Metarule-guided association rule mining
for program understanding

0. Maqgbool, H.A. Babri, A. Karim and M. Sarwar

Abstract: Software systems are expected to change over their lifetime in order to remain useful.
Understanding a software system that has undergone changes is often difficult owing to the unavail-
ability of up-to-date documentation. Under these circumstances, source code is the only reliable
means of information regarding the system. In the paper, association rule mining is applied to
the problem of software understanding i.e. given the source files of a software system, association
rule mining is used to gain an insight into the software. To make association rule mining more
effective, constraints are placed on the mining process in the form of metarules. Metarule-
guided mining is carried out to find associations which can be used to identify recurring problems
within software systems. Metarules are related to re-engineering patterns which present solutions to
these problems. Association rule mining is applied to five legacy systems and results presented
show how extracted association rules can be helpful in analysing the structure of a software
system and modifications to improve the structure are suggested. A comparison of the results
obtained for the five systems also reveals legacy system characteristics, which can lead to under-

standing the nature of open source legacy software and its evolution.

1 Introduction

Legacy systems are old software systems that are crucial to
the operation of a business. These systems are expected
to have undergone changes in their lifetime owing to
changes in requirements, business conditions and techno-
logy. It is quite likely that such changes were made
without proper regard to software engineering principles.
The result is often a deteriorated structure, which is unstable
but cannot be discarded because it is costly to do so.
Moreover, another reason for retaining these legacy
systems is that they have embedded business knowledge
which is not documented elsewhere.

Since it is often not feasible to discard a system and
develop a new one, techniques must be employed to
improve the structure of the existing system. An effective
strategy for change must be devised. Strategies for change
mentioned in [1] include maintenance, architectural trans-
formation and re-engineering. Re-engineering is a process
that re-implements legacy systems to make them more
maintainable [1]. According to [2], re-engineering is any
activity that improves one’s understanding of software or
prepares/improves the software itself, usually for increased
maintainability, reusability or evolvability.

Given the fact that software maintenance usually accounts
for over 50% of project effort [1, 3, 4], making it the single
most expensive software engineering activity [1], and
perhaps the most important life cycle phase [5], the need

© IEE, 2005

IEE Proceedings online no. 20050012
doi:10.1049/ip-sen:20050012

Paper received 7th March 2005

0. Magbool and A. Karim are with Lahore University of Management Sciences,
DHA, Lahore, Pakistan

H.A. Babri and M. Sarwar are with the University of Management and
Technology, 52-L, Gulberg III, Lahore, Pakistan

E-mail: onaiza@lums.edu.pk

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

for re-engineering to ease the maintenance effort is justified.
The re-engineering option should be chosen when system
quality has been degraded by regular change, but change
is still required, i.e. the system under consideration has
low quality but a high business value, and the re-engineering
effort is less risky and less costly than system replacement.

The re-engineering effort starts with gaining an under-
standing of the software system, a process known as
reverse engineering. Understanding is critical to many
activities including maintenance, enhancement, reuse,
design of a similar system and training [6]. Reverse engin-
eering has been heralded as one of the most promising tech-
nologies to combat the legacy systems problem [7].
However, gaining system understanding is difficult
because documentation for the system is often not available
and source code files are the only means of information
regarding the system. According to [8], system understand-
ing takes up 47% of the software maintenance effort. Hall
[9] places the system understanding effort at 47—62%.
Tools and techniques are thus required to make the
program understanding task easier. Tools provide auto-
mated support for system understanding at the procedural
level by extracting the procedural design or at a higher
level by extracting the architectural design.

In the past, the application of deductive techniques to
different aspects of software engineering, including
program understanding, has been more frequent than the
use of inductive techniques [10]. Deductive techniques
usually employ some knowledge base as their underlying
technology which is used to deduce relations within the
software system. Great effort is required to build the knowl-
edge base and continuously maintain it. Moreover, algor-
ithms used for deductions may be computationally
demanding [10]. Researchers have thus started exploring
the use of inductive or data mining techniques in software
engineering. Data mining is considered one of the most
promising interdisciplinary developments in the infor-
mation industry [11].

281

In this paper, our focus is on the use of data mining, or
more specifically, on association rule mining for discover-
ing interesting relationships within legacy system com-
ponents which lead to program understanding. These
relationships can be used to identify recurring problems
within legacy systems, and are thus related to re-engineering
patterns. Patterns were first adopted by the software
community as a way of documenting recurring solutions
to design problems [12]. Since then, they have been
used as an effective means to communicate best practice
in various aspects of software development including
re-engineering. Re-engineering patterns for object-oriented
legacy systems were identified based on experiences during
the FAMOOS project [13]. Our focus in this paper is on tra-
ditional legacy systems developed using the structured
approach. Our paper presents an approach to gain insight
about the structure of these legacy systems by applying
metarule-guided association rule mining. Metarule-guided
association rule mining is carried out as a two step
process. In the first step, we formulate metarules based on
knowledge of typical problems in legacy systems. These
metarules place constraints on the form of association
rules to be mined in addition to on values of interestingness
measures. In the second step, metarule-guided mining is
applied to the legacy system source code to mine associ-
ation rules. By relating the metarules to re-engineering
patterns, system understanding is gained, which allows
suggestions for making subsequent changes and optimis-
ations to the source code for better maintainability. Thus
we make two major contributions in this paper. First, we
show how metarule-guided association rule mining can be
used to mine legacy system source code to gain insight
into its structure and detect re-engineering opportunities.
Second, we formulate re-engineering patterns for structured
legacy systems and relate each metarule to a re-engineering
pattern, thus presenting solutions to problems identified by a
metarule.

2 An overview of association rule mining

Association rule mining is a data mining technique that
finds interesting association or correlation relationships
among a large set of data items [11]. Traditionally, associ-
ation rule mining has been employed as a useful tool to
support business decision making by discovering interesting
relationships among business transaction records.

To illustrate the concept of association rule mining, con-
sider a set of items I = {i, i5, ..., i,}. Let D be a set of
transactions, with each transaction 7 corresponding to a
subset of /. An association rule is an implication of the
form A = B where AC I, BCIand AN B=¢. As an
example, consider a set of computer accessories (CDs,
memory sticks, microphones, speakers) that are available
at a certain store. These accessories form the set of items
I of interest to us. Every sale made represents a transaction

Table 1: A set of transactions representing sales of
items

Transaction ID ltems

T CD, memory stick

T2 CD

T3 microphone, speaker

T4 CD, speaker, microphone

T5 memory stick, microphone, speaker
282

T. Suppose the sales made are represented in the form of the
following set of transactions D in Table 1.

Association rules in the above case represent items that
tend to be sold together e.g. the association rule
microphone = speaker shows that those who buy micro-
phones also tend to buy speakers. This association rule
can also be written as buys(X, ‘microphone’) = buys(X,
‘speaker’), where the variable X represents customers who
bought the items. Since this association rule contains a
single predicate (buys), the association rule is referred to
as a single-dimensional association rule. When more than
one predicate is present, the rule is referred to as multi-
dimensional.

A large number of such association rules may exist in a
given set of transactions and not all of them may be of inter-
est e.g. the association rule CD = speaker can be inferred
from the transaction set in Table 1 but it is clear that this
association is not as strong (or interesting) as the one
between microphones and speakers. An association rule is
said to be interesting if it is easily understood, valid,
useful, novel or validates a hypothesis that the user sought
to confirm [11]. To find interesting rules, support and
confidence are commonly used as objective measures of
interestingness. Support represents the percentage of trans-
actions in D which contain both 4 and B. Confidence is the
percentage of transactions in D containing 4 that also
contain B. Another measure of interestingness is coverage.
The coverage of an association rule is the proportion of
transactions in D that contain 4. In terms of probability:

Support(4 = B) = P(A U B)
Confidence(4 = B) = P(B|4)
Coverage(4d = B) = P(4)

In Table 1, microphone = speaker is an association rule
with support 3/5, confidence 1, and coverage 3/5. This rule
is more interesting than CD = speaker which has support
1/5, confidence 1/3, and coverage 3/5.

