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Abstract

Text classification is widely used in applications rang-

ing from e-mail filtering to review classification. Many of

these applications demand that the classification method

be efficient and robust, yet produce accurate categoriza-

tions by using the terms in the documents only. We present

a supervised text classification method based on discrimi-

native term weighting, discrimination information pooling,

and linear discrimination. Terms in the documents are as-

signed weights according to the discrimination information

they provide for one category over the others. These weights

also serve to partition the terms into two sets. A linear

opinion pool is adopted for combining the discrimination

information provided by each set of terms yielding a two-

dimensional feature space. Subsequently, a linear discrimi-

nant function is learned to categorize the documents in the

feature space. We provide intuitive and empirical evidence

of the robustness of our method with three term weighting

strategies. Experimental results are presented for data sets

from three different application areas. The results show that

our method’s accuracy is higher than other popular meth-

ods, especially when there is a distribution shift from train-

ing to testing sets. Moreover, our method is simple yet ro-

bust to different application domains and small training set

sizes.

1 Introduction

Automatic content based text classification into prede-

fined categories is becoming extremely useful with the in-

creasing availability of text documents in digital formats

such as Web pages, e-mails, Web blogs, digital libraries,

and corporate text databases. A common application of text

classification is information filtering where a stream of doc-

uments (e.g. e-mails) is classified before or after reaching

its destination. Other applications of text classification in-

clude document organization, web page categorization, and

query classification. More recently, text classification has

been used for semantic analysis of documents such as re-

view documents’ categorization as positive or negative and

word sense disambiguation. The scope and scale of text

classification applications is bound to increase in the future

as more text documents in digital formats become available.

The prototypical text classification problem can be de-

fined as follows. Given a set of labeled text documents

L = {〈xi, ci〉}
|L|
i=1

where ci ∈ C = {1, 2, . . . , |C|} denotes

the category of document xi and |C| and |L| are the to-

tal number of predefined categories and labeled documents;

learn a classifier that assigns a category label from 1 to |C|

to each document in the set U = {〈xi〉}
|U|
i=1

. This is a su-

pervised learning setting in which it is assumed that the

joint probability distribution of documents and categories

is identical in sets U and L (although this is not guaran-

teed in practice for some applications). In other words, the

task is to learn to approximate the unknown target function

Φ
′

: U → {1, 2, . . . , |C|} by the classifier function Φ :
U → {1, 2, . . . , |C|} such that the number of documents in

U for which Φ(xj) 6= Φ
′

(xj) is a minimum. A document is

represented as a 0/1 vector xi = 〈xi1, xi2, . . . , xi|T |〉 where

xij ∈ {0, 1} indicates whether the term (typically a word)

j exists in document i or not. The integer |T | is the num-

ber of terms in the dictionary of L and U (after standard

preprocessing of stop word removal and stemming). The

terms and categories are assumed to be just symbolic labels

without semantics and that no additional knowledge of a

procedural or declarative nature is available.

Text classification, as defined above, is challenging for

two reasons. First, the dimensionality of the term space

(|T |) is large and the set of documents L is sparsely rep-

resented in it. Second, selecting the relevant terms and their

weights (relative importance) for the classification. Differ-

ent methods for text classification address these challenges
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in different ways. Besides these challenges, text classifi-

cation methods must be efficient in order to handle large

volumes of data in various applications. Furthermore, text

classification methods must be robust to small sizes of la-

beled sets and differing distributions of labeled and unla-

beled sets.

In this paper, we present a robust and efficient text clas-

sification method based on discriminative term weighting,

discrimination information pooling, and linear discrimina-

tion in a two-dimensional feature space. Three term weight-

ing strategies are investigated for discriminating and parti-

tioning the terms: odds, log-odds, and Kullback-Leibler di-

vergence. These strategies weigh the terms based on the

discrimination information they provide for one category

over the others. A two-dimensional one-category-versus-

others feature space is constructed as the weighted sum of

terms. This transformation is based on a technique for com-

bining experts’ opinions known as linear opinion pool. The

classification is then learned in the feature space by a sim-

ple linear discriminant function. Our method is a hybrid

generative-discriminative method where the term weights

represent a generative model and the linear discriminant

represents a discriminative model of the classification prob-

lem. We evaluate our method on three data sets belonging to

three different application areas - spam filtering, movie re-

view, and SRAA. The results are compared with four com-

mon text classification methods, demonstrating the overall

effectiveness of our method with improved classification ac-

curacies.

