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Abstract—In data mining we often have to learn from biased
data, because, for instance, data comes from different batches or
there was a gender or racial bias in the collection of social data.
In some applications it may be necessary to explicitly control this
bias in the models we learn from the data. This paper is the first
to study learning linear regression models under constraints that
control the biasing effect of a given attribute such as gender or
batch number. We show how propensity modeling can be used for
factoring out the part of the bias that can be justified by externally
provided explanatory attributes. Then we analytically derive
linear models that minimize squared error while controlling the
bias by imposing constraints on the mean outcome or residuals
of the models. Experiments with discrimination-aware crime
prediction and batch effect normalization tasks show that the
proposed techniques are successful in controlling attribute effects
in linear regression models.

Keywords—Linear Regression; Fair Data Mining; Batch Ef-
fects; Propensity Score

I. INTRODUCTION

In data mining we are often confronted with situations
where we have to learn from data that is biased in one way
or another. A first potential reason of data bias comes from
data being collected from different sources; nowadays, many
companies and scientific communities are collecting huge data
repositories, opening up unprecedented opportunities for data
mining. For instance, by combining data from multiple medi-
cal studies one may be able to identify statistically relevant
patterns that are not apparent in the individual datasets in
isolation. More recently, another type of bias arising from
dependence on a socially sensitive attribute was identified
in the data mining community [1]–[3]. This type of bias,
which in general can be categorized as a measurement-cum-
selection bias, can lead to unfair and illegal decisions if not
controlled in statistical models. For instance, in a demographic
dataset it may be observed that for the same type of work,
overall females receive a lower income than males. A classifier
trained on such a dataset may pick up this dependency and
predict lower wages either directly for females, or indirectly for
persons with female characteristics. Depending on the appli-
cation field, using such a biased classifier may be undesirable,
unethical, or even illegal.

From now onward, we will abstract away from the reason
of the data bias, and assume that (1) the data can be grouped
in one way or another, by batch, gender, ethnicity, or any
other grouping attribute, (2) there is a bias with respect to
this grouping, and (3) we want to control and remove, at

least to some extent, this bias in the models we learn from
the data. Specifically, we study how we can learn linear
regression models in such a situation by imposing additional
constraints on the learning process. There already exist several
approaches for removing the bias from the training data [4].
These approaches, however, may fail to identify some specific
subgroups of the data where the bias occurs. Our approach is
the first one to directly adjust regression models. As such, it
is orthogonal to existing bias removal techniques and can be
used in combination.

We start by proposing two measures, one based on the
mean difference between predictions in one group versus the
other, and another one based on the area under the ROC curve
(AUC). Then, we introduce a way to deal with the fact that
often the bias can partially be justified by some explanatory
attributes. For example, attributes “number of working hours”
and “education level” may explain salary differences between
males and females to some extent. We assume that these
attributes are externally nominated by the domain experts. To
remove this effect of the explanatory attributes and balance the
groups, we use a technique from statistics, named propensity
modeling. Based on a so-called propensity score we divide the
data into strata such that within the stratum none of the bias
can be justified by the explanatory attributes.

Once the explanatory part of the bias has been removed
by dividing into strata, we start the modeling process. To
compensate for the remaining, unexplainable bias in the input
data, we impose additional constraints in the learning process.
We study two constraints: the first constraint imposes that the
mean prediction needs to be the same for the different batches
or groups. Loosely speaking, this constraint expresses that
members of the different groups need to be treated similarly
even if that is not the case in the input data. The second
constraint expresses that the mean residuals needs to be the
same; that is, the errors for the different groups need to be
balanced. For both constraints we show analytical solutions to
derive an optimal linear regression model on the training data
under different conditions: one model per stratum versus one
general model valid for all strata, and whether or not the group
identifier is part of the final model. Depending on the setting
the result is hence either one unbiased model per stratum, or
one global model that is unbiased conditioned on stratum.