In order to make the data mining process more effective,
a user may place various constraints under which mining is
to be performed. These include interestingness constraints
which involve specifying thresholds on measures of inter-
estingness (such as support, confidence and coverage),
and rule constraints which place restrictions on the
number of predicates and/or on the relationships that
exist among them, based on the analyst’s experience, expec-
tations or intuition regarding the data [11]. Rule constraints
thus specify the form of the association rule to be mined and
are expressed as rule templates or ‘metarules’. As an
example, suppose we have customer related data for the
sales in Table 1, and we want to associate customer charac-
teristics with sales of speakers. A metarule for the infor-
mation in which we are interested is of the form
P(X,Y) = buys(X, ‘speaker’) where variable X represents
a customer and variable Y takes on values of the attribute
assigned to the predicate variable P. During the mining
process, rules which match this metarule are found. One
example of a matching rule is age(X, ‘young’) = buys(X,
‘speaker’). Since both the predicate variable P and variable
Ymay vary, rules gender(X, ‘male’) = buys(X, ‘speaker’) and
age(X, ‘old’) = buys(X, ‘speaker’) also satisfy the metarule.

3 Re-engineering patterns for structured legacy

systems

Patterns have been used in various disciplines to enable
collective experiences to be documented and shared. In

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

the software engineering domain, they have been used
effectively to communicate best practices in various
aspects of software development including the development
process, design, testing and re-engineering. As pointed out
in Section 1, re-engineering is carried out to improve the
structure of legacy software systems to make them more
maintainable. Although there are different reasons for
re-engineering, e.g. improving performance, porting the
system to a new platform, exploiting new technology, the
actual technical problems within legacy systems are often
similar and hence some general techniques or patterns
can be utilised to aid in the re-engineering task [12].
Re-engineering patterns record experiences about under-
standing and modifying legacy software systems and thus
present solutions to recurring re-engineering problems.
Mens and Tourwe [14] point out that trying to understand
what a legacy system does, what parts of the legacy
system to change and the potential impact of these
changes is a significant problem. Unlike forward engineer-
ing, which is supported by processes, established processes
are not available for re-engineering. Re-engineering patterns
fill this gap by providing expertise that can be consulted.

The re-engineering cycle typically involves some form of
reverse engineering to understand the system and to identify
problems areas, followed by forward engineering to restruc-
ture a system. Re-engineering patterns in [12] focus on the
re-engineering cycle of object-oriented legacy systems,
although some of the identified patterns may apply to soft-
ware systems which are not object-oriented. Examples of
typical problems in object-oriented legacy systems include
lack of cohesion within classes, misuse of inheritance and
violation of encapsulation [12].

In this paper, we present re-engineering patterns for
legacy systems developed using the structured approach.
These patterns help in identifying recurring problems
within structured code and offer suggestions for improve-
ment. Similar to other software patterns, they capture
structural level problems that may not be evident from
any one part of a legacy system. It is relevant to note that
the re-engineering patterns in [12] capture the entire re-
engineering cycle, starting from ‘setting the right direction’
and ‘first contact’ with the system, to actually restructuring
(in the context of object-oriented systems, refactoring) the
system to remove some of the problems which appear in
object-oriented code as it evolves. Most of the patterns
that deal with initial phases of re-engineering apply to
both object-oriented and structured systems. However,
most of the patterns dealing with restructuring take into
account problems within object-oriented code. In this
paper, we do not attempt to re-capture all re-engineering
patterns, since as already pointed out, many patterns
especially those involving the initial re-engineering phases
are equally valid for structured systems. Our focus is on
identifying problems which arise in structured systems as
they evolve. Thus the patterns identified in this paper comp-
lement those identified in [12] by addressing some typical
problems within legacy structured systems.

4 Metarule-guided association rule mining for
program understanding

In this paper, we employ association rule mining to aid
the design discovery process of structured legacy systems.
To make our mining process more effective, we use
constraint-based mining. Constraints are placed on the
form of association rules to be mined and on interestingness
measure values. These constraints are specified as meta-
rules. For simplicity, in the following Sections a metarule

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

is used to refer to a combination of association rule
form and interestingness measure thresholds rather than a
constraint on association rule form only. This is due to
the fact that we employ such a combination to reveal
system characteristics. The metarules we develop are
based on knowledge of some typical problems in legacy
systems and serve as templates to mine meaningful associ-
ation rules. Each metarule is related to a re-engineering
pattern. Re-engineering patterns focus on the process of
discovery i.e. they discover an existing design, identify
problems and then present appropriate solutions [12]. A
metarule related to a re-engineering pattern aids in this dis-
covery process by capturing symptoms of typical problems
that arise in legacy software systems.

Figure 1 illustrates our rule mining approach as a two-
step process. In the first step, we use knowledge of generic
problems within structured legacy systems to arrive at
metarules. In the next step, metarule-guided mining is
carried out on the test legacy systems to find association
rules which serve as indicators of problems that are
present in the system. We relate metarules to re-engineering
patterns by describing how a re-engineering pattern presents
a solution to problems within a legacy system, as identified
by the mined association rules.

In this Section, we discuss various factors that must
be taken into account during formulation of metarules.
Results of carrying out metarule-guided mining on test
systems are described in Section 5.

4.1 Selecting items and transactions

A metarule can be thought of as a hypothesis regarding
relationships that a user is interested in confirming [11].
As a first step, it is necessary to identify items between
which relationships are to be mined. In our case, the
guiding principle is to choose items which facilitate under-
standing of the source code and identification of problems,
and also allow suggestions for restructuring the code for
greater maintainability. Most of the legacy software
systems that exist have been developed using the structured
approach, with functions or routines forming basic com-
ponents. Moreover, in legacy software, the use of global
variables is often widespread leading to difficulty in under-
standing the code. In view of these facts, we decided to use
functions and global variables as items. Moreover, we also
decided to use user defined types. The reason is that user

Step 1 Step 2

Body of knowledge
(legacy systems)

association rule
mining process

applied to

A Q
formulation est legacy
systems ;

association
rules

used for

arerelatedto | ¢ | L

A 4

re-engineering suggest solutions to
patterns problems identified by

Fig. 1 Our rule mining approach

283

defined types become potential data objects when code is to
be restructured as object-oriented code.

To illustrate the item and transaction sets, let F' = {f],
f, ..., fn} be the set of all functions, G = {g1, g5, ..., g}
be the set of all global variables, and U= {uy, up, ...,
u,,} be the set of all user defined types present in a software
system. The item set / is the union of these sets i.e.
I=FUGUU. Each transaction T corresponds to a
subset of 7 and denotes the functions called, global variables
and user defined types accessed by a function within the
software system (by an access, we mean a reference to a
variable by using or setting its value, or taking its address).
As an example, consider a software system consisting of
two functions (f; and f;) only. Suppose f; accesses global
variables g, and g, user defined types u;, u3 and us, and
calls the function f;. Suppose f> accesses global variables
g> and g3, user defined types u;, u, and u3, and does not
call any function. The transaction set for this system is
presented in Table 2.

Thus in the transaction set that we use, each transaction
consists of items in the form of global variables and user
defined types accessed by a function, and function calls
made by the function. Therefore, there are as many trans-
actions as the number of functions in the software system.
To obtain results that are meaningful in the re-engineering
context, the function which accesses global variables, user
defined types and makes function calls is also treated as
an item.

4.2 Setting appropriate thresholds for association
rules

Association rules that are mined using rule-based con-
straints which restrict the rule form may not all be interest-
ing. For finding interesting association rules which indicate
problems or re-engineering opportunities, we require
interestingness constraints. Traditionally high thresholds
of support, confidence and coverage have been used for
finding interesting association rules [11]. We use both low
and high thresholds of the three measures: coverage,
support and confidence. Low thresholds can reveal interest-
ing facts about the software and provide insight into its
structure, as illustrated by patterns that we describe in
Section 4.4. In general, assigning fixed values to thresholds
such as 0.7 for high and 0.3 for low is not desirable owing to
the following reasons [12]. First, threshold values should be
selected based on coding standards used by the develop-
ment team, and these may not be available. Secondly,
tools that employ thresholds often display only abnormal
entities, so the user is not aware of the number of normal
entities which may result in a distorted view of the
system. A study on software metrics, undertaken with
various threshold values [15] revealed that observations
were independent of threshold value. Owing to the
reasons cited, it may not be meaningful to fix an absolute
threshold, since system characteristics such as size,

Table 2: A sample set of transactions illustrating items
used in our experiments

Calling Global User defined Called
function variables types functions
fi g1, 92 us, Uz, Us f

f 92, 93 Uq, Uz, U3

284

number of global variables, user defined types and func-
tions, can vary widely from system to system. Since the
confidence measure does not depend on these system
characteristics and is related to the association between
two items only, setting thresholds for the confidence
measure is not an issue as compared to the other measures.

Oftentimes instead of setting absolute thresholds,
researchers advocate other techniques for interpreting
results. Demeyer et al. [12] suggest that data be presented
in a table and sorted according to various measurement
values to obtain a meaningful interpretation. To determine
a relationship among data points describing one or two vari-
ables, Fenton and Pfleeger [16] use box plots and scatter
plots. Box plots utilise medians and quartiles to represent
the data and suggest outliers. Whereas a box plot hides
most of the expected behaviour and shows unusual values,
a scatter plot graphs all the data points to reveal trends.
Histograms are also used to reveal the distribution of data.