The rest of the paper is organized as follows. We present

the motivation and related work in Section 2. Our text clas-

sification method, DTWC, is described in Section 3, includ-

ing a comparison with the naive Bayes classifier. We de-

scribe the data sets and evaluation setup in Section 4. Sec-

tion 5 presents the results of our evaluations and compar-

isons with other methods. We conclude in Section 6.

2 Related Work and Motivation

Text classification has been studied extensively in the

literature. A comprehensive review of text classification

methods is given in [28]. Here we focus on document

representation, feature selection, supervised methods, and

generative-discriminative methods. Many text classifica-

tion methods use the ”bag-of-words” representation that

describes a document by a term vector where each term

(typically a word) is given a weight (term position infor-

mation is not preserved). The common weighting tech-

niques include term occurrence (binary), term frequency,

and term-frequency-inverse-document frequency [27, 23].

Our method can work with any weighting technique as long

as a term vector representation is used. In this paper, how-

ever, we restrict ourselves to the binary term vector rep-

resentation that has been shown to produce more accurate

classifiers in some settings [16].

Regardless of the document representation approach, the

dimensionality of the term space is very large for text clas-

sification problems. Feature selection and dimensionality

reduction for text classification has been studied extensively

[5, 11, 7]. Techniques for feature selection and dimen-

sionality reduction can be supervised or unsupervised de-

pending on whether they require class information. How-

ever, for the text classification problem setting discussed in

this paper, supervised techniques are more commonly used

[2, 8, 4, 9]. These techniques rely on class information and

information theoretic measures, such as entropy, to iden-

tify high relevance terms. Our term weighting and selection

technique belongs to this latter category of techniques. In

particular, we weigh each term by the discrimination infor-

mation it provides for discriminating between one category

and the rest. The weights also serve to partition the terms

into two sets, and they can be thresholded for term selection

and dimensionality reduction. A novel information pooling

technique is adopted to aggregate the discrimination infor-

mation of each set to form a two-dimensional feature space

in which a linear discriminant function is learned. The ap-

proach of learning terms’ weights from training data based

on their distributions in the two categories appears to have

been first proposed by [8]. They present information theo-

retic functions to replace the IDF component of the TFIDF

term weighting strategy and use these weights in the clas-

sification model. In this work, we focus on discrimination

information measures of weighting the terms for both selec-

tion and classification.

Supervised text classification methods can be based on

a generative or discriminative model of the problem. The

most common generative methods are naive Bayes and

maximum entropy [29, 17, 24]. The naive Bayes classifier

results from the application of the Bayes rule with the as-

sumption that each term is independent of the others given

the category label, while the maximum entropy method es-

timates the class conditional distributions by maximizing

the entropy among them. The most popular discrimina-

tive method for text classification is support vector machine

(SVM) [14]. SVM, which is based on statistical learning

theory and structural risk minimization, learns a maximum

margin linear discriminant in a high dimensional feature

space. The balanced winnow method is another example

of a discriminative method that learns a linear discriminant

in the term space by minimizing the mistakes made by the

classifier [6].

There has been continuing interest in hybrid generative-

discriminative methods [12, 26, 19, 21]. These methods

try to exploit the strengths of generative and discrimina-

tive methods by first learning the data distribution and then

building a discriminative classifier using the learned distri-
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bution. Several variants of this general concept have been

explored with promising results. Our method can also be

categorized as a hybrid generative-discriminative method.

However, our method is simpler and efficient requiring

fewer parameters and learns faster.

