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Abstract—Social discrimination (e.g., against females) arising
from data mining techniques is a growing concern worldwide.
In recent years, several methods have been proposed for mak-
ing classifiers learned over discriminatory data discrimination-
aware. However, these methods suffer from two major short-
comings: (1) They require either modifying the discriminatory
data or tweaking a specific classification algorithm and (2)
They are not flexible w.r.t. discrimination control and multiple
sensitive attribute handling. In this paper, we present two
solutions for discrimination-aware classification that neither
require data modification nor classifier tweaking. Our first
and second solutions exploit, respectively, the reject option
of probabilistic classifier(s) and the disagreement region of
general classifier ensembles to reduce discrimination. We relate
both solutions with decision theory for better understanding
of the process. Our experiments using real-world datasets
demonstrate that our solutions outperform existing state-of-
the-art methods, especially at low discrimination which is a
significant advantage. The superior performance coupled with
flexible control over discrimination and easy applicability to
multiple sensitive attributes makes our solutions an important
step forward in practical discrimination-aware classification.

I. INTRODUCTION

Social discrimination is said to occur when a decision
in favor of or against a person or thing is made based
on the group, class, or category to which that person or
thing belongs to rather than on merit.The discrimination-
aware classification problem studies the construction and
use of classifiers learned from discriminatory or biased data.
The do-nothing approach of simply using a classifier built
from discriminatory data will propagate, if not exacerbate,
discriminatory decisions, which is undesirable for decision
makers at financial institutions, hiring agencies, and social
service providers. This do-nothing approach can lead to legal
violations and penalties as well.

Although several methods have been proposed in recent
years for discrimination-aware classification, they have two
key shortcomings. First, they require that either the discrim-
inatory data is ‘cleansed’ of discriminatory patterns before
learning a classifier or a specific classifier’s learning algo-
rithm is modified to make it discrimination-aware. Second,
they do not provide flexible control over discrimination. A
direct consequence of the first shortcoming is that whenever
discrimination w.r.t. a different sensitive attribute (or set
of attributes) needs to be addressed, the historical data or

classifier needs to be processed again. Being restricted to
a specific discrimination-aware classifier (e.g., naive Bayes
[1], decision tree [2]) is also an issue because that classifier
may not be the best performing classifier for a given dataset.

In this paper, we propose two flexible and easy-to-use
solutions for discrimination-aware classification based on
an intuitive hypothesis: discriminatory decisions are often
made close to the decision boundary because of decision
maker’s bias. We implement this hypothesis via decision
theoretic concepts of prediction confidence and ensemble
disagreement. Our first solution, called Reject Option based
Classification (ROC), exploits the low confidence region
of a single or an ensemble of probabilistic classifiers for
discrimination reduction. More specifically, ROC invokes
the reject option and labels instances belonging to deprived
and favored groups in a manner that reduces discrimination.
Our second solution, called Discrimination-Aware Ensemble
(DAE), exploits the disagreement region of a classifier
ensemble to relabel deprived and favored group instances
for reduced discrimination. Our proposed solutions have fol-
lowing advantages over existing discrimination-aware clas-
sification methods:

1) Our solutions are not restricted to a particular clas-
sifier: our first solution works with any probabilistic
classifier, while our second solution works with gen-
eral classifier ensembles.

2) Our solutions require neither modification of learning
algorithm nor preprocessing of historical data – pre-
trained classifiers can be made discrimination-aware
at prediction time. Thus, the change in the sensitive
attribute can be handled easily by decision makers.

3) Our solutions give better control and interpretability of
discrimination-aware classification to decision makers.

We perform extensive experimental evaluation of our
solutions on real-world datasets. The results demonstrate
better control of discrimination and superior accuracy-
discrimination trade-off, when compared to existing sate-
of-the-art discrimination-aware classification methods.