For displaying and interpreting results, we adopt the fol-
lowing approach. Each re-engineering pattern in Section 4.4
has an associated metarule, which specifies the association
rule form. For metarules involving low or high thresholds
of support and coverage, we mine the system to find all
association rules of the form specified by the metarule.
As suggested in [12, 16], the entire results are displayed
using histograms or other meaningful graphs. High and
low thresholds for the support and coverage measures are
then determined for the system under consideration inter-
actively by visually inspecting the results of metarule-
guided mining. Interactive determination of thresholds
may be simplified by indicating certain measures e.g.
mean, median, quartiles on the graph.

4.3 Selecting interesting association rules in the
re-engineering context

It is relevant to note that if we employ user defined types,
functions and global variables as items, and use coverage,
support and confidence interestingness measures with
thresholds low, high and one, the number of possible meta-
rules is quite large. If we consider global variables, user
defined types, and functions as items and restrict the
maximum number of predicates on the left and right hand
sides of association rules to one, the possible number of
metarules is 3. Differentiating between calling functions
and called functions increases this number to 47
Additionally, we have three interestingness measures,
each of which can have three possible values. Thus the
number of metarules is 4° x 3° = 432. This number is
even larger if we remove the restriction on the maximum
number of predicates. Useful metarules need to be filtered
using subjective interestingness measures. These measures
are based on user beliefs in data and find rules interesting
if they are unexpected or offer information on which the
user can act [11].

We reduce the total possible metarules to a small subset
by keeping in mind that our purpose is to use these meta-
rules to identify re-engineering opportunities. Thus we
select metarules that highlight some typical problems in
legacy structured systems. Since we use items based on
the set of global variables, user defined types and functions,
our metarules are further restricted to problems that are
related to this item set.

Amongst the typical problems that occur in legacy code
is lack of modularity i.e. strong coupling between
modules, which hampers evolution [12]. Although software
is expected to evolve over time, the guideline is that evol-
ution should not degrade the quality of software. One way

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

to reduce coupling between modules and thus reduce side
effects when changes are made is to reduce the number of
global variables or to reduce their scope. Metarules 1 and
2, which are related to patterns 1 and 2 (Table 3), are
used to detect global variables that can be localised and
thus reduce coupling. Another means to ensure that side
effects are detected and do not propagate throughout the
system is to encourage functions that are coupled to be
identified and placed together. Metarule 3, related to
pattern 3 (Table 3), helps in identifying these coupled
functions. Duplicated functionality is another typical

Table 3: Re-engineering patterns and metarules

problem in legacy systems, since quite often various
teams re-implement similar functionality [12]. To avoid
this problem, functions should share code by making use
of utility functions. Use of utilities is facilitated if these uti-
lities are identified and catalogued for reference. Metarule
4, related to pattern 4 (Table 3), deals with identification
of utilities. Legacy systems may need to be modularised
so that they can be understood more easily and maintained.
One modularisation option is to convert a structured system
to an object-oriented system, by identifying data items
that are potential objects and related functions which act

Pattern category 1: Enhance modularity and control side effects

Pattern 1: Reduce global variable usage

Metarule 1
Form: Global (X, Y) = Accessed by (X)

Intent: Remove global variables that are used by

very few functions.

Coverage: Low

Implication: Only a small proportion of functions in the system access the global variable(s) on the LHS.

Pattern 2: Localise variables

Metarule 2
Form: Global(X, Y) = Accessed by (X)
Implication: The global variables are used by one function only.

Pattern 3: Increase locality of reference
Metarule 3

Form: Function(X, Y) = Called by (X)
Implication: The functions are called by one function only.

Intent: Reduce the scope of variables that have

larger scope than necessary.

Confidence: One

Intent: Group related functions together to improve
understandability and maintainability.

Confidence: One

Pattern category 2: Avoid duplicated functionality

Pattern 4: Identify utilities

Metarule 4
Form: Function(X, Y) = Called by (X)

Intent: Identify utility routines so that they can be
shared by functions.

Coverage: High

Implication: Function(s) on LHS are called by most of the functions in the system.

Pattern category 3: Re-modularise for maintainability

Pattern 5: Increase data modularity

Metarule 5-1
Form: Global(X, Y) = Global(X, Y)

Intent: Place related data items into a structure

Confidence: High Support: High

Implication: Whenever one global variable is accessed, there is a high probability that the other global variable is also accessed.

Metarule 5-2
Form: Type(X, Y)= Type (X, Y)

Confidence: High Support: High

Implication: Whenever one type variable is accessed, there is a high probability that the other type is also accessed.

Pattern 6: Strengthen encapsulation

Metarule 6
Form: Accessed by(X) = Type(X, Y)

Implication: Function(s) access the type(s) on the RHS.

Intent: Identify potential classes.

Confidence: One

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

285

upon these objects. Metarules 5 and 6 address this issue
(Table 3). Patterns and related metarules are briefly described
in Section 4.4. Details are presented in the appendix.

4.4 Metarules and re-engineering patterns

According to our description of metarules in the introduc-
tion to Section 4, a metarule places a restriction on the
form of association rules to be mined in addition to on inter-
estingness measure values. Rule-based constraints are
restrictions that may be placed, for example, on the relation-
ships between predicates, or on the values that these predi-
cates may assume. As an example, consider a metarule of
the form

Global(X, Y) = Accessed by (X) (M1)

A more general form of this metarule is P (X, ¥) = P»(X)
where P and P, are predicate variables that are instantiated
to the attributes Global and Accessed by in (M1). Thus in
(M1), a restriction is placed on the attribute to which a
predicate is instantiated, in addition to on the relationship
between the predicates. Variable X represents functions,
and variable Y represents global variables used by the func-
tion. When association rules are mined using this template,
global variables accessed by various functions in the soft-
ware system are returned. To find association rules that
are meaningful in the re-engineering context, an additional
constraint is placed on interestingness measures. Thus the
complete metarule (for details, refer to Table 3 and the
Appendix) is represented as

Global (X, Y) = Accessed by (X) Coverage : Low (M2)

When association rules are mined using this template,
we are able to identify a re-engineering opportunity i.e.
global variables which are used by few functions within
the system. In this paper, we use the convention as in (M2)
to describe metarules. Predicate names (attributes) are
self-explanatory.

Some metarules which are interesting in the re-engineering
context, their implications, and related re-engineering pat-
terns are shown in Table 3. In some of the metarules ident-
ified, one out of the three interestingness measures has
been used. This indicates that the value of the other two
measures does not influence the result. However, it is poss-
ible to identify metarules where a combination of measures
gives interesting results, as is evident from Pattern 5.

We discuss benefits of employing the re-engineering
patterns related to metarules, in addition to issues and pro-
blems in the Appendix. There are various popular forms for
expressing patterns e.g. the Alexandrian form, the Gang of
Four (GOF) form and the Coplien form [17]. To describe
our re-engineering patterns, we adapt the pattern form
used by Demeyer et al. [12]. Related patterns are grouped
into categories to aid comprehension.

Table 4: Test system characteristics

5 Experiments and results

For conducting metarule-guided association rule mining,
source code of five open source software systems written
in C was used. A brief description of these systems is
provided in Table 4.

CVS, Aero, Mosaic and Bash have been used for architec-
ture recovery experiments in [18] and Xfig has been used for
architecture recovery experiments in [19]. Our data mining
experiments are helpful in gaining understanding of the test
systems by providing a more detailed view of their structure.

The source files for the five systems have been parsed
using the Rigi tool and relevant ‘facts’ have been stored
in an exchange format called the ‘Rigi Standard Format’
(RSF) [20, 21]. The transaction set discussed in Section
4.1 was developed from this fact set. In the following
Sections, we present results of applying association rule
mining to our test systems and analyse these results.

5.1 Pattern 1: Reduce global variable usage
(Metarule 1 form: Global (X, Y) = Accessed by (X)
Coverage: Low)

To evaluate the applicability of Pattern 1, the source code of
the five systems was mined using Metarule 1. Table 5 sum-
marises statistics obtained as a result of mining association
rules using this metarule.