All techniques have been implemented and were tested on
two datasets. The experiments show that the techniques are
able to satisfy the constraints on the training data and that
these results carry over to the test data. They also demonstrate
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the applicability of the techniques for discrimination-aware
regression and source rating normalization.

In summary, our contributions in this paper are as follows:

1) For the first time the problem of bias control in
regression models is introduced. We present two
measures to quantify bias; one based on the mean
difference in predictions, and one on the AUC.

2) For the first time the issue of attributes explaining
part of the bias is treated in a principled way, based
upon the propensity scoring technique from statistics.

3) A new technique for controlling the influence of a
categorical grouping attribute, such as batch number
or ethnicity, in linear regression models is presented.
This technique is based upon the introduction of con-
straints in the optimization problem at the basis of the
ordinary least squares regression modelling. Optimal
analytical solutions to the constrained optimization
problem are derived.

4) Experiments with two real datasets show the potential
of the two step technique consisting of first remov-
ing the explanatory bias with the propensity based
method, followed by the induction of a regression
model under constraints.

II. RELATED WORK AND MOTIVATION

Bias in observations and statistical models has been studied
for decades with applications in sociology [5], econometrics
[6], and biomedicine [7]–[9]. Also attribute bias in regression
models appears in many applications. The issue of gender
income or wage gap, for instance, has been studied extensively
in sociology and economics [10], [11]. Legislation exists
in many countries that disallow wage discrimination with
respect to gender, with severe penalties stipulated for violating
employers. Thus, a discrimination-ignorant approach to wage
prediction based on historical data (which is often biased)
can lead to violation of laws. Similarly, racial discrimination
in criminology and police arrests is a continuing concern
[12]–[14]. In this setting, a discrimination-ignorant regression
model based on historical data can further exacerbate the racial
discrimination. This has been demonstrated recently for crime
suspect prediction using real-world data [14].

There already exist quite some works in discrimination-
aware classification that deal with social discrimination during
learning a classifier. For instance, techniques exist for learning
decision trees [15], Bayesian models [16], and logistic regres-
sion [2] from biased data. The regression problem we study
in this paper, however, is more challenging in the following
senses. Firstly, instead of assessing the correlation between
two categorical attributes (for instance race and label), we
now have to assess the correlation between the categorical
sensitive attribute and the continuous target. Secondly, the
number of ways to change how a model predicts increases
greatly; in classification the only possible modification is the
change of one class label into another. For regression tasks,
the continuous character of the target allows for a continuous
range of potential changes.

Besides the discrimination-aware regression application,
attribute bias arises in many other application domains as
well. For example, two publishers or evaluators can generate

ratings for products/services where the ratings of one publisher
are generally higher than that of the other [17], [18]. It is
therefore important that this bias is controlled in any regres-
sion model learned over data from both publishers. Another
application of bias-aware regression is that of observational
and experimental studies of data from two or more different
sources with different selection and measurement biases [19].
One notorious example of such data collections comes from
the field of computational biology, where huge repositories of
experimental micro-array data from different studies are being
collected such that they can be combined and reused in new
studies. Regarding these collections, however, Chen et al. [20]
state that “data produced by the thousands of micro-array
studies published annually are confounded by “batch effects,”
the systematic error introduced when samples are processed
in multiple batches. Although batch effects can be reduced by
careful experimental design, they cannot be eliminated unless
the whole study is done in a single batch.” This type of bias
arises in other situations as well, like product ratings being
influenced by their source/publisher [18]. It is crucial to either
remove such bias before mining, or to explicitly take it into
account during the learning process.

A situation in which the failure to remove bias in
an application leads to undesirable outcomes comes from
Sweeney [21], who analyzed ads provided by Google, and came
to the conclusion that for certain searches “a black-identifying
name was 25% more likely to get an ad suggestive of an arrest
record” and raised the question whether “Google’s advertising
technology exposes racial bias in society and how ad and
search technology can develop to assure racial fairness.”
Discrimination-aware data mining studies the development and
application of methods for discovering and preventing discrim-
ination from models learned over discriminatory datasets.