II. RELATED WORK

The topic of social discrimination-aware data mining was
introduced by Pedreschi et al. [3], [4], focusing on discovery
of discriminatory classification rules from biased datasets
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following a frequent itemset mining approach coupled with
a measure of discrimination. Proposed methods for discrim-
ination prevention are either based on data preprocessing
or algorithm tweaking. Data preprocessing methods modify
the biased data to remove discriminatory patterns from it
before learning a prediction model from it. In [5], data
transformations is proposed for making discovered discrim-
inatory classification rules discrimination-free according to
a discrimination measure. The key limitation of the methods
of [5] is their applicability to the rule based classifiers
only which may not be the best classifier for a given
problem. In [6], [7], data sampling and massaging techniques
are presented for removing discrimination w.r.t. a single
sensitive attribute. Although these techniques can support
the learning of any classifier, they are restricted to a single
sensitive attribute at a time.

Proposed methods for discrimination prevention using
model adaptation include the tweaking of decision trees [2],
naive Bayes classifiers [1], and logistic regression [8]. All
these methods require that the learning model or algorithm
is tweaked, and the first two methods are specific to their
respective classifiers. For example in [2], the authors propose
a strategy for relabeling the leaf nodes of a decision tree to
make it discrimination-free.

III. PRELIMINARIES

We consider a two-class problem with label 𝐶 ∈
{𝐶+, 𝐶−} defined over instances 𝑋 ∈ 𝒳 described by a
fixed number of attributes. A discriminatory dataset 𝒟 =
{𝑋𝑖, 𝐶𝑖}𝑁𝑖=1 is available in which the labels 𝐶𝑖 may be bi-
ased w.r.t. sensitive or discriminatory attributes, e.g., Gender
or Race. We assume that 𝐶+ is the desirable label. The
instances in 𝒳 can be distinguished between those belonging
to a given deprived group 𝒳 𝑑 and favored group 𝒳 𝑓 , where
𝒳 𝑑 ∩ 𝒳 𝑓 = ∅ and 𝒳 𝑓 = 𝒳 ∖ 𝒳 𝑑. All instances in the
deprived group 𝒳 𝑑 have specific value(s) assigned to spe-
cific attribute(s). These attributes are called the sensitive or
discriminatory attributes (e.g., Gender, Race) of the problem,
which together with their values (e.g., {Gender=Female,
Race=Black}), define the deprived group of instances 𝒳 𝑑.

The task is to learn a classifier ℱ : 𝒳 → {𝐶+, 𝐶−}
over the given discriminatory data 𝒟 that does not make
discriminatory decisions based on the sensitive attribute(s)
due to legal constraints. As the convention for this problem
setting, the performance of the discrimination-aware classifi-
cation methods is determined by reporting their accuracy and
discrimination. Ideally, accuracy should suffer minimally as
discrimination is reduced to zero.

We use the definition of [1], [2], [6] to measure discrimi-
nation where the discrimination is equivalent to 𝑝(𝐶+∣𝑋 ∈
𝒳 𝑓 )− 𝑝(𝐶+∣𝑋 ∈ 𝒳 𝑑).

IV. OUR SOLUTIONS: ROC AND DAE

We propose two solutions for the discrimination-aware
classification problem. These solutions are obtained by re-
lating decision theoretic concepts with the discrimination
model (proposed in [7]) for better interpretation and flexible
control of decisions. Our first solution, called Reject Option
based Classification (ROC), utilizes posterior probabilities
produced by one or more probabilistic classifiers to iden-
tify instances for labeling in a manner that neutralizes
the effect of discrimination. Our second solution, called
Discrimination-Aware Ensemble (DAE), utilizes an ensem-
ble of classifiers to identify instances on which it disagrees
for labeling in a manner that reduces discrimination. Both
solutions provide an excellent control over the accuracy-
discrimination trade-off for the future classifications.