The metarule associated with pattern 1 can be used to
derive useful information from the system when coverage
is low. It can be seen from Table 5 that coverage values
for the accessed global variables in all five systems
remain below 0.2. Even in Mosaic, which has the least cov-
erage value, the most frequently accessed global variable is
accessed by 47 functions. The number of functions is higher
in the other systems. If a global variable is accessed by 47
functions, there is reason to define it as global. It is
obvious that a coverage value of 0.2 cannot be considered
low in the above systems. This result illustrates why we
do not recommend setting absolute thresholds. It also illus-
trates the difficulty in setting a threshold which can be used
for all systems. Instead of trying to set an absolute
threshold, we depict our results using a graph which can
be inspected visually to identify unusual values that rep-
resent restructuring opportunities. To enable the graph to
be interpreted interactively, median, quartiles, and upper
and lower control limits (defined as mean + 2 x standard
deviation) may be depicted on the graph. As an example,
the global variable usage graph for Bash, as mined by
metarule 1 is depicted in Fig. 2.

It is evident from Fig. 2 that a substantial proportion of
global variables are being accessed by very few functions
in Bash. The graphs of the other four systems show a
very similar global usage trend. It is interesting to note
that the median number of functions accessing a global vari-
able is almost the same (2 and 3) for all systems. The

CVsS Aero Mosaic Bash Xfig
Description Version control system Rigid body simulator Web browser Unix shell Drawing tool
Version 1.8 1.7 2.6 1.14.4 3.23
Lines of code (LOC) 30 k 31k 37k 38k 75k
Functions 810 686 818 892 1661
Global variables 419 535 348 539 1746
User defined types 375 814 112 198 828
286 IEE Proc.-Softw., Vol. 152, No. 6, December 2005

Table 5: Global variables usage summary

CVs Aero Mosaic Bash Xfig

Number of association rules satisfying 1469 2628 858 1714 8280

the metarule
Number of functions accessing global 391 (48%) 422 (62%) 370 (45%) 545 (61%) 1329 (80%)

variables (% of total functions)
Median number of functions accessing 2 2 2 3

a global variable
Average number of functions accessing 3.99 5.29 2.93 4.12 5.97

a global variable
Standard deviation 5.96 10.31 4.32 5.70 15.73
Most frequently accessed global variable Noexec aktuelleWelt current_win rl_point XtStrings
Coverage of the most frequently accessed 0.068 (55) 0.152 (104) 0.057 (47) 0.07 (62) 0.139 (231)

global variable (number of functions)

average number of functions accessing a global variable is
also similar. Table 6 depicts the breakdown for global vari-
able access in all five test systems, and Fig. 3 shows the
breakdown specifically for Bash.

Metarule-guided rule mining has thus successfully ident-
ified a re-engineering opportunity. To improve modularity
and hence software quality, it will be useful to examine
global variables being accessed by very few functions in
order to ascertain whether there is a need to define these
variables globally. As an example, consider the variable
noninc_history_pos used in just two functions
noninc_search and noninc_dosearch in Bash.
The only valid reason for defining this variable as global
is that its value is to be retained throughout the duration
of the program. Even in such a case, the variable should
be defined as static to restrict its scope. An examination
of the code shows that the variable has indeed been
defined as static. Alternatively, the rl_kill_ rin-
g_length variable, also used by just two functions
rl_vyank_pop and rl1l_kill_text within readli-
ne.c is not a static variable. If the variable value is not
required to persist throughout the lifetime of the program,
it should be passed as a parameter within the relevant func-
tions instead of being defined globally. Even if a global
variable is required, its scope should be restricted according
to usage to reduce coupling.

5.2 Pattern 2: Localise variables (Metarule 2 form:
Global(X, Y) = Accessed by(X) Confidence: One)

To evaluate the applicability of Pattern 2, the source code of
the five systems was mined using Metarule 2. Table 7

70
2 60
[7]
3
S o 907
v 3
w .=
2= 40
S8
z >
c ®©
28 307
“601
5 ° 20
Qo
g
c 10
0

Global variables
Fig.2 Number of functions accessing a global variable

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

summarises statistics obtained as a result of mining associ-
ation rules using this metarule.

It is interesting to note that in all systems, quite a large
percentage of global variables is being used by only one
function. The fact that these variables have been defined
as global seems to indicate a poor design or a design that
has deteriorated over time. However, the definition of
these variables as global is justified if they represent settings
that are required to persist throughout a program’s lifetime.
For example, a detailed look at Bash reveals that global
variables being accessed by single functions do indeed
represent system settings. The msg_buf variable which
represents a buffer for messages is used by one function
only (r1_message). If this buffer is accessed more than
once during the execution of the program, there is reason
for it to be global. The fact that this variable has been
defined as static shows an effort by developers to reduce
variable scope. However, opportunities for reduction in
variable scope within the system may be identified. For
example, the globally defined variable special_vars

Table 6: Global variable access breakdown in test
systems

CVS Aero Mosaic Bash Xfig

Percentage of global 13% 13% 9% 14% 18%
variables accessed by
more than 5 functions

Percentage of global 87% 87% 91% 86% 82%
variables accessed by
5 or less functions

14%

86%

O Globals accessed by more than 5 functions

B Globals accessed by 5 or less functions

Fig. 3 Global variable access breakdown

287

is also used by only one function but has not been defined as
static.

5.3 Pattern 3: Increase locality of reference
(Metarule 3 form: Function(X, Y) = Called by (X)
Confidence: One)

To evaluate the applicability of Pattern 3, the source code of
the five systems was mined using Metarule 3. Table 8 sum-
marises statistics obtained as a result of mining association
rules using this metarule.

It can be seen from Table 8 that most of the functions
called by a single function reside in the same file as the
calling function in all systems. Bash and Xfig have higher

Table 7: Global variables accessed by one function
CVS Aero Mosaic Bash Xfig
Number of association 77 72 104 115 310
rules satisfying the
metarule
Percentage of global 18% 13% 30% 21% 18%

variables accessed
by one function

Table 8: Functions called by one function

percentages of functions residing in same files. Functions
residing in a different file from the calling function need
to be examined in more detail. A valid reason for placing
a called function in a different file from the calling function
is that the called function may be a ‘utility’ function which
has been placed together with other utility functions in
a separate file. For example, in Bash the function all_
visible_variables present in the file variables.c
is called by the function variable_completion_
function in bashline.c. variables.c contains
functions related to shell variables. Functions within
bashline.c are related to reading lines of input. In this
case, there is valid reason for placing all_visible_
variables in the file variables.c, along with other func-
tions related to shell variables. If this is not the case i.e. the
called function appears to be logically related to the calling
function, it should be placed in the same file as the calling
function to increase efficiency and ease maintenance by
increasing locality of reference.

5.4 Pattern 4: Identify utilities (Metarule 4 form:
Function(X, Y) = Called by(X) Coverage: High)

To evaluate the applicability of Pattern 4, the source code of
the five systems was mined using Metarule 4. Table 9 sum-
marises statistics obtained as a result of mining association
rules using this metarule.

Cvs Aero Mosaic Bash Xfig
Number of association rules 236 250 321 298 368
satisfying the metarule
Percentage of functions called 29% 36% 39% 33% 22%
by one function
Percentage of functions residing 54% (128) 65% (163) 56% (181) 74% (220) 73% (270)
in same file as calling function
Percentage of functions residing 46% (108) 35% (87) 44% (140) 26% (78) 27% (98)
in a different file
Table 9: Function call summary
CvVs Aero Mosaic Bash Xfig
Number of association rules satisfying 3899 1708 1472 2075 4798
the metarule
Number of functions making function 631 (78%) 469 (68%) 518 (63%) 694 (78%) 1302 (78%)
calls (% of total functions)
Median number of calls made 2 1 1 2 2
Average number of calls made 6.73 3.80 2.57 3.18 4.28
Standard deviation 17.64 7.79 4.77 8.46 8.45
Number of functions to which 5 or 148 (18%) 75 (11%) 55 (7%) 98 (11%) 239 (14%)
more calls are made (% of total
functions)
Number of functions to which 10 or 84 (10%) 39 (6%) 22 (3%) 29 (3%) 101 (6%)
more calls are made (% of total
functions)
Most frequently called function error fprintf mo_fetch_window_by_id xmalloc Put_msg
Coverage of the most frequently called 0.259 (210) 0.138 (95) 0.072 (59) 0.219 (195) 0.08 (133)

function (number of functions)

288

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

200+
175
150+
1254
100

754

50

25'
0

Fig. 4 Number of function calls made to functions

number of functions calling a function

functions

The metarule associated with Pattern 4 can be used to
derive useful information from the system when coverage
is high. It can be seen from Table 9 that coverage values
for the called functions in the five systems remain below
0.3. In CVS, which has the highest coverage, the most fre-
quently called function is called by 210 functions. If a func-
tion is called by 210 functions, there is reason to assume that
the function is some kind of a utility function. Similar to
Pattern 1, setting a threshold is difficult because with a
high absolute threshold of say 0.7, none of the functions
would be considered as frequently accessed.