3 DTWC – Our Text Classification Method

In this section, we describe our text classification method

based on discriminative term weighting and linear discrimi-

nation. Our method, subsequently referred to as DTWC, ad-

dresses the key issues of high dimensionality, term weight-

ing and selection, and feature enhancement faced by su-

pervised text classification methods. DTWC uses statis-

tical and probabilistic techniques in a hybrid generative-

discriminative model of the classification problem. DTWC

is efficient and robust – characteristics much desired for

today’s text classification applications. And, as demon-

strated by our evaluations, DTWC’s classification accuracy

is higher than other well-known methods for text classifi-

cation. In the remaining subsections, we present our dis-

criminative term weighting strategies, term space partition-

ing and term selection strategy, discrimination information

pooling, linear discriminant learning in the feature space,

and relation of DTWC with the naive Bayes classifier.

3.1 Discriminative Term Weighting

In the literature, term weighting has often been em-

ployed for effective document representations whereby the

frequency of the term or a derived measure like term-

frequency-inverse-document-frequency (TFIDF) is used to

weigh the term. In this paper, we represent a document as a

term occurrence binary vector x = 〈x1, . . . , x|T |〉 and view

term weighting as a measure of the relevance of the term for

the classification problem. As such, term weights are prop-

erties of the individual terms and are derived from the train-

ing data L and not from an individual document only. This

view will also help us in term space partitioning and term

selection, as described in the next subsection. Each term is

weighed by the discrimination information it provides for a

specific category over the others. We present three discrim-

inative term weighting strategies: odds, log-odds, and KL

divergence.

If a document x contains a term j (i.e. xj = 1) then it is

more likely to belong to category k if p(xj = 1|c = k, L)
is greater than p(xj = 1|c = C\k, L), where notation C\k
denotes all categories but k. Equivalently, a document x is

likely to belong to category k if the odds for category k are

greater than one:

p(c = k|xj = 1)

p(C\k|xj = 1)
=

p(xj = 1|c = k)p(c = k)

p(xj = 1|c = C\k)p(c = C\k)
> 1,

(1)

In the above and subsequent equations, the conditioning on

the labeled set L has been omitted for brevity. We would

like to quantify the discriminative information that a term

j provides regarding category k over categories C\k. One

way of doing this is to weigh the term by its odds of occur-

ring in documents belonging to category k over documents

of categories C\k:

wk
j =

{

aj/bj when aj > bj

bj/aj otherwise
(2)

where aj = p(xj = 1|c = k) and bj = p(xj = 1|c =
C\k). Notice that the discrimination information that term

j provides for categories C\k over category k is bj/aj .

Thus, the smallest weight assigned by Eq. 2 is one.

A second strategy for discriminative term weighting is

to use the log-odds for the term. Using this strategy, the

weight for term j is defined as

wk
j =

{

log(aj/bj) when aj > bj

log(bj/aj) otherwise
(3)

Following this strategy, the smallest weight is zero which

is consistent with no discrimination information. Nonethe-

less, Eqs. 2 and 3 are monotonically related with Eq. 2

always giving a larger value than Eq. 3. This difference in

values becomes greater with increasing difference between

aj and bj .

A third strategy for discriminative term weighting is to

use the information theoretic measure known as Kullback-

Leibler (KL) divergence. The KL divergence of probability

distribution p(x) from q(x) is defined as

DKL(p(x)‖q(x)) =
∑

x

p(x) log
p(x)

q(x)

The KL divergence can also be interpreted as the expected

discrimination information for p(x) over q(x). In our con-

text, the two probability distributions are p(xj |c = k) and

p(xj |c = C\k) where xj can take on values of zero and

one. Then, the expected discrimination information pro-

vided by knowledge of term j for category k over other cat-

egories is given by the KL divergence as

wk
j = DKL(p(xj |c = k)‖p(xj |c = C\k) (4)

= aj log
aj

bj

+ (1 − aj) log
1 − aj

1 − bj

(5)

Unlike the previous two strategies, this term weighting

strategy considers both the occurrence and the absence of

a term. Eq. 4 is also monotonically related with Eqs. 2 and

3. However, unlike Eqs. 2 and 3, Eq. 4 is not symmetric.

In any case, all three equations quantify the discrimination

information provided by term j for discriminating between

category k and categories C\k with larger weights signify-

ing larger discrimination information.
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The probabilities aj and bj are estimated from the train-

ing data L by maximum likelihood estimation. A Laplacian

prior is used for each event for smoothing (add-one smooth-

ing).

