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Abstract. The accurate prediction of Web navigation patterns has immense com-
mercial value as the Web evolves into a primary medium for marketing and
sales for many businesses. Often these predictions are based on complex tem-
poral models of users’ behavior learned from historical data. Such an approach,
however, is not readily understandable by business people and hence less likely
to be used. In this paper, we consider several key and practical Web navigation
patterns and present Bayesian models for their learning and prediction. The nav-
igation patterns considered include pages (or page categories) visited in first N
positions, type of visit (short or long), and rank of page categories visited in
first N positions. The patterns are learned and predicted for specific users, time
slots, and user-time slot combinations. We employ Bayes rule and Markov chain
in our learning and prediction models. The focus is on accuracy and simplicity
rather than modeling the complex Web user behavior. We evaluate our models on
four weeks of Web navigation data. Prediction models are learned from the first
three weeks of data and the predictions are tested on last week’s data. The results
confirm the high accuracy and good efficiency of our models.

1 Introduction

Significant patterns do exist in Web navigation data [1]. Learning and predicting such
patterns has immense commercial value as the Web evolves into a primary medium for
marketing and sales for many businesses [2]. Web-based businesses seek useful users’
patterns to help identify promising events, potential risks, and to undertake customer
relations management. Similarly, such businesses seek useful temporal and global pat-
terns to help them optimize their business processes and system operations. Web surfer
behavior modeling and Web navigation pattern discovery has been a popular research
topic. Over the years, numerous approaches have been proposed for solving various
aspects of this problem with varying degrees of success. In general, the problem in-
volves prediction of the sequence of page views based on the previous history of such
sequences. To simplify the problem somewhat, Web pages are often abstracted and
grouped into categories and the problem is reduced to the prediction of the sequence of
page categories visited. Nonetheless, this is a complex machine learning problem that
requires careful consideration from the technical and practical points of view.

Among the various approaches used for the modeling of Web navigation patterns,
probabilistic approaches have been very common [3,4,5,6,7]. Borges and Levene [3]
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propose the use of N-gram probabilistic models which assume that the probability of
a page visit depends only on the last N pages browsed. Similarly, Manavoglu et al. [4]
present probabilistic user behavior models by applying maximum entropy and Markov
mixture models. For prediction for known users, they propose a Markov model. Another
probabilistic solution is presented by Deshpande and Karypis [5]. They try to reduce the
state complexity resulting from all kth-order Markov models by pruning many of the
non-affecting states. Eirinaki et al. [6] present a hybrid probabilistic predictive model by
extending the properties of Markov models with link-based methods such as PageRank.
Such an approach is applicable only when link information of the pages is known. Lu
et al. [7] group or cluster clickstream data using a pair-wise alignment algorithm. Then,
a first-order Markov model is built for each cluster of sessions. Jing et al. [8] present
an extension of hidden Markov model to form interest navigation patterns for different
users. Awad et al. [9] have combined Markov models and SVM for surfing predictions.
They also incorporated domain knowledge.

The majority of the approaches try to tackle the general Web surfer behavior model-
ing problem rather than focusing on specific Web navigation pattern learning and pre-
diction. This often makes the solutions complex and difficult to interpret especially by
business people. In this paper, we consider four key patterns and the associated learn-
ing and prediction problems: (1) predicting short and long visit sessions, (2) predicting
page categories visited in first N positions, (3) predicting number of page views per
page category visited, and (4) predicting rank of page categories visited among the first
N positions. Models are learned and predictions are made given a specific user, time
slot, or user-time slot combination. These four problems capture key Web navigation
patterns of practical value. Moreover, they represent simpler problems as compared to
the general Web surfer behavior modeling problem, resulting in readily understandable
solutions.

