interpretation far outweighs the
onetime energy saving in terms of the cost of dissemination.
VMs also constrain the programmer within the boundaries
of a developed language hence making fine-grained changes

impossible (Fei and Magill, 2012). They also necessitate the
user of a sensor network to learn a new tool to be able to
program the network.

4.1.4 Dynamic operating systems

Dynamic OSs such as Contiki (Dunkels et al., 2004), SOS
(Han et al., 2005) and FiGaRo (Mottola et al., 2008), provide
the benefits of both image replacement and virtual machines
i.e., fine grained code updates at low dissemination and
run-time overhead. However, specific challenges remain:
For example, SOS’s design necessitates the use of position
independent code, which, due to compiler limitations, is
not fully supported on common sensor node platforms.
Contiki allows only one-way linking for loaded modules and
hence obligates more energy-intensive, polling-based service
routines for interrupts. Moreover, Contiki’s architecture
restricts possible reconfigurations to application components
only.

Commonly, dynamic OSes follow a clean slate approach
which causes hindrance in their wide scale adoption. Two
notable exceptions are FlexCup (Marrón et al., 2006) and
TOSthreads (Klues et al., 2009), which are built on top
of TinyOS. FlexCup offers dynamic adaptation for TinyOS
based applications but lacks the support for new extensions
to NesC, the TinyOS programming language, and employs
nonstandard tools. As a result, the non-standard toolsets need
to be ported to a wide range of development platforms,
making maintenance and the roll-out of new features time
consuming. Similar to Contiki, the TOSthreads library and
its linker limit code replacement to high-level application
components only. Moreover, it follows a polling based
approach for kernel to application communication instead
of NesC’s well established, and more efficient event based
approach. Additionally, it introduces a new interface for
users, rendering it difficult to adopt. Concluding, both these
approaches are not transparent for end users, lack the support
for reuse of TinyOS code, and cause a substantial increase in
the steepness of the learning curve.

In contrast to existing work on dynamic OSs, this
paper shows how an existing and well established OS
can be transparently transformed into a dynamic OS
without following a clean slate approach or introducing new
programming models.

4.2 Comparative analysis

After reviewing the existing mechanisms and highlighting how
DyTOS departs from these, we now comparatively analyse
these mechanisms. This comparative analysis is qualitative,
and is based on the set of requirements established in
Section 1. The following discussion has been summarised
in Figure 11 with the degree of optimisation/improvement
increasing radically outwards.

4.2.1 Size of communique

Radio hardware is the most dominant energy consumer in
sensor networks. Therefore, the communication overhead
required for reprogramming a node can be a crucial factor

Modular remote reprogramming of sensor nodes 263

in determining the operational life of a network. Xnp and
Deluge, since they are based on full image replacement,
generate the maximum communication overhead. Whereas,
virtual machines, such as Maté, generate the least. The
dynamic operating system based solutions occupy a rather
broad spectrum in this regard: Impala and Contiki need to
transfer the complete application each time. FiGaRo, although
does not transfer the whole application, its communique still
includes the redundant parts of the ELF modules. FlexCup and
SOS convert the application modules into the native hex format
before transmission, and therefore generate less overhead.
DyTOS also suffers from the redundancy toll but it fares better
than FiGaRo. This is mainly because DyTOS further optimises
the generated ELF (binary) files (cf. Section 2.3.1).

Figure 11 Comparative analysis of existing solutions with DyTOS
(see online version for colours)

Size of Communique

Source Code Reuse Reprogramming

Granularity

Processing OverheadEase of Use

Legend:

Xnp MatéDeluge SOS FiGaRoImpala FlexCup Contiki DyTOS

4.2.2 Reprogramming granularity

Fine grained and incremental reprogramming results in a more
optimised network operation. Among the solutions discussed
earlier, the image replacement mechanisms and virtual
machines achieve the finest and coarsest reprogramming
granularity, respectively. Dynamic operating systems occupy
the middle of the spectrum; they need a constant node-
runtime environment that must provide basic services to
application components. DyTOS also includes a node-runtime
that includes hardware drivers and basic service provision
code, but it is possible to rewrite it with a newer version of
itself. Due to its ability to overwrite any area of memory,
DyTOS offers the same level of control on reprogramming as
image replacement mechanisms.