A. Reject Option based Classification (ROC)

Traditionally, a learned classifier assigns an instance to
the class with the highest posterior probability. Our first
solution deviates from this traditional decision rule and gives
the idea of a critical region in which instances belonging to
deprived and favored groups are labeled with desirable and
undesirable labels, respectively. We first present ROC for
single and multiple classifiers and then relate it with decision
theory for interpretation and control.

1) Single Classifier: Consider a single classifier, and
let 𝑝(𝐶+∣𝑋) be the posterior probability for instance 𝑋
produced by this classifier. When 𝑝(𝐶+∣𝑋) is close to 1
or 0 then the label for instance 𝑋 is specified with a high
degree of certainty. However, when 𝑝(𝐶+∣𝑋) is closer to
0.5 then the label for instance 𝑋 is more uncertain. A reject
option can be adopted in classification whereby all instances
for which max[𝑝(𝐶+∣𝑋), 1− 𝑝(𝐶+∣𝑋)] ≤ 𝜃 (where 0.5 <
𝜃 < 1) are not assigned labels (or are labeled as ‘reject’).
We refer to this region as critical region. The instances in
the critical region (rejected instances) are considered to be
ambiguous and influenced by biases.

To reduce discrimination, these rejected instances are
labeled as follows: if the instance is an example of a deprived
group (𝒳 𝑑) then label it as 𝐶+ otherwise label it as 𝐶−.

The instances outside the critical region are classified
according to the standard decision rule, i.e., if 𝑝(𝐶+∣𝑋) >
𝑝(𝐶−∣𝑋) then 𝐶+ will be assigned to instance 𝑋; other-
wise, 𝐶− will be assigned to instance 𝑋 .

2) Multiple Classifiers: Classifier ensembles are known
to be more robust classifiers. In our problem setting of
discrimination-aware classification, a classifier ensemble can
be thought of as a pool of experts with varying character-
istics and biases – their combined output is expected to be
more reliable w.r.t. both accuracy and discrimination.

Let ℱ𝑘 (𝑘 = 1, . . . ,𝐾) denote the 𝑘th classifier in an
ensemble of 𝐾 > 1 classifiers, and 𝑝(𝐶,ℱ𝑘∣𝑋) be the
posterior probability of classification of instance 𝑋 produced
by classifier ℱ𝑘. The posterior probability of classification
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of the ensemble 𝑝(𝐶∣𝑋) =
∑𝐾

𝑘=1 𝑝(𝐶∣𝑋,ℱ𝑘)𝑝(ℱ𝑘). The
prior probability of a classifier, 𝑝(ℱ𝑘), can be taken to be
proportional to the accuracy of classifier ℱ𝑘 on the data. Or,
if such information is considered uninformative, the prior
probability distribution can be taken to be uniform, in which
case, the posterior probability of the ensemble is simply the
average of the posterior probabilities of each classifier in the
ensemble.

Given the posterior probability of an ensemble 𝑝(𝐶∣𝑋)
(as given in the previous paragraph), ROC proceeds in the
manner as discussed for a single classifier in the previous
subsection. ROC algorithm is shown in Algorithm 1.

Algorithm 1: Reject Option based Classification (ROC)

Input: {ℱ𝑘}𝐾𝑘=1 (𝐾 ≥ 1 probabilistic classifiers trained
on 𝒟), 𝒳 (test set), 𝒳 𝑑 (deprived group), 𝜃
Output: {𝐶𝑖}𝑀𝑖=1 (labels for instances in 𝒳 )
** Critical region **
∀𝑋𝑖 ∈ {𝑍∣𝑍 ∈ 𝒳 ,max[𝑝(𝐶+∣𝑍), 1− 𝑝(𝐶+∣𝑍)] < 𝜃}