We present Bayesian models for learning and predicting these patterns. In particular,
we develop Bayes classifiers for each problem, invoking the naı̈ve Bayes assumption of
conditional independence of the input given the class. We model the sequence of page
categories visited as a Markov chain. The naı̈ve Bayes assumption and the first-order
Markov property are used to improve efficiency of the solutions. The performance of
our models is evaluated on four weeks of data made available by the ECML/PKDD
Discovery Challenge [10]. The results show high prediction accuracy comparable to
those made by SVM (for pattern 1). Moreover, our models are simpler and easier to
understand by non-technical people.

The rest of the paper is organized as follows. We formally describe the Web navi-
gation pattern learning and prediction problems in Section 2. Our Bayesian models for
learning and predicting these patterns are presented in Section 3. Section 4 presents the
evaluation setup including a description of the data and the evaluation criteria. Results
and discussion of our evaluations are given in Section 5. We conclude in Section 6.

2 Problem Setting

Let variable X = {U, T } identify a visit session, where variables U and T denote the
user ID and the starting timestamp of the visit session, respectively. A visit session or
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path is described by a sequence of page categories visited during that session. Indi-
vidual Web pages are abstracted and grouped into a finite number of page categories.
Variable Ci identifies the category visited at position i of the sequence, and a visit ses-
sion is a sequence of one or more categories. A visit session can have the same page
category visited at different positions; however, two consecutive page categories must
be different. The range of the number of page views for a given page category is cap-
tured by the variable Ri, where i denotes the ith position in the sequence. All variables
have discrete and finite sets of possible values. The variable T is discretized into time
slots. The historical training data available for learning contains unique visit sessions
represented by instantiations of the variables X , Ci’s, and Ri’s. The test data contain
different instantiations of the variable X only.

It is worth noting that although the problem setting defined above is based on se-
quences of page categories visited, our models can be applied equally to settings with
sequences of Web pages visited. In the latter setting, the variable Ci captures the Web
page visited in position i of a visit session. The grouping of related Web pages into
categories is commonly used in practice to reduce complexity. Grouping can be done
on the basis of topic, theme, domain, or other measure of Web page relatedness.

We divide the general problem of Web navigation pattern learning and prediction
into four key sub-problems corresponding to four key patterns. Problem 1 is to learn to
predict short or long visit sessions. A visit session is said to be short if it is of length
1 (i.e. it contains only one page category); otherwise, it is said to be long. Problem 2
is to learn to predict the first N page categories visited in visit sessions. Problem 3 is
to learn to predict the range of the number of pages viewed in positions 1, 2, . . . , N of
visit sessions. Problem 4 is to learn the ranking of page categories in visit sessions (i.e.
probability ordered page categories). These problems are solved for the cases when,
besides the navigation sequences, X is known, only U is known, only T is known, and
nothing is known. The objective in each problem is to predict the output as accurately
as possible.

3 Bayesian Models for Web Navigation Patterns

We present Bayesian solutions to the four problems described in the previous section.
The Bayesian approach has been adopted for the following reasons: (1) it is simple and
intuitive, providing insight into the problem and its solution, (2) it is adaptable to con-
cept drift, and (3) it is computationally efficient and acceptably accurate. In particular,
we build a Bayes classifier for each of the four problems, as described in the following
sub-sections.

3.1 Pattern 1: Short and Long Visit Sessions

Learning and predicting short and long visit sessions can be used to segment navigation
data given user ID, timestamp, or both. This pattern represents a two-class classification
problem. We present a naı̈ve Bayes classifier for its solution. Given a visit session X ,
the most probable class z′ = Z ∈ {long, shart} is given by

z′ = arg max
z∈{long,short}

P (Z = z)P (X |Z = z) (1)
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where P (.) denotes the probability of the enclosed event. If we assume that the user ID
U and the timestamp T are conditionally independent of each other given class Z , we
get the naı̈ve Bayes classification:

z′ = argmax
z∈{long,short}

P (Z = z)P (U |Z = z)P (T |Z = z). (2)

This represents the most probable class under the naı̈ve Bayes assumption. If we do not
consider the timestamp T or user ID U of a visit session, the corresponding probability
term in the right hand side of Equation (2) drops out further simplifying the model. If we
do not consider any input, then the best prediction is given by the highest unconditional
probability P (Z = z).