III. PRELIMINARIES

In this section, we introduce the task of controlling the
effect of an attribute in a regression model and we define
different measures of model unbiasedness.

We consider a dataset D = {xi, ti}
N
i=1. The vector xi

represents the input attributes and the scalar ti represents the
target for the ith instance. We will focus our work on learning
linear regression models of the form t(x) = w0 + w

T
x.

For notational convenience, we take parameter w0 as the first
element of weight vector w and x0 = 1 as the first element of
all input vectors xi. We denote the length of the vectors w and
xi by M . Furthermore we assume that D can be divided into
different groups, based upon a factor, or grouping attribute xs.
For ease of presentation we will restrict our derivations to a
factor with two levels, dividing the dataset into two partitions
D↑ and D↓. All results can be generalized to multiple groups.
We will use N↑ and N↓ to respectively denote the number
of instances in D↑ and D↓. In the case of social fairness, for
example, xs could be gender dividing D into D↑, the males,
and D↓, the females. Inspired by the applications in fairness-
aware data mining we will often refer to the factor xs as the
sensitive attribute.

The specific goal in the paper is to learn the weights w of
a linear regression model such that the sum of squared errors,

SSE :=
∑N

i=1(w
T
xi − ti)

2, on D is minimized, while the
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TABLE I. EXAMPLE DATASET FOR A SALARY STUDY. WAGE IS THE

TARGET VARIABLE. THE DATA IS BIASED TOWARD LOWER WAGES FOR

FEMALES.

# Gender
Study

(Years)
Working

Hours

Sector

Health?

Wage

(K)
1 M 5 40 0 66

2 M 5 40 0 66

3 M 3 40 1 60

4 M 2 30 0 44

5 M 2 40 1 56

6 F 4 40 1 60

7 F 3 40 0 55

8 F 3 30 1 42

9 F 2 30 0 40

10 F 2 30 1 40

direct and indirect influence of the sensitive attribute xs in the
predictions gets controlled.

While presenting our strategy for quantifying and con-
trolling attribute bias in regression models, we will illustrate
concepts and techniques by referring to a fictitious employee
wage dataset, given in Table I, that is known to be biased or
discriminatory with respect to attribute gender, with female
employees generally having lower wages than comparable
male employees. In this example, education level (expressed
as number of years of study), weekly working hours, and
whether or not the person works in the health sector are the
predictor attributes, wage is the target variable, and gender is
the sensitive attribute describing the grouping.

Example 1: When learning a linear regression model on
the dataset of Table I, we find the following model (female is
encoded as G = 0, male as G = 1):

−4×G + 3.3× S + 1.3×W + 0.16× HC − 1.1 (1)

Hence, we can see a strong influence of gender in the pre-
dictions. If we remove Gender from the list of attributes, we
obtain the following model:

3.1× S + 1.5×W − 0.7× HC − 8.9 (2)

Here we can observe the influence of HC (person working
in the health care sector) increases as this sector has a high
relative number of female employees and is used as a proxy.
The mean salary for males under this model is 58.4, and
for females is 51.4. This example already shows that simply
removing the Gender attribute does not solve the problem.

A. Measuring Imbalance in Data and Models

Intuitively, an attribute effects a target variable if there is
a statistical dependency between the attribute and the target.
Since the sensitive attribute xs is binary valued while target
variable t is continuous, it is not possible to use typical
same-type measures of dependency like correlation coefficient
and point-wise mutual information to quantify the statistical
dependency between xs and t. We will use the Mean Differ-
ence (MD) and the Area Under the ROC Curve (AUC) for
quantifying the effect of xs on the target variable.