4.2.3 Processing overhead

The processor’s computation cycles are the second biggest
drain on the limited energy reserves of a node. Image
replacement, as it is based on a static binary image, results in
the least processing overhead. Virtual machines, on the other
hand, introduce maximum processing overhead as a result
of byte-code interpretation. The dynamic operating systems

result in a moderate overhead because they only process and
incorporate parts of application in the form of new modules.
Impala is the most optimised solution as it does not link the
new application rather every application is required to provide
a pre-specified, fixed offset API. DyTOS offers moderate
processing overhead which basically results from rerouting
of interrupts. Each ISR call in case of DyTOS suffers an
additional delay of 26 clock cycles.

4.2.4 Ease of use

Image replacement typically does not require any significant
effort on the part of the developer since no new programming
constructs are introduced. Virtual machines are rather easy to
use, however, one needs to learn the machine-specific scripting
language. Among the dynamic operating systems, FiGaRo
is the easiest to use as it provides a very intuitive ‘macros’
based interface to the programmers. Moreover, it has a graph
traversal algorithm that automates the initialisation of the
components and execution of application. Impala and Contiki
both introduce new APIs for remote reprogramming. FlexCup
employs NCC compiler for generating binary components,
which is not trivial since the source code has not been
released. SOS offers a very complex and extensive API for
component generation and hence requires maximum learning
effort. DyTOS in this regard does not necessitate the use
of any special language constructs or any specialised tools.
The user only need to specify the boundaries to partition any
application. This is also done in the same language in which
the application is written. We approximate the ease of use of
DyTOS as similar to the image replacement solutions.

4.2.5 Source code reuse

Reuse of existing source code for sensor nodes is beneficial
for two main reasons. First, it avoids duplicate development
effort. Secondly, robustness of the system is enhanced as
already tested source code is utilised. Among the presented
solutions the image replacement mechanisms ‘recycle’ the
existing sources and hence maximise its reuse. Matè and
FlexCup use the existing sources with slight modifications.
Contiki, although introduces a clean slate approach, has
accumulated a seasoned code-base over the past few years
that is compatible with its reprogramming mechanism. SOS
and FiGaRo introduce new API and hence the resources
from the existing solutions cannot be utilised without manual
modifications. Impala is the least graded in this category
because it is a clean slate approach and has not been
tested on any of the mainstream sensor node platforms.
DyTOS integrates seamlessly with the code repositories of
TinyOS and can use all the existing source code without
modifications.

4.3 Summary

A recent report from market research ON World (http:
//www.onworld.com/html/newsresearch.htm) indicates that
the market for sensor networks is expected to grow tenfold
and attain an absolute value of $1.3 billion. The same agency
reports that ‘ease of programming’ is the major barrier to the

264 W. Munawar et al.

adoption of wireless sensor networks. The majority of the
aforementioned, existing solutions fall short on this aspect.
Therefore, a new submerged system which presents old and
familiar interfaces but employs the state-of-the-art in design
can be a step forward. TinyOS is almost a decade old, and
being the most widely used OS for wireless sensor networks,
presents the ideal foundation for such a system. We based our
work in this belief and presented a solution in the form of
DyTOS.

5 Conclusions

In this paper, we presented DyTOS as a flexible, transparent
and efficient code update mechanism for sensor networks.
It offers the functionality and performance required for
fine grained remote adaptation of sensor applications. The
presented system is tightly integrated with TinyOS resulting
in ease of adoption and reuse of the seasoned TinyOS
code repository. DyTOS achieves its objectives by enhancing
TinyOS’s compilation and runtime process model without
introducing new programming constructs. Thus, it remains
transparent to an application developer.