3.2 Term Space Partitioning and Term Se-
lection

The discriminative term weighting strategies described

in the previous section can be used for term space parti-

tioning and discriminating term selection. Our weighting

strategies naturally partitions the terms into two sets: one

set, identified by the index set Zk, contains terms for which

aj > bj and the other set, identified by the index set ZC\k,

contains the remaining terms. All terms j ∈ Zk provide

evidence for category k over the rest, and this evidence is

quantified in their weights in the form of discrimination in-

formation. In the next subsection, we describe how we use

this partitioning to create a discriminative model of the clas-

sification problem.

Our weighting strategies also provide a natural way of

selecting highly discriminating and relevant terms. A term

j is selected as relevant for the k versus C\k classification

problem if

wk
j ≥ t

where t is a positive valued threshold. All terms that do not

satisfy this condition are discarded from the classification

model. By increasing the value of t, the number of relevant

terms can be reduced by eliminating terms that provide little

discrimination information.

DTWC does not require term selection and dimension-

ality reduction as it transforms the input terms to a two-

dimensional feature space (described in the next subsec-

tion). However, term selection may be necessary for large

scale applications like personalized spam filtering by e-mail

service providers [16]. For such applications, DTWC’s ac-

curacy can be traded off with its space complexity by vary-

ing the value of t.

3.3 Linear Opinion Pool and Linear Dis-
crimination in Feature Space

We use the two set partitioning of the term space, which

is based on discrimination information, to form a two-

dimensional feature space. Consider a document x. Each

term j ∈ Zk in the document expresses an opinion regard-

ing the document’s categorization. This opinion is captured

by the discriminative term weight wk
j . The aggregated opin-

ion of all these terms is obtained as the linear combination

of individuals’ opinions:

Scorek(x) =

∑

j∈Zk xjw
k
j

∑

j xj

(6)

This equation follows from a linear opinion pool or an en-

semble average, which is a statistical technique for com-

bining experts’ opinions [13, 1]. Each opinion (wk
j ) is

weighted by the normalized term occurrence (xj/
∑

xj)

and all weighted opinions are summed yielding an aggre-

gated discrimination score for category k (Scorek(x)) of

the document. If a term i does not occur in the document

(i.e. xi = 0) then it does not contribute to the pool. Also,

terms that do not belong to set Zk do not contribute to the

pool. Similarly, an aggregated discrimination score can be

computed for all terms j ∈ ZC\k as

ScoreC\k(x) =

∑

j∈ZC\k xjw
C\k

j
∑

j xj

. (7)

The two-dimensional feature space is defined by the two

scores Scorek(x) and ScoreC\k(x). In this space, docu-

ments are well separated and discriminated, as illustrated

for a spam classification data (Figure 1). We learn the cate-

gorization in this space by a linear discriminant function:

fk(x) = αk · Scorek(x) − ScoreC\k(x) + α0 (8)

where αk and α0 are the slope and bias parameters, respec-

tively. The discriminating line is defined by fk(·) = 0. If

fk(·) > 0 then the document x is likely to belong to cate-

gory k (Figure 1). For a |C| category classification problem,

we learn |C| − 1 discriminant functions each with two pa-

rameters. In practice, however, the bias parameter set to

zero often yields better results, leaving only the slope pa-

rameter to be learned. The discriminative model parameters

are learned by minimizing the classification error over the

labeled training set L. This represents a straightforward op-

timization problem that can be solved by any iterative op-

timization technique [20]. DTWC’s overall classifier func-

tion is defined as

Φ(x) = argmaxk fk(x). (9)

DTWC derives its strength from the discrimination infor-

mation based term weighting, discrimination information

pooling to form a two-dimensional feature space, and a sim-

ple linear discriminative model for classification. These

characteristics make DTWC efficient, in terms of both time

and space, and robust to noise and changing data distri-

butions. DTWC contains three key steps: (1) discrim-

inative term weight computation, which can be done in

one pass over the labeled data set, (2) forming the two-

dimensional feature space, and (3) learning the parameters

of the discriminating line which can be done efficiently us-

ing straightforward optimization algorithms. The DTWC

algorithm is given in Algorithm 1.
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Figure 1. The two-dimensional feature space
and the linear discriminant function for a

spam classification problem

3.4 Relation to Naive Bayes Classifier

In this section, we develop the naive Bayes classifier and

show its relation to DTWC. The odds that a document x

belongs to category k rather than categories C\k can be

written as

p(c = k|x)

p(c = C\k|x)
=

p(x|c = k)p(c = k)

p(x|c = C\k)p(c = C\k)