If 𝑋 ∈ 𝒳 𝑑 then 𝐶𝑖 = 𝐶+

If 𝑋 ∕∈ 𝒳 𝑑 then 𝐶𝑖 = 𝐶−

** Standard decision rule **
∀𝑋𝑖 ∈ {𝑍∣𝑍 ∈ 𝒳 ,max[𝑝(𝐶+∣𝑍), 1− 𝑝(𝐶+∣𝑍)] ≥ 𝜃}
𝐶𝑖 = argmax{𝐶+,𝐶−}[𝑝(𝐶

+∣𝑋𝑖), 𝑝(𝐶
−∣𝑋𝑖)]

3) Interpreting and Controlling ROC: In this section, we
develop a decision theoretic understanding of ROC. Given
the posterior probability 𝑝(𝐶+∣𝑋) produced by a single or
ensemble of probabilistic classifiers, the best label for in-
stance 𝑋 , that minimizes the expected loss of classification,
is given by the 𝑗 ∈ {+,−} that minimizes:

𝐿+,𝑗𝑝(𝐶
+∣𝑋) + 𝐿−,𝑗(1− 𝑝(𝐶+∣𝑋)) (1)

Here, 𝐿+,− quantifies the loss incurred in classifying a
positive instance as negative. These quantities are typically
given in a loss matrix, with rows representing actual labels
and columns giving predicted labels (Table I). If all classifi-
cation errors incur a constant loss (e.g., 𝐿+,− = 𝐿−,+ and
𝐿+,+ = 𝐿−,− = 0), then the above decision rule, which
is the standard decision rule, ensures the lowest loss in the
accuracy of classification.

The trade-off between accuracy and discrimination is con-
trolled by 𝜃; in general the resultant discrimination decreases
by increasing the value of 𝜃, as more deprived and favored
group instances are likely to be labeled with 𝐶+ and 𝐶−,
respectively. Note that, for any given value of 𝜃, the expected

Table I
LOSS MATRIX

Actual↓, Predicted→ 𝐶+ 𝐶− 𝐶𝑟

𝐶+ 𝐿+,+ 𝐿+,− 𝐿+,𝑟

𝐶− 𝐿−,+ 𝐿−,− 𝐿−,𝑟

Table II
ROC LOSS MATRICES.

Deprived Insts Favored Insts
Actual↓, Predicted→ 𝐶+ 𝐶− 𝐶+ 𝐶−

𝐶+ 0 𝜃
1−𝜃

0 1

𝐶− 1 0 𝜃
1−𝜃

0

reduction in accuracy is the minimum possible because
only instances with small posterior probabilities (close to
decision boundary) might be potentially misclassified in the
relabeling process. To achieve a specified discrimination
level, the value of 𝜃 can be determined by using a validation
dataset or input by the domain expert.

Typically in classification, a uniform cost or loss is
associated with all errors, irrespective of them being false
positives or false negatives. That is, 𝐿+,− = 𝐿−,+ (see Table
I), and conveniently this loss can be taken to be 1. The reject
option can be invoked by considering a third prediction label
(𝐶𝑟 for reject) and taking 𝐿+,𝑟 = 𝐿−,𝑟 = 1− 𝜃. Thus, the
loss for rejecting an instance depends upon the value of 𝜃 –
the larger its value is , the smaller the loss for rejection is.

The entire rejection and relabeling procedure of ROC
can also be modeled via loss matrices. Consider a separate
2 × 2 (no 𝐶𝑟 label) loss matrix for deprived and favored
group instances (Table II). Our discrimination reducing
and accuracy preserving classification is achieved when
𝐿𝑑
+,− = 𝐿𝑓

−,+ = 𝜃/(1− 𝜃), with the other values remaining
unchanged from the usual loss matrix (Table I).

Thus, ROC can be interpreted as a cost-based prediction
method in which the cost or loss of misclassifying a deprived
group instance as negative is 𝜃/(1−𝜃) times that of misclas-
sifying it as positive. A similar statement can be made for
favored group instances. For example, when 𝜃 = 0.6 then
a 50% higher loss is associated with one type of error as
compared to the other.