Our evaluation highlights the superior performance
characteristics of DyTOS when compared with the state-of-
the-art. The runtime functionality of DyTOS only utilises 7.7%
of RAM and 32% internal ROM, which is a significantly
smaller memory footprint than other comparable solutions.
The size of an update in the case of DyTOS is limited to
the nesC component that has been modified. DyTOS allows
user desired level of reprogramming granularity with different
performance characteristics, i.e., multiple components can be
grouped into a single update block or a single component can
further be divided into multiple update block to achieve the
desired reprogramming granularity.

Reducing the communication overhead by further
optimising ELF files, minimising the runtime overhead
of Tiny Manager, and providing a better tool support,
e.g., an XML based wiring to specify the boundaries of
application components, are the next steps in the evolution of
DyTOS.

References

Bohli, J-M., Hessler, A., Ugus, O. and Westhoff, D. (2009) ‘Security
enhanced multi-hop over the air reprogramming with fountain
codes’, LCN, pp.850–857.

Bohli, J-M., Hessler, A., Maier, K., Ugus, O. and Westhoff, D. (2011)
‘Dependable over-the-air programming’, Ad Hoc and Sensor
Wireless Networks (AHSWN), Vol. 13, pp.313–340.

Brouwers, N., Langendoen, K. and Darjeeling, P.C. (2009) ‘A
feature-rich vm for the resource poor’, Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems,
SenSys ’09, ACM, New York, NY, USA, pp.169–182.

Deng, K. and Nickerson, B.G. (2013) ‘A fuzzy control framework
for wireless sensor networks’, Int. J. Sen. Netw., Vol. 13, No. 1,
March, pp.1–12.

Dunkels, A., Gronvall, B. and Voigt, T. (2004) ‘Contiki – a
lightweight and flexible operating system for tiny networked
sensors’, LCN ’04: Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks,
Washington, DC, USA, pp.455–462.

Fei, X. and Magill, E. (2012) ‘Reed: flexible rule based programming
of wireless sensor networks at runtime’, Comput. Netw., Vol. 56,
No. 14, September, pp.3287–3299.

Gnawali, O., Fonseca, R., Jamieson, K., Moss, D. and Levis, P.
(2009) ‘Collection tree protocol’, Proceedings of the 7th ACM
Conference on Embedded Networked Sen-sor Systems (Sensys),
Berkeley, California.

Han, C-C., Kumar, R., Shea, R., Kohler, E. and Srivastava, M. (2005)
‘A dynamic operating system for sensor nodes’, MobiSys ’05:
Proceedings of Third International Conference on Mobile
Systems, Applications and Services, Seattle, Washington,
pp.163–176.

Hui, J.W. and Culler, D. (2004) ‘The dynamic behavior of a data
dissemination protocol for network programming at scale’,
SenSys ’04: Proceedings of the 2nd ACM Conference on
Embedded Networked SENSOR Systems, Baltimore, MD, USA,
pp.81–94.

Jeong, J. (2004) ‘Incremental network programming for wireless
sensors’, Proceedings of the First IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and
Networks IEEE SECON, pp.25–33.

Jeong, J., Kim, S. and Broad, A. (2003) Network Reprogramming,
http:// www.tinyos.net/tinyos-1.x/doc/Xnp.pdf

Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S. and
Rubenstein, D. (2002) Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with zebranet’,
ASPLOS-X: Proceedings of the 2nd ACM International
Conference on Wireless Sensor Networks and Applications,
ACM, October, No. 10 in 37, pp.96–107.

Klues, K., Liang, C-J.M., Yeup Paek, J., Musaloiu-E., R., Levis, P.,
Terzis, A. and Govindan, R. (2009) ‘TOSThreads: safe and non-
invasive preemption in TinyOS’, Sensys ’09: Proceedings of the
7th International Conference on Embedded Networked Sensor
Systems, ACM, Berkely, California, USA.

Levis, P. (2012) ‘Experiences from a decade of tinyos development’,
Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, Berkeley, CA,
USA, pp.207–220.