Instead of trying to set an absolute threshold, we depict
the results using a graph which can be inspected interac-
tively to identify frequently called functions. To make the
interpretation of the graph easier, median, quartiles, and
upper and lower control limits may be depicted on the
graph. As an example, the function call graph for Bash is
depicted in Fig. 4. It is easy to identify functions called
by a large number of functions from Fig. 4. The graphs of
the other four systems show a very similar function call
trend. It is interesting to note that the median number of
functions calling a function is almost the same (1 and 2)
for all systems. The average number of functions calling a
function is also similar.

An examination of the Bash code shows that 75% of
the functions to which 20 or more calls are made, reside
in the files general.c, error.c, or variable.c.
This indicates that utility functions are placed in separate
files in Bash, making it easier to reference such functions.

5.5 Pattern 5: Increase data modularity (Metarule
5-1 form: Global(X, Y) = Global(X, Y) Confidence:
High Support: High, Metarule 5-2 form:

Type(X, Y) = Type(X, Y) Confidence: High Support:
High)

To evaluate the applicability of Pattern 5, the source code
of the five systems was mined using Metarule 5-1 and

Table 10: Global variables with high association

Metarule 5-2. In this case, we use a threshold of 0.7 for
confidence. It should be noted that setting absolute
thresholds for coverage and support may not be meaningful
(see Section 4.2), since they depend on system size.
However, confidence denotes the association of two items
with each other, and is not affected by size of the system.
Thus it is meaningful to set a threshold e.g. 0.7, which
denotes that if a global variable (user defined type) is
accessed, there is a 70% probability that the other global
variable (user defined type) is also accessed. However, the
confidence measure alone cannot be used to arrive at a
meaningful result. A global variable may be associated
with more than one global variable. Similarly a user
defined type may be associated with more than one user
defined type. It is thus difficult to decide which global vari-
ables or user defined types to place in one structure. In such
a case, the support of the association rule may be helpful.
Support denotes the number of functions which access the
two global variables or user defined types together. If two
global variables or user defined types are accessed together
by many functions, it is more useful to place them in a
single structure, rather than global variables or user
defined types that are accessed together by few functions.
Table 10 summarises statistics about global variables
with high association. The names of the global variables
in all five systems reveal that they are related to one
another. Through the use of association rule mining, such
variables may be identified and placed in a structure after
inspection. Similar to Table 10, Table 11 summarises stat-
istics about user defined types with high association. For
CVS, Aero, Mosaic and Bash, accesses to user defined
types are reported for local variables within functions.

5.6 Pattern 6: Strengthen encapsulation (Metarule
6 form: Accessed by(X) = Type(X,Y) Confidence:
One)

To evaluate the applicability of Pattern 6, the source code of
the systems was mined using Metarule 6. Table 12 summar-
ises statistics obtained as a result of mining association rules
using this metarule.

Identification of potential objects is facilitated by mining
association rules of the described form. As an example,
consider some of the user defined types identified within
Bash. The user_info type is accessed by 10 functions
which reside in seven different files. This type can be
grouped together with the functions that access it to form
a class, which represents user information and member
functions to access this information. Some of the types
are accessed by functions within one file, making the task
of conversion to an object-oriented design easier. For
example, the JOB type is accessed by 22 functions
(start_job, delete_job, find_job etc.), 21 of

CVS Aero Mosaic Bash Xfig
Number of association rules 1923 5199 2602 1635 14983
satisfying the metarule
Highest support for global 0.022 (18) 0.099 (68) 0.007(6) 0.047 (42) 0.127 (211)

variables occurring together
with high confidence (number
of functions)

Global variables occurring Pending_error, KoerperKoordAnAus, size_of _cached_cd_array, rl_end, _ArgCount,
together with highest support pending_error_text KoordAnAus cached_cd_array rl_point _ArgCount
IEE Proc.-Softw., Vol. 152, No. 6, December 2005 289

Table 11: User defined types with high association
Cvs Aero Mosaic Bash Xfig
Number of association rules 41 54 10 14 422
satisfying the metarule
Highest support for user defined 0.010 (8) 0.017 (12) 0.010 (8) 0.003 (3) 0.128 (213)
types occurring together with high
confidence (number of functions)
User defined types occurring DIR, dirent TKollision, mo_hotlist, KEYMAP_ENTRY_ARRAY, Arg,
together with highest support TReal mo_hot_item keymap WidgetList
Table 12: Types accessed by functions in the test systems
CvVs Aero Mosaic Bash Xfig
Number of association rules satisfying the 489 476 294 319 3937
metarule
Number of functions accessing user defined 299 (37%) 279 (41%) 248 (30%) 249 (28%) 1364 (82%)
types (% of total functions)
Number of types accessed 80 63 47 51 149
Median number of functions accessing a type 2.5 3 3 3 5
Average number of functions accessing a type 6.11 7.56 6.26 6.25 26.42
Standard deviation 10.74 14.56 12.56 9.36 53.92

which reside in the file job.c. In a similar manner, types
and accessing functions may also be identified easily within
other systems.

5.7 Discussion of results

Statistics obtained as a result of carrying out association
rule mining on the test legacy systems are summarised in

2000
16004
1200

8001 g

- 2\
400+ % §
: N
o 22 71 N

CVS Aero

Mosaic Bash Xfig

| no. of functions O no. of global variables no. of user defined types |

Fig.5 Function, global variable and user defined type statistics

1600

| 7 N\
1200-_ Z §
800 % §
4004

0_

Ccvs Aero

Mosaic Bash Xfig

number of functions making function calls
O number of functions accessing global variables
number of functions accessing user defined types

Fig. 6 Statistics for function calls, global variable accesses and
user defined type accesses

290

Figs. 5—12. Statistics presented in Figs. 5, 6 are related to
the number of functions, global variables and user defined
types in the test systems. It can be seen that the number
of functions and global variables is similar across all
systems except Xfig. The number of functions making func-
tion calls, accessing global variables and user defined types
are also comparable across these systems. The number of
functions accessing user defined types is larger for Xfig as

100+
80+ 7
| %
60 % % %
I . |
CvVs Aero Mosaic Bash Xfig
% of functions accessing global variables
0 % of global variables accessed by 5 or less functions
% of global variables accessed by one function
Fig. 7 Global variable access statistics
100+
80- =
o] =
40—_ g
20—- E
o =

% of global
variables accessed
by 5 or less functions

% of functions
accessing global
variables

% of global
variables accessed
by one function

| B cvs [OAero K Mosaic Bash B Xfig l

Fig. 8 Comparison of accesses to global variables

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

80
60—- % %
w0l

20—- %

Amimmmy
AImimmm

i
N

]

U,

N\
% § 4 R
CvVs Aero Mosaic Bash Xfig

% of functions making function calls
[% of functions called by one function
% of functions residing in a different file

Fig.9 Function call statistics

801 =

60

404

204

% of functions
residing in
a different file

% of functions
making called by

% of functions

function calls one function

[Ocvs MAero K Mossic EJBash H Xfig

Fig. 10 Comparison of calls to functions

compared to other systems, and also larger than the number
of functions accessing global variables and making function
calls.

Figures 7 and 8 present statistics related to the access
of global variables by functions within test systems,
which is an indicator of the global coupling present in
these systems. It is interesting to note that although the per-
centage of functions accessing global variables varies from
45% to 80%, the percentage of global variables accessed by
5 or less functions is very similar across all systems. Mosaic
has the smallest percentage of functions accessing global
variables, and also the highest percentage of global vari-
ables accessed by five or less functions. These results
show that all five systems present opportunities for applying
Pattern 1 and Pattern 2 to reduce coupling by reducing the
number of global variables. In cases where a global variable
is required, its scope may be reduced to make the program
easier to understand and manage.

Figures 9 and 10 present statistics related to functions
called by a single function within the systems. The percen-
tage of functions making function calls is similar across all
systems, varying from 63 to 78%. The percentage of func-
tions called by one function only is also similar across all
systems, varying from 22 to almost 40% in Mosaic. Thus
the opportunity to apply Pattern 3 to increase locality of
reference is present in all systems. Functions that are
called by a single function and yet reside in a different
file need to be examined. CVS and Mosaic have the
highest percentages of such functions, which should be
examined to determine the feasibility of placing them in
the same file as the calling function.

Figures 11 and 12 present statistics of functions within
the systems to which five or more calls are made. This per-
centage varies from 7 to 18%, in general remaining low.