3.2 Pattern 2: Page Categories Visited in First N Positions

Learning and predicting the sequence of page categories visited by a user is one of
the most important pattern from a strategic and operational perspective. Many times in
practice, only the first N positions in the sequence are useful as long sequences tend to
drift. To learn and predict this pattern, we model the sequence of page categories vis-
ited as a Markov chain. The chain start state (the first page category) is determined by
a Bayes classifier. Subsequent states are determined by combining the posterior prob-
ability estimates given by the Markov chain with that of the Bayes classifier for that
particular position. The reason for selecting the first-order Markov model over the kth-
order (k > 1) model is two fold: (1) The problem involves the learning and prediction
of only the first N states, where N is usually less than 5, for which a first-order Markov
model is sufficient, and (2) The first-order Markov model is computationally efficient.

According to the Bayes rule, the posterior probability of page category Ci visited in
position i (i = 1, 2, . . . , N ) of a visit session X is given by

PB(Ci|X) =
P (Ci)P (X |Ci)

P (X)
. (3)

The most probable page category visited at the start of the sequence C1 = c′1 is then
given by

c′1 = arg max
c

P (C1 = c)P (X |C1 = c). (4)

This fixes the start state of the Markov chain. The subsequent states can be found by
combining the predictions of the Bayes classifier (Equation 3) and the Markov model.
According to the Markovian property, for a given visit session X the posterior proba-
bility of page category Ci visited in position i (i = 2, . . . , N ) depends only on Ci−1

and can be expressed as

PM (Ci|Ci−1, X) =
P (X |Ci, Ci−1)P (Ci|Ci−1)

P (X |Ci−1)
. (5)

The page category visited at position i (i = 2, . . . , N ) is then given by

c′i = arg max
c

PB(Ci = c|X)PM (Ci = c|c′i−1, X). (6)
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This equation is based on the assumption that the predictions of the Bayes and Markov
models are independent. Notice that in evaluating Equation (6), we do not need to esti-
mate the probabilities in the denominators of Equations (3) and (5).

If a visit session X is described by user ID U and timestamp T , the naı̈ve Bayes
assumption can be invoked to simplify the expressions, as shown for pattern 1 above.

3.3 Pattern 3: Range of Number of Page Views Per Page Category Visited

This pattern captures the range of the number of page views for the first N page cate-
gories visited in a visit session. It provides information regarding the interests of users
for specific page categories. We divide the number of page visits into three ranges; 1
page view corresponds to the first range, page views from 2 to 3 correspond to the
second range and consequently page views greater than 3 correspond to the third range.

The page categories c′i (i = 1, 2, . . . , N ) visited have been determined as part of
pattern 2. We use a Bayes classifier to predict the range Ri = r′i of page views made at
position i (i = 1, 2, . . . , N ) in visit session X as

r′i = argmax
r

P (Ri = r|Ci = c′i)P (X |Ri = r, Ci = c′i) (7)

where the page category c′i is the one predicted as part of pattern 2.

3.4 Pattern 4: Rank of Page Categories in Visit Sessions

Ranking of page categories visited in the first N positions is another key pattern. As a
specific case, this pattern enables prediction of the most probable (popular) page cate-
gory visited given a user ID, timestamp, or both. Pattern 4 is different from pattern 2
in that it disregards the order of occurrence of page categories in the sequence. Page
categories can be ranked by ordering the posterior probability of a page category C = c
observed in the first N positions given X , i.e., P (C = c|X). This probability can be
calculated by applying the Bayes rule as

P (C = c|X) =
P (X |C = c)P (C = c)

P (X)
. (8)

Since the denominator is the same for all page categories, it can be dropped from the
equation when using it for ordering purposes. The most probable category c observed
in the first N positions is then given by

c′ = arg max
c

P (X |C = c)P (C = c). (9)

As discussed for pattern 1, the naive Bayes assumption can be invoked to replace
P (X |C = c) with P (U |C = c)P (T |C = c). Similarly, if only T or U is known,
then the corresponding probability term drops out.