Assuming that the occurrence of each term is independent

of others given the category, the document odds on the right-

hand side becomes a product of terms’ odds. The naive

Bayes classification of document x is category k when

p(c = k)

p(c = C\k)

∏

j

(

p(xj |c = k

p(xj |c = C\k)

)xj

> 1

Equivalently, taking the log of both sides, the above ex-

pression can be written as

log
p(c = k)

p(c = C\k)
+

∑

j

xj log
p(xj |c = k)

p(xj |c = C\k)
> 0 (10)

This equation computes a non-negative score, and when this

score is greater than zero the naive Bayes classification for

the document x is k. Notice that only those terms are in-

cluded in the summation for which xj = 1.

Comparing the naive Bayes classifier, as expressed by

Eq. 10, with DTWC yields some interesting observations.

The discriminative model of DTWC is similar to Eq. 10 in

Algorithm 1 DTWC

Input: set of labeled documents L, set of unlabeled doc-

uments U
Output: labels for documents in U

On training data L
for k = 1 to |C| − 1 do

for j = 1 to |T | do

compute wk
j and w

C\k

j (Eq. 2, 3, or 4)

end for

compute Scorek(x) and ScoreC\k(x) (Eqs. 6 and 7)

learn parameters αk and α0

end for

On test data U
for k = 1 to |C| − 1 do

compute Scorek(x) and ScoreC\k(x) (Eqs. 6 and 7)

compute fk(x) (Eq. 8)

end for

output k = argmaxkfk(x) (Eq. 9)

that the structure of the discrimination score computation

(Eqs. 6 and 7) is similar to the summation in Eq. 10 and

the bias parameter α0 corresponds to the first term in Eq.

10. The log-odds for term j in Eq. 10 corresponds to the

log-odds discriminative weighting strategy in DTWC.

However, there are also significant differences between

DTWC and naive Bayes. (1) The discrimination scores in

DTWC are normalized (for each document) using the L1
norm. Document length normalization is typically not done

in naive Bayes classification, and when it is, the L2 norm is

used. Recently, it has been shown that performing L1 doc-

ument length normalization improves the precision of naive

Bayes for text classification [17]. (2) DTWC partitions the

summation into two, based on discrimination information,

and then learns a linear discriminative model of the classi-

fication. Naive Bayes, on the other hand, is a purely gener-

ative model with no discriminative learning of parameters.

(3) DTWC allows the use of different discriminative term

weighting strategies as long as they quantify the discrim-

ination information that a term provides for one category

over the others. (4) DTWC does not require the naive Bayes

assumption of conditional independence of the terms given

the category.

DTWC will be identical to naive Bayes when the log-

odds term weighting strategy is used, discrimination scores

are not normalized, and the slope parameter αk is equal to

one.
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4 Evaluation Setup

We evaluate DTWC on three commonly-used text clas-

sification data sets – personalized spam filtering, movie

review, and SRAA – and compare its performance with

four other classifiers – Naive Bayes (NB), Maximum En-

tropy (ME), Balanced Winnow (BW), and Support Vector

Machine (SVM). The performance of DTWC with odds

(DTWC-O), log-odds (DTWC-LO), and KL divergence

(DTWC-KL) discriminative term weighting strategies is re-

ported. For naive Bayes, Maximum Entropy, and Balanced

Winnow we use the implementation provided by the Mallet

toolkit [22]. For SVM, we use the implementation provided

by SV MLight [15]. We report the classification accuracy

for spam data set, and the mean and standard deviation of

classification accuracy for movie and SRAA data sets cal-

culated over 5 runs of the algorithms.