Levis, P. and Culler, D. (2002) ‘Maté: a tiny virtual machine for sensor
networks’, ASPLOS-X: Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ACM, San Jose, California,
USA, pp.85–95.

Levis, P., Patel, N., Shenker, S. and Culler, D. (2004) ‘Trickle: a
self-regulating algorithm for code propagation and maintenance
in wireless sensor networks’, Proceedings of the First
USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI), pp.15–28.

Marrón, P.J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O.
and Rothermel, K. (2006) Flexcup: a flexible and efficient
code update mechanism for sensor networks’, EWSN ’06:
Proceedings of the third European Workshop on Wireless Sensor
Networks, Zurich, Switzerland, pp.212–227.

Mottola, L., Picco, G.P. and Sheikh, A.A. (2008) ‘Figaro: Finegrained
software reconfiguration for wireless sensor networks’, EWSN
’08: Proceedings of the Fifth European Workshop on Wireless
Sensor Networks, Bologna, Italy, pp.286–304.

Modular remote reprogramming of sensor nodes 265

Müller, R., Alonso, G. and Kossmann, D. (2007) ‘A virtual machine
for sensor networks’, SIGOPS Oper. Syst. Rev., Vol. 41, No. 3,
pp.145–158.

Munawar, W., Alizai, M.H., Landsiedel, O. and Wehrle, K. (2010)
‘Dynamic tinyos: modular and transparent incremental code-
updates for sensor networks’, ICC, On World. ON World – In
The News, pp.1–6.

Panta, R.K., Bagchi, S. and Midkiff, S. (2009) ‘Zephyr: efficient
incremental reprogramming of sensor nodes using function call
indirections and difference computation’, USENIX ’09: Annual
Technical Conference, San Diego, CA, USA.

Panta, R.K., Bagchi, S. and Midkiff, S.P. (2011) ‘Efficient
incremental code update for sensor networks’, ACM Trans. Sen.
Netw., Vol. 7, No. 4, February, pp.30:1–30:32.

Polastre, J., Szewczyk, R. and Culler, D. (2005) ‘Telos: enabling
ultra-low power wireless research’, IPSN ’05: Proceedings of
the 4th International Symposium on Information Processing in
Sensor Networks, Los Angeles, California, p.48.

Pompili, D., Melodia, T. and Akyildiz, I.F. (2006) ‘Deployment
analysis in underwater acoustic wireless sensor networks’,
WUWNet ’06: Proceedings of the First ACM International
Workshop on Under Water Networks, ACM, Los Angeles, CA,
USA, pp.48–55.

Reijers, N. and Langendoen, K. (2003) ‘Efficient cosde distribution
in wireless sensor networks’, WSNA ’03: Proceedings of the 2nd
ACM International Conference on Wireless Sensor Networks
and Applications, ACM, San Diego, CA, USA, pp.60–67.

Stathopoulos, T., Heidemann, J. and Estrin, D. (2003) A Remote Code
Update Mechanism for Wireless Sensor Networks, Technical
Report, UCLA, Los Angeles, CA, USA.

Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M.,
Mainwaring, A. and Estrin, D. (2004) ‘Habitat monitoring
with sensor networks’, Commun. ACM, Vol. 47, No. 6,
pp.34–40.

Tsiftes, N., Dunkels, A., He, Z. and Voigt, T. (2009) ‘Enabling
large-scale storage in sensor networks with the coffee file
system’, Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, IPSN ’09, IEEE
Computer Society, Washington, DC, USA, pp.349–360.

Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J.,
Ruiz, M. and Lees, J. (2006) ‘Deploying a wireless sensor
network on an active volcano’, IEEE Internet Computing,
Vol. 10, No. 2, pp.18–25.

Yick, J., Mukherjee, B. and Ghosal, D. (2008) ‘Wireless sensor
network survey’, Comput. Netw., Vol. 52, No. 12, pp.2292–2330.

Website

On World. ON World – In The News, 2009, http://www.onworld.com/
html/newsresearch.htm