B. Discrimination-Aware Ensemble (DAE)

Reject option based classification fits well to probabilistic
classifiers. However, not all classification models produce
probability estimates, and probabilistic classifiers may not
perform well over some given dataset. Our second solution
is not restricted to probabilistic classifiers only. It makes an
ensemble of (probabilistic, non-probabilistic, or mixed) clas-
sifiers discrimination-aware by exploiting the disagreement
region among the classifiers.

A standard classifier ensemble classifies new instances
by assigning the majority class label. Our solution deviates
from this standard procedure to neutralize the effect of
discrimination. Specifically, if all member classifiers predict
the same label, the agreed class label is assigned; otherwise,
we compensate the instances belonging to the deprived
group by assigning them the 𝐶+ label and penalize the
instances belonging to the favored group by giving the 𝐶−

label.
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Algorithm 2: Discrimination-Aware Ensemble (DAE)

Input: {ℱ𝑘}𝐾𝑘=1 (𝐾 > 1 classifiers trained on 𝒟), 𝒳
(test set), 𝒳 𝑑 (deprived group)
Output: {𝐶𝑖}𝑀𝑖=1 (labels for instances in 𝒳 )
** Disagreement **
∀𝑋𝑖 ∈ {𝑍∣𝑍 ∈ 𝒳 , ∃(𝑗, 𝑘) ℱ𝑗(𝑍) ∕= ℱ𝑘(𝑍)}

If 𝑋 ∈ 𝒳 𝑑 then 𝐶𝑖 = 𝐶+

If 𝑋 ∕∈ 𝒳 𝑑 then 𝐶𝑖 = 𝐶−

** Agreement **
∀𝑋𝑖 ∈ {𝑍∣𝑍 ∈ 𝒳 , ∀(𝑗, 𝑘) ℱ𝑗(𝑍) = ℱ𝑘(𝑍)}
𝐶𝑖 = argmax{𝐶+,𝐶−}[𝑝(𝐶

+∣𝑋𝑖), 𝑝(𝐶
−∣𝑋𝑖)]

This strategy is based on the discrimination model of [7]
that discrimination impacts instances close to the decision
boundary. We use the same intuition in this solution that
member classifiers disagree more on the instances that are
close to the decision boundary. In other words, disagreement
allows us to identify instances that may be misclassified
due to discrimination. We can draw a parallel between an
ensemble and an admission committee: let us assume that
some members of the committee are biased against female
applicants and try to reject their applications, it is very likely
that these members will only be able to affect the applicants
close to the decision boundary because the highly qualified
female applicants cannot be rejected due to their overall high
score. If we consider member classifiers of an ensemble as
admission committee members, then having more classifiers
in the ensemble may neutralize the discriminatory effect of
ensemble due to the fair classifiers. Thus, using ensembles is
very useful by nature towards the solution of discrimination-
aware classification problem.

Selecting and Controlling a DAE: We next discuss
an important question that which DAE should we choose
and how does it impact the discrimination? This is an
important question for practitioners of discrimination-aware
classification. It is possible that one DAE performs very
well w.r.t. accuracy but also produces high discrimination.
In this section, we develop an understanding of DAE’s
performance. We start by defining a measure of DAE dis-
agreement:

Definition 1: (Disagreement of a DAE): Given a DAE
{ℱ𝑘}𝐾𝑘=1 (𝐾 > 1) built on discriminatory dataset 𝒟 =
{𝑋𝑖, 𝐶𝑖}𝑁𝑖=1, the disagreement of the DAE w.r.t. dataset 𝒟,
denoted as 𝑑𝑖𝑠𝑎𝑔𝑟𝒟, is defined as:

𝑑𝑖𝑠𝑎𝑔𝑟𝒟 =
∣{𝑋𝑖∣∃(𝑗, 𝑘) ℱ𝑗(𝑋𝑖) ∕= ℱ𝑘(𝑋𝑖)}∣

∣{𝑋𝑖}∣
In general, lager disagreement of a DAE leads to lower

discrimination, because the DAE will disagree on more
instances and all such instances belonging to the deprived
group are labeled with 𝐶+ and the rest are labeled with
𝐶−. Disagreement, as defined above, can be considered as

a measure of ensemble diversity as well. Ensemble diversity
has been shown to be positively correlated with ensemble
accuracy determined via majority vote [9]. Although we
do not follow majority vote strategy in DAE, classification
accuracy of DAE is preserved as only ambiguous (disagreed
upon) instances are relabeled.