4.1 Data Sets

In all three data sets, documents are represented as bag-

of-words/terms. We convert them to formats in which doc-

uments are represented by term frequency vectors and term

occurrence vectors. Where applicable stop words, HTML

tags, and message headers are removed from the data sets.

The personalized spam filtering data set, henceforth

identified as the Spam data set, captures the e-mail clas-

sification problem in which individual user’s e-mails are la-

beled as either spam or non-spam (2 categories) after learn-

ing from a general labeled training set. This data set cor-

responds to data set A provided by the 2006 ECML/PKDD

Discovery Challenge [3]. It contains a labeled training set

of 4000 e-mails and three unlabeled users inboxes of 2500

e-mails each. The composition of the training set is: 50%

spam e-mails sent by blacklisted servers of the Spamhaus

project (http://www.spamhaus.org), 40% non-spam e-mails

from the SpamAssassin corpus, and 10% non-spam e-mails

from about 100 different subscribed English and German

newsletters. The composition of e-mails in users inboxes is

more varied with 50% non-spam e-mails of distinct Enron

employees from the Enron corpus and 50% spam e-mails

from various sources. Low frequency terms have already

been removed. A key characteristic of this data set is that the

distribution of e-mails in the training set is different from

those in the users’ inboxes (test sets).

The movie review data set, henceforth identified as

the Movie data set, captures the sentiment classifica-

tion problem in which movie reviews from IMDB (In-

ternet Movie Database) are labeled as either positive

or negative (2 categories). This data set is obtained

from http://www.cs.cornell.edu/people/pabo/movie-review-

data. It consist of 2000 positive and 2000 negative reviews.

We remove the stop words/terms using the Mallet toolkit

[22]. We holdout 400 examples of each class for testing and

randomly select different numbers of examples for training.

The SRAA (Simulated/Real/Aviation/Auto) data set 1 is

a collection of 73,218 documents from four newsgroups

(simulated-aviation, simulated-auto, real-aviation, and real-

auto), representing a 4 category classification problem. We

remove the HTML header and the stop words using the Mal-

let toolkit [22]. We holdout 1000 examples of each class for

testing and randomly select different numbers of examples

for training.

4.2 Tuning the Algorithms

Documents are represented by term frequency vectors

for the NB, ME, BW, and SVM classifiers. For DTWC,

however, we use term occurrence vectors for document rep-

resentation. An extensive evaluation of DTWC with dif-

ferent document vector representations is beyond the scope

of this paper, although we do find that the term occurrence

representation outperforms the term frequency representa-

tion on the Spam data set. The default algorithm settings

provided by Mallet are adopted for NB, ME, and BW.

The SVM (using SV MLight) is tuned for each data set

by evaluating its performance on a validation set that is a

30% holdout of the training set. The SV MLight parame-

ter C that controls the trade-off between classification error

and margin width is tuned for each data set. Similarly, we

evaluate the performance of SVM with both linear and non-

linear kernels and find the linear kernel to be superior. This

observation is consistent with that reported in the literature

[18, 10, 30]. We perform document length normalization

using L2 (Euclidean) norm. This improves performance

slightly from the non-normalized case, as observed by oth-

ers as well [25, 10, 30]. We keep the remaining parameters

of SV MLight at default values. There are no tunable pa-

rameters in DTWC (we keep the threshold t = 0, unless

mentioned otherwise).

5 Results and Discussion

5.1 Classification Accuracy

Tables 1, 2, and 3 show the classification accuracies

of DTWC, naive Bayes (NB), maximum entropy (ME),

balanced winnow (BW), and SVM on Spam, Movie, and

SRAA data sets, respectively. The results for DTWC with

odds, log-odds, and KL divergence discriminative term

weighting strategies are identified by DTWC-O, DTWC-

LO, and DTWC-KL, respectively. For Movie and SRAA

data sets, we give the mean and standard deviation of the

classification accuracies over five runs of the classifiers with

1http://www.cs.umass.edu/ mccallum/code-data.html
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Table 1. Accuracy results for Spam data set. The training set and each user’s inbox contain 4000 and
2500 e-mails, respectively.