Definition 1: (MD): The mean difference (MD) of the
continuous target variable t in dataset D, partitioned into D↑

and D↓ by a sensitive attribute xs is given by:

MD(t, xs;D) =

∑
(x,t)∈D↑ t

N↑
−

∑
(x,t)∈D↓ t

N↓
(3)

The mean difference is a real number with a value of zero
signifying no dependency or attribute effect.

Definition 2: (AUC): The area under the ROC curve
(AUC) of the continuous target variable t in dataset D,
partitioned into D↑ and D↓ by a sensitive attribute xs, is given
by:

AUC (t, xs;D) =

∑
(xu,tu)∈D↑

∑
(xd,td)∈D↓ I(tu > td)

N↑ ×N↓
(4)

where I(·) is the indicator function that returns 1 when its
argument is true and 0 otherwise.

The AUC varies from zero to one, and it is symmetric around
0.5 which represents random predictability or zero attribute
effect. The AUC value is a statistically consistent measure of
predictive strength [22].

In the definitions above, the effect of the sensitive attribute
on the target is measured; however, similar definitions can be
applied to regression models y(x) = w

T
x, by replacing the

true target t with either the prediction y(x), or the residual
y(x) − t. In this way, we get the measures MDo and AUC o

that measure the effect of xs on the outcome of the regression
model, and MDr and AUC r that measure the effect of xs on
the residuals of the regression model’s predictions.

Example 2: For the example dataset of Table I,
MD(wage, gender) = 58.4 − 47.4 = 11, and
AUC (wage, gender) = 21/25 = 0.84. Thus, there is a
strong (predictive) dependency between wage and gender.
The regression model of Equation (2) makes the following
(rounded) predictions for the dataset:

# 1 2 3 4 5 6 7 8 9 10
score 65 65 58 41 55 61 59 44 41 40

The residuals are:

# 1 2 3 4 5 6 7 8 9 10
score −1 −1 −2 −3 −1 1 4 2 1 0

Hence, the measures for the classifier are as follows:

prediction residual

MD 7.85 -3.15
AUC 0.68 0

From this we can conclude that the classifier’s predictions
are still biased with respect to gender, although the bias is
less strong. From the measures applied to the residuals we
learn that the errors that the classifier makes (if we consider
the target t as the ground truth), are highly biased; salaries
of males are systematically underestimated, while those of
females are overestimated. Such a strong bias in the residuals
may indicate a so-called omitted variable bias; in this case
omitting the gender attribute led to the overestimation of the
effect of “Sector Health?” attribute and overestimation (in
absolute terms, but in negative direction) of the constant factor.

IV. ADJUSTING FOR EXPLANATORY ATTRIBUTES: A
PROPENSITY SCORE BASED APPROACH

In many cases we cannot directly apply our constraint-
based method, because it is unreasonable to assume that the
constraint holds on the raw data. In the example of the wages in
section III, for instance, the reason for lower wages of females
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can partially be attributable to their shorter working hours. To
filter out this explainable difference, we propose a propensity
score based stratification approach for balancing the dataset.

A. Propensity Modeling

We illustrate the propensity score with an example. The
treatment patients receive often depends on their general
condition, which in turn has a direct influence on their survival
(the target variable). If we want to study the influence of
treatment A versus B on survival, we will have to adjust
for all parameters that influenced the treatment the patient
received, including his or her general health at the start of the
treatment. That is, we determine the propensity of a patient
to receive a certain treatment based on his or her parameters
and capture it as a score. This score is usually estimated from
the dataset by a logistic regression model. Roughly put, this
score expresses how likely the patient was, based on his or
her characteristics, to receive treatment A (regardless of the
treatment he or she received in the end). An important property
of the propensity score is [23]: given the propensity score, the
target is independent of the explanatory attributes. Thus, two
instances that have the same propensity score should have the
same value for the target, as explained by these attributes; if
the target values differ, then this represents an unexplained
effect (unexplained by the specified explanatory attributes) of
the attribute on the target. After obtaining the propensity score,
it is either included as part of the prediction model, or the
analysis is designed as to ensure that only patients with similar
propensity are compared. We will base ourselves on a common
technique that partitions the input data into strata according to
the propensity score.