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

20

éj%%%%

Aero Mosaic Bash Xfig

% of functions to which 5 or more calls are made

O % of functions to which 10 or more calls are made

Fig. 11 Frequently accessed functions

% of functions to which
10 or more calls are made

% of functions to which
5 or more calls are made

| B CvsS [Aero Kl Mosaic Bash B Xfig l

Fig. 12 Comparison of frequently accessed functions

CVS has the highest percentage of functions to which five
or more calls are made. Thus in all systems, there exist func-
tions that are accessed by many functions. It is useful to
examine these functions and identify them as utilities,
also placing them in appropriate files.

Tables 10—12 summarise statistics related to system re-
modularisation. The applicability of Pattern 5 is evident
for all the systems, as global variables and user defined
types that occur together have been identified. It is
suggested that Pattern 5 be applied before Pattern 6, so
that related data items are placed together. Once data has
been modularised, functions accessing these types may be
mined using Pattern 6, thus taking a step towards indicating
potential classes in an object-oriented design.

6 Related work

Based on studies of the IBM programming process and the
0S/360 operating system, Lehman proposed laws that
guide the evolution of E-type software systems [22]. A
study of the evolution of the Logica plc Fastwire (FW)
financial transaction system, reported in 1997, supports
most of the laws formulated earlier [23]. Both these
studies focus on system growth in terms of the number of
modules within the system in order to determine trends in
software evolution. More recently, Godfrey and Tu
carried out studies to understand the evolution of open
source software [24, 25]. An interesting observation is
that the growth rate of most open source software systems
is super-linear, violating Lehman’s law of software evol-
ution which suggests that the growth of systems slows
down as their size increases. Godfrey and Tu also present
an approach for studying architectural evolution of software
systems [26], which integrates visualisation and software
metrics. Evolution status of various entities is modelled
by determining which entities are new, have been deleted,
or remain unchanged. Unlike these studies by Lehman
and Godfrey, which model structural changes at the entity

291

level, our selection of items in the form of functions, global
variables and user defined types will enable the study of
characteristics of legacy system evolution at a more detailed
level.

Visualisation can also be used to gain an understanding of
a legacy system’s overall structure and its evolution. Lanza
et al. [27] propose a lightweight approach to understanding
object-oriented legacy systems using a combination of
software metrics and visualisation. They visualise various
aspects of the system e.g. a system hotspot view helps in
identifying very large and small classes, a system complex-
ity view is based on inheritance hierarchies. These views are
helpful in indicating problematic areas which may require a
deeper study. The evolution of legacy object-oriented
systems can also be studied using the same lightweight
approach [28].

There has been growing interest in the application of data
mining techniques to gain better understanding of software
systems. In recent years, researchers have applied various
data mining techniques including association rule mining,
cluster analysis and concept learning in different contexts.
The architecture recovery of software systems using data
mining techniques is discussed in [29-32]. The data
mining technique employed in these papers is primarily
association rule mining. The identification of sub-systems
based on associations (ISA) was proposed by Oca and
Carver [29]. They use association rule mining for extraction
of data cohesive sub-systems by grouping together pro-
grams that use the same data files. A very similar approach
is that of [30], where the use of a representation model (RM)
is discussed to represent the sub-systems identified using
the ISA methodology in [29]. Sartipi ef al. [31] discuss a
technique for recovering the structural view of a legacy
system’s architecture based on association rule mining,
clustering and matches with architectural plans. Tjortjis
et al. [32] also employ association rule mining to arrive at
decompositions of a system at the function level. Groups
of functions, i.e. sub-systems, are created by finding
common attributes participating in the same association
rules.

Clustering techniques have also been employed for
architecture recovery and software re-modularisation
[19, 33-37]. Tzerpos and Holt [33] present the case for
using clustering techniques to re-modularise software,
after the techniques have been adapted to fit the peculiarities
of the software domain. In [34], Wiggerts provides a
framework to apply cluster analysis for re-modularisation.
Experiments with clustering as a re-modularisation method
are described in [35] and [36]. Both papers conclude by
recommending similarity measures and clustering algor-
ithms which yield good experimental results for software
artifacts. A theoretical explanation to some previous
experimental results obtained by researchers in the area is
provided in [37]. The paper also describes a new clustering
algorithm, which gives better results as compared to the cur-
rently employed algorithms for clustering software. In [19],
the weighted combined algorithm for software clustering is
presented. This algorithm shows improvement in clustering
results as compared to previously employed clustering
algorithms.

The use of concept learning to support software system
maintenance is described in [10, 38—39]. Inductive tech-
niques are employed to extract a maintenance relevance
relation (MRR) from the source code, maintenance logs
and historical maintenance update records. An MRR
simply indicates that if a software engineer needs to under-
stand filel, he/she probably also needs to understand file2.
The problem has been presented as a concept learning

292

problem, and a decision tree classifier is used for classifying
file pairs as relevant, not relevant and potentially relevant.
Relevance indicates that two files were modified in the
same update and potential relevance indicates that both
files were looked at in the same update. Program compre-
hension can be also aided by source code mining [40, 41].

The present work employs association rule mining to find
interesting associations between global variables, user
defined types and function calls within a system and
relates them to re-engineering patterns. Although associ-
ation rule mining has been employed by other researchers
e.g. Sartipi et al. [31] and Tjortjis et al [32], their
purpose and technique is different from the one proposed
in this paper. The purpose of association rule mining in
the case of Sartitipi et al. is architectural design recovery
i.e. decomposition of the legacy system into modules,
where a module is a collection of functions, data types
and variables. The item set used by them consists of
global variables, data types and function calls within the
system. The transaction set consists of global variables,
data types accessed and functions called by a function.
The Apriori algorithm is used to generate frequent item
sets, which indicate interesting association between func-
tions. Functions that are associated are candidates for
being placed in the same module. The architectural query
language (AQL) is used to describe a system’s conceptual
architecture. Based on this architecture and the frequent
item sets, clustering and a branch and bound algorithm
are used to instantiate the concrete architecture. Although
the item and transaction sets employed in [31] are similar
to the ones we employ in this paper, it is evident that the
problem addressed is very different. Whereas Sartipi et al.
use association rules to indicate association between func-
tions to discover modules, in this paper, our purpose in
applying association rule mining is to gain program under-
standing and indicate problem areas where improvements
may be made. To achieve this purpose we find associations
not only between functions, but between functions and other
items as well e.g. between global variables and user defined
types.

Tjortjis et al. also employ association rule mining for
grouping together similar entities within a software
system. The item set used by them consists of variables,
data types and calls to blocks of code (modules), where
modules may be functions, procedures or classes. The trans-
action set thus consists of variables, types accessed and calls
made by modules. In their algorithm, large item sets are first
generated by finding item sets that have a higher support
than a user-defined threshold. From this item set, associ-
ation rules with confidence greater than a user-defined
threshold are generated. Finally groups of modules are
created based on the number of common association
rules. Thus in their case, similar to the rule mining approach
in [31], rules are mined to group modules. We, however, use
metarule-guided association rule mining to find associations
between items, which can be used to identify potential pro-
blems in a system. By relating our mined association rules
to re-engineering patterns, we find solutions to commonly
occurring problems. To the best of our knowledge, research
has not been conducted to relate association rule mining to
re-engineering patterns as is done in this paper.

7 Conclusions

In this paper we have presented an association rule mining
approach for the problem of understanding a software
system given only the source code. To make the association
rule mining process more effective, we employ metarule-

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

guided mining. Metarules specify constraints on the mining
process. We use two types of constraints: rule constraints
and interestingness constraints. Rule-based constraints are
used to restrict the form of the association rule mined
whereas interestingness constraints are used to restrict the
possible values of interestingness measures. Furthermore,
we relate each metarule to a re-engineering pattern that
presents solutions to the problems identified by a metarule.
To illustrate the feasibility and effectiveness of employing
metarule-guided mining for program understanding, we
restrict ourselves to a small number of metarules and
re-engineering patterns that address some typical problems
within legacy systems developed using the structured
approach.

Metarule-guided mining was used to analyse the structure
of five legacy systems and extract meaningful association
rules which provided useful insight about the software’s
overall structure and suggested strategies for its improve-
ment. The extracted association rules capture associations
between functions, global variables and user defined types
within the system. They highlight potential problems
within the code and identify areas which require a more
detailed study. As illustrated, these association rules
applied along with re-engineering patterns can be used to
restructure the code for maintainability, and if required, to
re-modularise the code, e.g. by converting a structured
design to an object-oriented design. A manual inspection
to carry out the same tasks would have taken a much
longer time.