Inbox DTWC-O DTWC-KL DTWC-LO NB ME BW SVM

Inbox 1 91.00 79.88 91.12 81.24 62.20 61.00 64.40

Inbox 2 92.36 82.24 91.80 83.80 68.16 64.76 69.56

Inbox 3 87.52 68.88 88.60 87.88 78.92 73.44 80.24

Avg 90.29 77.00 90.56 84.30 69.76 66.40 71.40

Table 2. Accuracy results for Movie data set. Means plus/minus standard deviations are computed

from 5 runs with randomly drawn training sets of sizes specified in the first column and randomly
selected test sets of size 800.

Ex. DTWC-O DTWC-KL DTWC-LO NB ME BW SVM

600 80.90 ± 1.13 82.32 ± 0.83 81.35 ± 0.83 79.25± 1.15 82.14± 0.50 78.89 ± 0.86 81.85 ± 0.91
500 82.47 ± 1.50 83.24 ± 1.14 82.40 ± 1.21 80.74± 0.37 81.32± 0.50 77.92 ± 2.31 81.35 ± 1.78
400 79.84 ± 1.94 81.52 ± 0.79 81.42 ± 0.80 79.17± 1.08 79.62± 1.28 78.34 ± 1.58 79.65 ± 1.07
300 79.64 ± 1.00 82.27 ± 1.36 80.07 ± 0.91 77.57± 1.01 77.97± 1.56 76.09 ± 1.36 78.52 ± 1.33
200 78.02 ± 1.46 80.87 ± 1.28 79.30 ± 1.90 76.42± 1.57 76.32± 0.92 74.12 ± 1.86 76.10 ± 1.22
Avg 80.17 82.04 80.91 78.63 79.47 77.07 79.49

each run using randomly chosen examples for training and

testing. For Spam data set, we give classification accuracies

for each user inbox.

The results show that for all the runs, DTWC outper-

forms all the other classification algorithms. This is also

true for averaged results. The average performance of

DTWC on the Spam data set is impressive (90.56% by

DTWC-LO) with the second best performance being over

6% lower. The personalized spam filtering problem is chal-

lenging because the distributions of e-mails in the training

set and the users’ inboxes are quite different. As such, al-

though ME, BW, and SVM can achieve a high accuracy on

the training set, their generalization onto the unseen data is

very poor. Usually for such differing distribution classifica-

tion problem settings, techniques that make use of the users’

inboxes (unlabeled data) during learning, i.e., transductive

or semi-supervised learning, will achieve better results [16].

Nonetheless, DTWC, which uses supervised learning, ap-

pears to be little affected by this change in distribution of

the two sets. The naive Bayes classifier appears to be second

least affected by this change. The SVM performs poorly on

this data set. The superior performance of DTWC can be

attributed to the discriminative term-based model of spam

and non-spam and the simple and generalized discrimina-

tive model. An interesting observation for the Spam data

set is that DTWC-KL’s performance is significantly lower

than that of DTWC-O and DTWC-LO. DTWC-KL uses the

KL divergence as the discriminative term weighting strat-

egy as opposed to the odds and log-odds strategies used by

the other two. This observation needs further investigation.

Here we only conjecture that this may be related to the con-

sideration of both presence and absence of terms in the con-

text of personalized spam classification.

The distribution of training and testing sets are similar

for the Movie and the SRAA data sets. For these data sets

also, DTWC outperforms the other algorithms. The im-

provement, however, is less significant as compared to that

for the Spam data set. DTWC-KL is the best performer

for the Movie data set, while DTWC-O is the best per-

former for the SRAA data set. The results obtained by NB,

ME, and SVM are comparable to those reported in [10, 21].

DTWC’s performance appears slightly lesser than that of

multi-conditional learning reported in [21]; however, their

exact evaluation and data set up is not known so a direct

comparison is not possible. Notice that the performance of

DTWC degrades gracefully as the number of examples in

the training set is reduced.

5.2 Parameter Estimation

DTWC uses a set of generative model parameters – the

discriminative term weights – and |C| − 1 discriminative

model parameters – the slope αk and bias α0. The weights

are computed from the labeled training set by maximum

likelihood estimation. This is a straightforward computa-

tion requiring a single pass over the training set. The dis-

criminative model parameters are learned by minimizing

the classification error over the labeled training set. This
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Table 3. Accuracy results for SRAA data set. Means plus/minus standard deviations are computed
from 5 runs with randomly drawn training sets of sizes specified in the first column and randomly

selected test sets of size 4000.