3.5 Estimating the Probabilities

The Bayesian models presented in the previous sections are learned by estimating the
various probabilities on the right hand sides of Equations (1) to (9). These probabili-
ties are estimated from the historical training data by maximum likelihood estimation.
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Since all variables are observed in the training data, maximum likelihood estimates
are equivalent to the frequencies in the data. Specifically, the probability estimate of
P (X = x|Y = y) is given by

P (X = x|Y = y) ≈ no. of examples with X = x, Y = y

no. of examples with Y = y
. (10)

For an unconditional probability, the denominator will be the total number of examples
in the training data. To estimate the transition probabilities in Equation (5), we count an
example if it contains the given transition at any position of the visit session.

4 Evaluation Setup

We evaluate the effectiveness and efficiency of our models for Web navigation patterns
on real navigation data. The evaluations are performed on a desktop PC with an Intel
2.4 GHz Pentium 4 processor and 512 MB of memory. Implementation is done in Java
using Eclipse development environment. The subsequent sections describe the data and
evaluation criteria.

4.1 Data and Its Characteristics

We use the data provided by the 2007 ECML/PKDD Discovery Challenge [10]. The
data were collected by Gemius SA, an Internet market research agency in Central and
Eastern Europe, over a period of 4 weeks through use of scripts placed in code of the
monitored Web pages. Web users were identified using cookies technology. The first 3
weeks of data are used for training (learning the models) while the last week of data are
reserved for testing (evaluating predictions of the learned models).

The data records are individual visit sessions described by the fields: path id, user
id, timestamp, {category id, no. of page views},. . . . An example visit session is shown
below:

path id user id timestamp path = (category id,
no. of page views)...

27 1 1169814548 7,1 3,2 17,9 3,1 ...

The timestamp field records the time at which a visit session starts and the category
ID field identifies a group of Web pages with similar theme such as entertainment,
technology, or news. There are 20 page categories in the data. The entire data contain
545,784 visit sessions from which the first 379,485 visit sessions are used for training
and the remaining 166,299 visit sessions are used for testing. There are 4,882 distinct
users in the data.

An analysis of the training and test data reveals non-uniform data distribution. The
minimum and maximum number of visits by a user in the training data is 7 and 497, re-
spectively, with an average of 77.7 visits per user. The minimum and maximum number
of visits by a user in the test data is 1 and 215, respectively. Similarly, the distribution
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Fig. 1. Non-uniform distribution of categories [11]

of page categories is uneven. Some categories are being visited more frequently than
others. This is evident from Figure 1 which shows the probability of the categories in
the training and test data. About 73% of the visit sessions in the training and test data
are short, i.e., a visit where only one category is visited. These statistics confirm that
the data distribution of the test and training sets is similar.

4.2 Evaluation Criteria

The performance of our models is determined by computing a percent score on the test
data for each pattern after learning from the training data. We learn and predict the first
3 positions of the sequences only. That is, N = 3 for patterns 2, 3, and 4. We define
three values for the range variable as

R = {(1 page view), (2 - 3 page views), (> 3 page views)}.
Pattern 1 represents a two-class classification problem. The classification accuracy,

defined as the ratio of correct to total classifications, is used to evaluate this problem.
Pattern 2 represents a sequence prediction problem. We evaluate this by computing a
percent score. The score is the sum of scores of each position prediction, where each
position prediction score is defined as follows: The position prediction score is the
sum of weights assigned to the N predicted categories. If the first, second, and third
categories are predicted correctly, then assign weights 5, 4, and 3, respectively, to these
positions. If a prediction is incorrect for the category in the first position, then it is
assigned a weight of 4 if that category occurs in the second position, 3 if it occurs in
the third position, 2 if it occurs in the fourth position, 1 if it occurs in position five and
beyond, and zero if it does not occur at all. The weight assigned cannot be greater than
the maximum possible for that position (e.g. the weight assigned to position 2 cannot be
greater than 4). The percent score is obtained by dividing the score with the maximum
possible score that can be achieved on the test data through a perfect classification.
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Notice that this score definition penalizes predictions that are incorrect and the amount
of penalty depends on its correct position.