The trade-off between accuracy and discrimination will
depend upon both disagreement and the number of instances
that are incorrectly classified. As a DAE with more diverse
classifiers tends to have larger disagreement, it will cause
less discrimination. Therefore, the discrimination of a DAE
can be controlled by changing the diversity of its member
classifiers. To select a DAE with a specific discrimination
level, a validation dataset can be used. The Discrimination-
Aware Ensemble (DAE) algorithm is given in Algorithm 2.
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Figure 1. Discrimination-accuracy trade-off of ROC on two datasets. For
each dataset, 𝜃 is increased from 0.5 (top right points representing standard
decision boundaries) to 0.95 (bottom left points).

V. EXPERIMENTAL EVALUATION

We present and discuss results of the following ex-
periments: (1) Reject Option based Classification (ROC)
using single and multiple probabilistic classifiers, identi-
fied as ROC (classifier) and ROC (1st classifier+2nd
classifier+. . . ), respectively. (2) Discrimination-Aware En-
semble (DAE) of two or more classifiers, identified as
DAE (1st classifier+2nd classifier+. . . ). (3) Comparison
of our solutions’ results with those of current state-of-the-
art discrimination-aware classification methods, identified
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as Prev Methods; (4) Evaluation of ROC and DAE w.r.t.
different and multiple sensitive attributes.

Since our solutions are not restricted to any spe-
cific classifier, we consider several standard classifiers for
discrimination-aware classification (identifying label of each
classifier is given in parenthesis): naive Bayes (NBS), lo-
gistic regression (Logistic), 𝑘-nearest neighbor (IBK), and
decision tree (J48).

Datasets: We conduct our experiments on two real-world
datasets: Adult, Communities and Crimes [10]. The Adult
dataset has 16,281 instances of demographic information
of people. Each instance is described by 8 categorical
and 6 numerical attributes. We use the income attribute
as the class attribute. We consider sex to be the sensitive
attribute and sex=female as the deprived group (𝑋𝑑). The
Communities and Crimes dataset contains information about
the criminal involvement of 1,994 individuals in the United
States. Each individual is described by 122 attributes which
are used to predict the total number of violent crimes per
100K population. We consider black individuals to form
deprived group, and define this group as all individuals with
the numerical attribute racepctblack > 0.06. To define the
desirable and undesirable classes we discretize the prediction
attribute into minor and major violent communities.

All results reported in the paper are obtained using 10-
fold cross-validation and each point in the figures represents
the result of an independent experiment.
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Figure 2. Discrimination-accuracy trade-off of DAE on two datasets. For
each dataset, several classifier ensembles are shown with their accuracy and
discrimination.

A. Results of ROC

Figure 1 shows the results of our experiments with ROC
on two datasets ((a), (b)). The X- and Y-axis of these
plots represents classifier(s) discrimination and accuracy,
respectively, and each point is for a specific value of 𝜃 which
is varied from 0.5 to 0.95. It is observed that as the value of
𝜃 is increased from 0.5 to 0.95, the discrimination usually
reduces to zero around 𝜃 = 0.9. Furthermore, the reduction
in discrimination with increase in 𝜃 is generally smooth
and consistent across datasets and classifier(s). Thus, ROC’s
discrimination level can be controlled easily by varying
the value of 𝜃. The minimum drop in accuracy for any
given value of 𝜃 makes ROC a robust solution for practical
discrimination-aware classification.