Our experiments with five open source systems reveal
similar results in terms of the average and percentage
values in the patterns discussed. For example, the average
and median number of functions accessing a global variable
is very similar in all five systems, as is also the average and
median number of function calls made. This result is inter-
esting, especially since the test systems have different appli-
cation domains and the number of functions, global
variables and user defined types within these systems is
also different. Our experimental results show how rules
extracted by the mining process can be used to identify
potential problems in, and suggest improvements to, the
legacy systems under study. Thus metarule-guided associ-
ation rule mining is effective in revealing interesting
characteristics, trends and nature of open source legacy
systems, and can be used as a basis for restructuring or
re-modularising them for greater maintainability.

8 Acknowledgments

The authors wish to thank Rainer Koschke of the Bauhaus
group at the University of Stuttgart for providing the RSF
for Bash, Aero, Mosaic and CVS, and to Johannes Martin
of the Rigi group, University of Victoria, for providing
the RSF for Xfig.

9 References

1 Sommerville, I.: ‘Software engineering’ (Addison Wesley, 2000, S5th
edn.)

2 Armold, R.S.: ‘Software reengineering’ (IEEE Computer Society
Press, 1993)

3 Pressman, R.S.: ‘Software engineering a practitioner’s approach’
(McGraw-Hill, 2001, 5th edn.)

4 Pfleeger, S.L.: ‘Software engineering theory and practice’ (Prentice-
Hall, 1998)

5 Glass, R.L.: ‘Frequently forgotten fundamental facts about software
engineering’, IEEE Softw., 2001, 18, pp. 110—-112

6 Biggerstaff, T.J.: ‘Design recovery for maintenance and reuse’,
Computer, 1989, 22, pp. 36—49

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

13
14

15

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Muller, H.A., Story, M., Jahnke, J.H., Smith, D.B., Tilley, A.R., and
Wong, K.: ‘Reverse engineering: a roadmap’. 22nd Int. Conf. on
Software Engineering (ICSE), June 2000

Parikh, G., and Zvegintzov, N.: ‘Tutorial on software maintenance’
(IEEE Computer Society Press, 1983)

Hall, R.P.: ‘Seven ways to cut software maintenance costs’,
Datamation, 1987, 33, pp. 81-84

Shirabad, J.S., Lethbridge, T.C., and Matwin, S.: ‘Supporting software
maintenance by mining software update records’. Int. Conf. on
Software Maintenance (ICSM), 2001

Han, J., and Kamber, M.: ‘Data mining: concepts and techniques’
(Morgan Kaufmann, 2000)

Demeyer, S., Ducasse, S., and Nierstrasz, O.: ‘Object-oriented
reengineering patterns’ (Morgan Kaufmann, 2003)
http://www.iam.unibe.ch/~scg/Archive/famoos/

Mens, T., and Tourwe, T.: ‘A survey of software refactoring’, IEEE
Trans. Sofitw. Eng., 2004, 30, pp. 126—139

Demeyer, S., and Ducasse, S.: ‘Metrics, do they really help?’. Proc.
LMO’99, Paris, 1999

Fenton, N., and Pfleeger, S.L.: ‘Software metrics: a rigorous and
practical approach’ (PWS Publishing Company, 1997, 2nd edn.)
Rising, L.: ‘The patterns handbook techniques, strategies and
applications’ (Cambridge University Press, 1998)

Koschke, R.: ‘Atomic architectural component recovery for program
understanding and evolution’, PhD Thesis, University of Stuttgart,
2000

Magbool, O., and Babri, H.A.: ‘The weighted combined algorithm:
a linkage algorithm for software clustering’. Conf. on Software
Maintenance and Re-engineering (CSMR), March 2004
http://www.bauhaus-stuttgart.de/bauhaus

Martin, J., Wong, K., Winter, B., and Miiller, H.A.: ‘Analyzing xfig
using the Rigi tool suite’. Seventh Working Conf. on Reverse
Engineering (WCRE), Brisbane, Australia, 2000

Lehman, M.M.: ‘Program, life cycles and the laws of software
evolution’, Proc. IEEE, 1980, 68, pp. 1060—1076

Lehman, M.M., Ramil, J.F., Wernik, P.D., Perry, D.E., and Turski,
W.M.: ‘Metrics and laws of software evolution — the Ninetiesview’.
Int. Symp. on Software Metrics, 1997

Godfrey, M.W., and Tu, Q.: ‘Evolution in open source software:
a case study’. Int. Conf. on Software Maintenance (ICSM), 2000
Godfrey, M.W., and Tu, Q.: ‘Growth, evolution and structural change
in open source software’. IWPSE 2001

Tu, Q., and Godfrey, M.W.: ‘An integrated approach for studying
architectural evolution’. Int. Workshop on Program Comprehension
(IWPC), 2002

Lanza, M., and Ducasse, S.: ‘Polymetric views — a lightweight visual
approach to reverse engineering’, I[EEE Trans. Sofiw. Eng., 2003, 29,
pp. 782-795

Lanza, M., and Ducasse, S.: ‘Understanding software evolution using
a combination of software visualization and software metrics’. Proc.
LMO’02, 2002

Montes de Oca, C., and Carver, D.L.: ‘Identification of data cohesive
subsystems using data mining techniques’. Int. Conf. on Software
Maintenance (ICSM), November 1998

Montes de Oca, C., and Carver, D.L.: ‘A visual representation model
for software subsystem decomposition’. Working Conf. on Reverse
Engineering (WCRE), October 1998

Sartipi, K., Kontogiannis, K., and Mavaddat, F.: ‘Architectural design
recovery using data mining techniques’. Conf. on Software
Maintenance and Reengineering (CSMR), February 2000

Tjortjis, C., Sinos, L., and Layzell, P.: ‘Facilitating program
comprehension by mining association rules from source code’,
11th IEEE Int. Workshop on Program Comprehension (IWPC), May
2003

Tzerpos, V., and Holt, R.C.: ‘Software botryology: automatic
clustering of software systems’. Ninth Int. Workshop on Database
and Expert Systems Applications (DEXA), August 1998

Wiggerts, T.A.: ‘Using clustering algorithms in legacy systems
remodularization’. Fourth Working Conf. on Reverse Engineering
(WCRE), October 1997

Anquetil, N., and Lethbridge, T.C.: ‘Experiments with clustering as a
software remodularization method’. Sixth Working Conf. on Reverse
Engineering (WCRE), 1999

Davey, J., and Burd, E.: ‘Evaluating the suitability of data clustering
for software remodularization’. Seventh Working Conf. on Reverse
Engineering (WCRE), Brisbane, Australia, 2000

Saeed, M., Magbool, O., Babri, H.A., Sarwar, S.M., and Hassan, S.Z.:
‘Software clustering techniques and the use of the combined
algorithm’. Conf. on Software Maintenance and Re-engineering
(CSMR), March 2003

Shirabad, J.S., Lethbridge, T.C., and Matwin, S.: ‘Mining the
maintenance history of a legacy software system’. Int. Conf. on
Software Maintenance (ICSM), 2003

293

39 Shirabad, J.S., Lethbridge, T.C., and Matwin, S.: ‘Mining the software
change repository of a legacy telephony system’. Proceedings of the
1*" International Workshop on Mining Software Repositories, 2004

40 Balanyi, Z., and Ferenc, R.: ‘Mining design patterns from C++
source code’. Int. Conf. on Software Maintenance (ICSM), 2003

41 Kanellopoulos, Y., and Tjortjis, C.: ‘Data mining source code to
facilitate program comprehension: experiments on clustering data
retrieved from C++ programs’. Int. Workshop on Program
Comprehension (IWPC), 2004

42 Murray, R.B.: ‘C++ strategies and tactics’ (Addison Wesley, 1993)

43 McConnell, S.: ‘Code complete a practical handbook of software
construction’ (Microsoft Press, 1993)

10 Appendix

10.1 Pattern category 1: Enhance modularity
and control side effects

10.1.1 Pattern 1: Reduce global variable usage:
Intent. Remove global variables that are used by very few
functions.

Metarule 1: Global (X, Y) = Accessed by (X)

Coverage: Low

Implication: Only a small proportion of functions in the
system access the global variable(s) on the LHS.

Problem: As software evolves, its structure becomes
complex and its internal quality degrades. Owing to high
coupling between system components in such a deteriorated
structure, a single change often results in a number of side
effects. Functions which access the same global variables
are highly coupled (common coupling). How can such
coupling among functions be reduced?

Forces: This problem is difficult because

1. To improve system structure, the structure must first be
understood. In the absence of documentation, gaining a
structural view and identifying dependencies may be
difficult and time consuming.