Pattern 3 is also evaluated by computing a percent score. This score computation
is identical to that for pattern 2 except that the weights are incremented by one if the
predicted range of page views is correct; otherwise they are not incremented. Pattern 4
represents a ranking problem. We evaluate this by calculating two scores: the percent
score of top ranked category and the percent score of top 3 ranked categories. Score
calculation is same as defined for pattern 2 above. For all patterns, higher evaluation
values signify better performance. The maximum possible score for each problem is
also given in our results.

5 Results and Discussion

Using the evaluation setup described in the previous section, we present prediction re-
sults for patterns 1, 2, 3, and 4 under four settings: (1) considering both the user ID and
timestamp (X = {U, T }), (2) considering only the user ID (U ), (3) considering only
the timestamp (T ), and (4) considering no input (i.e. unconstrained or global pattern
G). We discretize the timestamp field into four values: weekday-day, weekday-night,
weekend-day, and weekend-night. Daytime starts from 8 AM and ends at 6 PM. We
tried several discretizations for timestamp but present results for the above defined dis-
cretization only.

The results for patterns 1, 2, 3, and 4 for all four settings are given in Table 1. For
pattern 1 (short and long visit sessions), the highest prediction accuracy of 76.64% is
obtained when only the user ID is used as input. When both user ID and timestamp are
used, the accuracy drops slightly to 76.6%. Thus, the knowledge of the visit sessions’
timestamps is actually degrading prediction performance. The prediction accuracy ob-
tained when only timestamp (T ) is used is equal to that when no information is given
regarding the visit sessions (the G or global setting). This shows that the global pat-
tern is identical to that of the timestamp conditioned pattern. We also learn this pattern
using a support vector machine (SVM) [12]. The highest prediction accuracy given by
SVM (using linear kernel and empirically tuned parameters) is 76.68% when both user
ID and timestamp are used. Although this accuracy is slightly better than that reported

Table 1. Prediction performance of our models (in percent score and as a score ratio). X = User
ID + Timestamp; U = User ID only; T = Timestamp only; G = no input or global.

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 4
Top Ranked Top 3 Ranked

X
76.6% 83.17% 72.42% 79.86% 81.56%

(127383/166299) (902849/1085494) (957235/1321706) (664009/831495) (885319/1085494)
U 76.64% 83.21% 72.54% 80.57% 83.1%

(127457/166299) (903270/1085494) (958780/1321706) (669904/831495) (902010/1085494)
T 73.31% 64.32% 54.17% 52.08% 66.3%

(121919/166299) (698199/1085494) (716012/1321706) (433002/831495) (719568/1085494)
G 73.31% 64.32% 54.17% 52.08% 66.3%

(121919/166299) (698199/1085494) (716012/1321706) (433002/831495) (719568/1085494)
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by our model, our approach is significantly more efficient. For our hardware setup, our
approach takes less than 1 minute to learn from the training data and classify the test
data. In contrast, the SVM takes several hours to learn.

For pattern 2 (page categories visited in first 3 positions), the percent scores obtained
for the first two settings (X and U ) are practically identical at 83.17% and 83.21%,
respectively. Here again, the addition of the timestamp information to the user ID does
not improve prediction performance. However, these scores are significantly better than
those obtained for the timestamp (T ) and global (G) settings. These results show that
Web navigation behavior, for short page category sequences, is strongly correlated with
user behavior. On the hand, we do not find any correlation between Web navigation
behavior and time in our data. On our hardware setup, it takes about 15 and 6 minutes
to learn and predict this pattern for the first and second settings, respectively. Similar
observations can be made for the learning and prediction of pattern 3 (range of number
of page views per page category). The percentage score drops slightly from 72.54%
when only user ID (U ) is considered to 72.42% when both timestamp and user ID (X)
are considered. Similarly, the running time decreases from about 1.5 to about 1 minute
from the first to the second setting.