Figure 1 shows the results for selected single and multiple
classifiers. The flexibility in choice of classifier(s) makes
ROC widely applicable to different domains and datasets. In
general, the classifier(s) that produces the highest accuracy
at 𝜃 = 0.5 for a given dataset also has a good accuracy-
discrimination trade-off curve, making the choice of classi-
fier(s) easier for decision makers.

B. Results of DAE

Figure 2 shows the results of our experiments with DAE
over two real world datasets ((a), (b)). In these plots, member
classifiers of different DAEs are listed on the lower X-
axis, DAE disagreement is given on the upper X-axis, DAE
discrimination is shown on left y-axis, and DAE accuracy
is given on right Y-axis. These results demonstrate that
discrimination can be controlled by varying the disagreement
of the DAE. For all datasets, higher disagreement results in
lower discrimination. The disagreement of a DAE, which
also measures the diversity of its member classifiers, can be
increased by adding more classifiers. Alternatively, the dis-
agreement can be increased by including diverse classifiers
in a DAE.

Accuracy generally decreases with increase in disagree-
ment and reduction in discrimination. Nonetheless, accuracy
remains robust since it is based on the agreement of member
classifiers of an ensemble.

C. Comparison with Previous Methods

We compare the performance of ROC and DAE with that
of previous methods of discrimination-aware classification.
Figure 3 provides a detailed comparison of results on
the two real-word datasets ((a), (b)). It is clear from this
figure that our solutions outperform the previously proposed
discrimination-aware classification methods of [1], [2], [6]
w.r.t. accuracy discrimination trade-off. For each dataset, the
accuracy-discrimination curve of a ROC or DAE lies above
all previously reported results, confirming the performance
superiority of our solutions. More importantly, our solutions
significantly outperform previous methods on the left end of
the plots where discrimination is low but accuracy is high.
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Figure 3. Comparison of ROC and DAE with existing state-of-the-art
methods on three datasets.

These results, coupled with ease-of-use and flexible control,
of our solutions make them a major step forward in practical
discrimination-aware classification.
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Figure 4. Performance of ROC with different sensitive attributes on the
Adult dataset.

D. Multiple Sensitive Attributes

A key shortcoming of previous methods is the diffi-
culty of handling multiple sensitive attributes which typ-
ically requires processing the data or classifier again. On
the other hand, our solutions make standard classifier(s)
discrimination-aware w.r.t. sensitive attribute(s) at run-time.
Thus, our solutions are easy to apply to multiple sensitive
attributes or different definitions of deprived groups. We
demonstrate this in Figure 4, which shows the accuracy-
discrimination trade-off of ROC w.r.t. three sensitive at-
tributes (gender, education, race) on Adult dataset. We
observe that discrimination decreases towards zero for all

sensitive attributes without repeating the learning procedure
by simply increasing the value of 𝜃 from 0.5.

VI. CONCLUSION

In this paper, we present and evaluate two new solutions
for the discrimination-aware classification problem. These
easy-to-use and flexible solutions utilize decision theory to
make standard probabilistic classifiers (ROC) and classifier
ensembles (DAE) discrimination-aware. Both ROC and DAE
ensure discrimination-aware classifications at run-time with-
out data modification or algorithm tweaking. Moreover, both
solutions provide the decision maker with easy control over
the resulting discrimination. ROC can also be interpreted
as a cost-based classification method in which the cost of
misclassifying a deprived group instance as negative is much
higher than that of misclassifying a favored group instance
as negative. Our experimental evaluations on two real-word
datasets confirm the advances of our solutions and their
superior performance when compared to existing state-of-
the-art methods. As such, our solutions appear to be a major
step forward in practical discrimination-aware classification.

In future, we plan to further investigate the critical region,
e.g., instead of applying a uniform strategy to all rejected
instances we can handle the rejected instances w.r.t. their
individual characteristics.
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