2. Some form of coupling may be necessary within the
system. Highly coupled functions whose coupling levels
may be reduced need to be identified.

3. A change e.g. changing a shared global variable to a
parameter that is passed between the related functions
may require changes at a number of places within the code.

Solving this problem is feasible because

1. With the proper tools, some forms of coupling between
functions can be identified.

Solution: Identify global variables which are used by few
functions within the system. Reduce common coupling by
reducing the use of such global variables. Rather than defin-
ing such variables as global, pass them as parameters within
the relevant functions. If passing a global variable as a
parameter is not convenient, its scope may be restricted to
a single file by defining it as static.

Trade-offs:

Pros: When a large number of variables are to be shared
amongst functions, global variables are convenient.
Moreover, global variables have a longer lifetime than auto-
matic variables, making it simpler to share information
between functions that do not call each other. However,
unless the global data is read only, the use of global vari-
ables results in undesirable coupling between functions,
leading to difficulties in program understanding and main-
tenance. By removing unnecessary global variables and
restricting their usage, coupling among components is
reduced, making it easier to trace faults and avoid uninten-
tional changes to data.

294

Cons and difficulties: Careful evaluation of each global
variable is required to decide whether it should be passed
as a parameter, declared to be static or left as it is. Even
if very few functions in the system access the global vari-
able, the designers of the system may have valid reasons
for defining it as global.

10.1.2 Pattern 2: Localise variables:

Intent: Reduce the scope of variables that have larger scope
than necessary.

Metarule 2: Global(X,Y) = Accessed by (X)

Confidence: One

Implication: Each global variable on LHS is used by one
function only.

Problem: Legacy systems are likely to contain a large
number of global variables which reduces the manageability
of the systems. How can a function accessing global vari-
ables be made easier to read and manage?

Forces: This problem is difficult because

1. A function may access a large number of global
variables.

2. Global variables are not the only factor that make a func-
tion more difficult to read and understand.

Solving this problem is feasible because

1. You have an idea of the global variable usage within the
system (Pattern 1)

Solution: Identify global variables that are accessed by one
function only. Make the variable a local variable for that
function.

Trade-offs:

Pros: If a variable is used by one function, there may be no
reason for defining it as global. Localising a global variable
reduces chances of error and makes functions easier to read
and maintain.

Cons and difficulties: Careful evaluation of each identified
global variable is required before a decision to reduce its
scope is taken. The rationale for a decision by a developer
to define a variable as global is rarely documented.

10.1.3 Pattern 3: Increase locality of reference:
Intent: Group related functions together to improve under-
standability and maintainability.

Metarule 3: Function(X, Y) = Called by (X)
Confidence: One

Implication: Each function on LHS is called by one func-
tion only.

Problem: A legacy system is often large and may consist of
a large number of functions. Changes made within a
software system may involve changes to various related
functions. How can changes be localised?

Forces: This problem is difficult because

1. It is necessary to identify functions that may be affected
by a change.

2. A function may be related to a number of other func-
tions, so it is difficult to decide the set of functions with
which its relation is strongest.

Solving this problem is feasible because
1. Localised changes ease the maintenance task.

Solution: 1dentify functions between which there appears to
be a strong relation. Place such functions in close proximity,

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

perhaps in the same file. It may be possible to inline func-
tions being called by only one function.

Trade-offs:

Pros: Grouping together related functions promotes
modular continuity [3] because changes in requirements
are localised instead of resulting in system wise changes.
Localised changes ease the maintenance task. Also, in
case a function is inlined, making a function inline results
in performance improvement and is clearly beneficial if
the function expansion is shorter than the code for the
calling sequence.

Cons and difficulties: Placing related functions in the same
file may be useful for legacy applications that have been
developed using the structured approach. It may not be a
feasible option in some cases, e.g. when a system has a
layered architecture and function calls are made across
different layers, or in object-oriented architectures where
the functional separation is related to data.

In case the inlining option is chosen, it is important
to remember that large inline functions will save a small
percentage of run time but will have a higher space
penalty. Also functions with loops should almost never
be inlined [42] because the run time of a loop is likely to
swamp the function call overhead. Large inlined functions
may also make it difficult to understand the functionality
of the calling function.

10.2 Pattern category 2: Avoid duplicated
functionality

10.2.1 Pattern 4: Identify utilities:

Intent: 1dentify utility routines so that they can be shared by
functions.

Metarule 4: Function(X, Y) = Called by (X)

Coverage: High

Implication: Function(s) on LHS are called by most of the
functions in the system.

Problem: In legacy systems, functionality is often dupli-
cated due to different teams re-implementing similar func-
tionality. To avoid this problem, functions should share
code by making use of utility routines. How can the use
of utility routines be facilitated?

Forces: This problem is difficult because

1. To facilitate the use of utilities, the utilities must be
identified.

2. Many such utility routines may be present, all of which
need to be catalogued for reference.

Solving this problem is feasible because

1. Utility routines may have certain characteristics which
facilitate identification.

Solution: Identify functions that are called by many
functions within the system. Treat these functions as
utility functions. It may be useful to place groups of
related utility functions in separate files.

Trade-offs:

Pros: Utility functions represent re-usable components of a
structured system. Re-usable components can lead to mea-
surable benefits in terms of reduction in development
cycle time and project cost, and increase in productivity.
Cons and difficulties: In order for functions to be re-used
effectively, they must be properly catalogued for easy refer-
ence, standardised for easy application and validated for
easy integration [3]. In case the number of such functions

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

is large, related functions need to be identified and
grouped together, otherwise searching for the appropriate
function may be time consuming.

10.3 Pattern category 3: Re-modularise for
maintainability

10.3.1 Pattern 5: Increase data modularity:
Intent: Place related data items into a structure.
Metarule 5-1: Global(X,Y) = Global(X,Y)
Confidence: High

Support. High

Implication: Whenever one global variable is accessed,
there is a high probability that the other global variable is
also accessed.

Metarule 5-2: Type(X, Y) = Type(X, Y)
Confidence: High
Support. High

Implication: Whenever one type is accessed, there is a high
probability that the other type is also accessed.

Problem: Legacy systems are likely to contain a number of
global variables and user defined types. How can relations
between global variables (user defined types) be clarified?
How can the global variables (user defined types) be more
easily managed?

Forces: This problem is difficult because

1. A large number of global variables and user defined
types may exist in a system, and examining them may be
time consuming.

2. A global variable (user defined type) may be related to
many other global variables (user defined types).
Examining such complex relationships and arriving at
meaningful conclusions may be very difficult

Solving this problem is feasible because

1. The purpose of a function is much easier to understand if
relationships between data are clear and data is well
managed.

Solution: Identify related global variables (user defined
types). Examine them to see which of them form coherent
entities. If they are logically related, combine them into a
structure.

Trade-offs:

Pros: Combining variables/types into structures leads to
code that is easier to understand and change. If at some
stage, a shift is to be made to an object-oriented design para-
digm, the structures become data attributes of potential
classes.

Cons and difficulties: 1t may be the case that one global
variable/type is associated with a high degree of confidence
with a number of other global variables/types i.e. when the
global variable/type is accessed, a number of other global
variables/types are accessed. In this case, to avoid a large
structure that hinders rather than promotes understandabil-
ity, the software engineer needs to study the code and
analyze which global variables/types are to be combined
into a structure.

10.3.2 Pattern 6: Strengthen encapsulation:
Intent: 1dentify potential classes.

Metarule 6: Accessed by (X) = Type(X,Y)
Confidence: One

Implication: The function(s) access the type(s) on the RHS.

295

Problem: Many legacy systems were developed using the
structured approach. To facilitate re-use and ease of main-
tenance, how can these systems may be modularised as
object-oriented systems?

Forces: This problem is difficult because

1. Identifying potential classes accurately in such large
systems is not easy.

Solving this problem is feasible because

1. Classes contain related data attributes for which oper-
ations are defined. Related data attributes can be identified
using pattern 5 (increase data modularity).

Solution: Identify collections of functions and the common
data set they access. These represent potential classes and

296

should be packaged together to strengthen encapsulation
and provide information hiding.

Trade-offs:

Pros: Large programs that use information hiding have been
found easier to modify by a factor of 4 than programs that
do not [43]. Information hiding forms a foundation for
both structured and object-oriented design.

Cons and difficulties: Functions may access more than one
type, in which case a careful study of the code is required to
decide the type with which the function should be associ-
ated. It may be the case that the types accessed by a function
form a coherent entity which can be transformed into a
structure (See Pattern 5).

IEE Proc.-Softw., Vol. 152, No. 6, December 2005