We evaluate pattern 4 (rank of page categories in first 3 positions of visit sessions) in
two ways using the same score definition for pattern 2. First, we determine the percent
score of predicting the top ranked page category (favorite page category) and second,
we compute a percent score based on the top 3 ranked categories (favorite 3 categories).
These results are shown in the rightmost two columns of Table 1. The highest percent
scores of 80.57% and 83.1% are obtained when only user ID is given. Notice that when
no information is provided about the visit sessions (the global pattern) this pattern is
poorly defined. Thus, just globally ranking page categories seen in historical data is
ineffective.

A consistent observation from the results on this data is that knowledge of the start
of visit sessions does not improve prediction performance. In fact, for all four patterns,
the prediction performance for the global pattern and that conditioned on timestamp
is identical. We tried several discretizations of the timestamp field with similar results.
It is worth pointing out that our models are generative in nature. As such, we can an-
alyze the patterns by studying the probability distributions that generate the patterns
(the probability terms on the righthand sides of Equations 1 to 9). The results for pat-
terns 1, 2 and 3 are also reported by [13] and [14]. Dembczyski et al. in [13] presented
trend-prediction and auto-regression methods for predicting pattern 1, and empirical
risk minimization for predicting pattern 2 and 3. They claim slightly better results but
our approach is simpler, efficient and generative. Lee in [14] used frequent items ap-
proach for predicting patterns 1,2 and 3. Their results are similar in case of pattern 1
and 3 while for pattern 2, our results are better.

5.1 Computational Complexity

The time complexity of our models for all the four patterns is O(D) where D is the total
number of visit sessions in the data, this is because the models are learned in a single
pass over the training data and constant time is required to predict each test example as
all the probabilities have been pre-computed.
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The space complexity of our models is defined by the number of probability esti-
mates required. The number of probabilities required is a sum of the products of vari-
ables’ cardinalities. For example, the space complexity of pattern 2 given X , which is
the highest among all patterns, is: (c × p) + (u × c × p) + (c2) + (u × c2) + (t × c × p)
+ (t × c2), where c is the number of page categories, p is the number of sequence posi-
tions, t is the number of timestamp values, and u is the number of distinct users. All of
these terms correspond to the probabilities in Equation (3) and Equation (5). In general,
u, c, t, and p are much less than D and as D grows u, c, t, and p remain constant or
grow very slowly.

6 Conclusion

In this paper, we present Bayesian models for learning and predicting key Web navi-
gation patterns. Instead of modeling the general problem of Web navigation we focus
on key navigation patterns that have practical value. Furthermore, instead of developing
complex models we present intuitive probabilistic models for learning and prediction.
The patterns that we consider are: short and long visit sessions, page categories visited
in first N positions, range of page views per page category, and rank of page categories
in first N positions. We learn and predict these patterns under four settings correspond-
ing to what is known about the visit sessions (user ID and/or timestamp). Our models
are accurate and efficient as demonstrated by evaluating them on 4 weeks of data col-
lected from Web sites in central and eastern Europe. In particular, our model for learning
and predicting short and long visit sessions has the same prediction accuracy as SVM
but is orders of magnitude faster. We also find that incorporating the start time of visit
sessions does not have any practical impact on prediction accuracy.

Learning and predicting Web navigation patterns is of immense commercial value.
We believe that a direct approach by first identifying key patterns and then building
models for these patterns is more likely to be used by business people. As part of future
work, we will explore the impact of behavior clustering prior to developing prediction
models.
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