Ex. DTWC-O DTWC-KL DTWC-LO NB ME BW SVM

1500 93.41 ± 0.30 88.61± 0.66 91.93± 0.10 92.72 ± 0.31 90.53 ± 0.58 88.23 ± 0.46 91.54± 0.36
1000 92.94 ± 0.14 88.50± 0.37 91.14± 0.37 92.10 ± 0.67 89.12 ± 0.26 87.54 ± 0.37 89.34± 0.30
500 91.26 ± 0.51 87.50± 0.81 88.48± 0.61 90.59 ± 0.67 86.75 ± 0.60 85.01 ± 0.82 86.73± 1.36
250 88.88 ± 0.42 85.52± 0.72 83.60± 1.41 88.05 ± 0.92 83.28 ± 0.17 81.94 ± 0.54 84.52± 0.37
150 86.63 ± 0.22 83.74± 0.96 78.12± 1.31 85.69 ± 0.69 81.87 ± 1.02 79.97 ± 1.01 83.58± 1.17
Avg 90.62 86.77 86.65 89.83 86.31 84.54 87.14
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Figure 2. Number of terms selected versus

threshold t for Spam data set (DTWC-O)

is a convex optimization problem, as empirically verified

from the error versus slope parameter graph (Figure 4). The

bias parameter, which is usually close to zero in our evalua-

tions, can be determined after learning the slope parameter.

The optimization problems can be solved efficiently by an

iterative optimization technique or by grid search.

5.3 Term Selection

The threshold t can be used to trade-off DTWC’s space

requirement and accuracy performance. This is evident

from Figure 2 which shows the variation of the number of

selected terms with threshold t for the Spam data set (us-

ing DTWC-O). The number of selected terms drops signif-

icantly with only a small increase in t. Remarkably, how-

ever, the classification accuracy does not decrease drasti-

cally (Figure 3). Table 4 shows the number of terms and the
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Figure 3. Average accuracy versus threshold

t for Spam data set (DTWC-O)

average accuracy (averaged over the 3 inboxes) of DTWC-

O for Spam data set. It is seen that even when the number of

terms is reduced by one-eighth (from 40516 to 4913 terms)

the average accuracy value for DTWC is still higher than the

second best performer, i.e., naive Bayes. This result demon-

strates the robustness and scalability of our algorithm, and

its suitability for application like personalized spam filter-

ing by e-mail service providers.

6 Conclusion

In this paper, we describe a new text classification

method, named DTWC, based on discriminative term

weighting, discrimination information aggregation, and lin-

ear discrimination in a two-dimensional feature space. Each

term in the classification problem is assigned a weight that
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Table 4. Selected terms and accuracy at dif-
ferent values of threshold t for Spam data set

(DTWC-O)

Threshold Terms Accuracy

0 40516 90.29

0.0025 16666 88.48

0.005 9333 86.85

0.0075 6608 85.86

0.01 4913 84.45

quantifies the discrimination information it provides for cat-

egory k over the others. These discriminative term weights

are then used to transform the input term space into a two-

dimensional feature space. The transformation is based on

a statistical model of opinion pooling. Category k and the

rest are discriminated in the feature space by a straight line.

As such, the discriminative model has only two parameters,

the slope and the bias of the line, which can be computed

efficiently by an iterative optimization algorithm. DTWC is

simple, efficient, effective, and robust. All these character-

istics make it suitable for many application areas, including

personalized spam filtering where scalability and robustness

are essential.

DTWC is evaluated on spam filtering, movie review, and

simulaed/real/aviation/auto data sets. Its classification ac-

curacy is compared with that of four other classifiers – naive

Bayes, maximum entropy, balanced winnow, and SVM.

DTWC outperforms all classifiers in all settings. Its perfor-

mance is substantially better in situations where the training

and testing sets follow different distributions. We also dis-

cuss the efficiency and robustness characteristics of DTWC

by evaluating its performance against term selection.
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