B. Accounting for Explainable Bias

In our setting, we assume there are externally provided
explanatory attributes xe, such as the number of working hours
and years of study in the wages example, or a set of variables of
which we know that they have been varied between different
batches of data. The differences in treatment of the groups
D↑ and D↓ that is explainable by these variables xe can be
considered explainable bias, and should not be controlled. To
achieve this, we proceed as follows:

1) The propensity score is defined as the conditional
probability that a randomly selected instance of D
belongs to D↑, given the explanatory attributes, i.e.,
ps = P (x ∈ D↑|xe).

2) Using the propensity scores the dataset is split into
five strata via the propensity score quintiles. That is,
each split contains 20% of the data lying between
quintile i and quintile i + 1 of the propensity score
(i = 0 . . . 5). Let Si (i = 1, 2, . . . , 5) denote the
five strata of dataset D. Recall the fact whether or
not x ∈ D↑ is independent of the variables xe,
conditioned on the ps , and hence within the strata,
the dependency between the division into D↑ and D↓

and the explanatory attributes xe will be minimal, as
all instances in a stratum have similar propensity.

The potential difference in treatment between D↑ and D↓

within a stratum can no longer be attributed to the explanatory
attributes. We will use AUC i = AUC (t, xs;Si) and MD i =

MD(t, xs;Si) to denote the AUC and MD for stratum i. AUC i

or MD i represent the unexplained effect of attribute xs on t
in stratum i. This is the effect that needs to be controlled or
removed in the regression models we learn.

Example 3: Suppose that for the data in Table I, we
assume that differences in salary between the genders can
partially be attributed to Study (numbers of years spent to
study) and Working Hours (number of working hours per
week). Hence, we consider the attributes Study and Working
Hours explanatory attributes. As a first step we will learn the
propensity score for Gender given these two attributes. For
the data the following logistic regression function for gender
is learned:

logit(p(Gender = female)) = −0.047×S−0.17×W +6.4

Based on this function, the following scores are computed for
the different instances. For the males:

# 1 2 3 4 5
score 0.32 0.32 0.34 0.75 0.35

And for the females:

# 6 7 8 9 10
score 0.33 0.34 0.74 0.75 0.75

Given the size of the dataset we will divide the dataset
into two strata instead of 5, and compute the MD and AUC
for both strata:

Stratum 1 Stratum 2

Males 1(66), 2(66), 3(60) 4(44), 5(56)
Females 6(60), 7(55) 8(42), 9(40), 10(40)

MD 6.5 9.33
AUC 5/6 = 83% 100%

So, in comparison to the measures on the complete dataset,
we can observe that the mean difference decreases while the
AUC increases. This reverse relation between the two measures
indicates that after filtering out the effect of the explanatory
variables, even though the differences in wages become smaller
on average, they also become more persistent.

V. CONTROLLING BIAS WITH CONSTRAINTS

In this section we will concentrate on learning models in
which the influence of a sensitive attribute xs on the target t is
controlled by constraints. In the last section we introduced an
approach based on propensity scoring to partition the dataset
into strata to reduce the biasing effect of a sensitive attribute
xs on the target t that can be justified by a set of explainable
attributes xe. This stratification will be an important first step
in our methodology to control the influence of xs, because
obviously we do not want to remove the explainable part of
the bias. Therefore, in the learning process, we will deal with
the remaining bias in the strata by either:

1) learning different models for every stratum separately,
and control the difference in treatment between D↑

and D↓ with a constraint,
2) or, learn one global model for the whole dataset

controlling the difference in treatment between D↑

and D↓ for all strata at the same time with multiple
constraints.
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We will consider the following two constraints on a model
y(x) for a stratum S:

Equal Means: The mean predictions for S↑ = D↑∩S and
S↓ = D↓ ∩ S need to be equal. That is:

MDo(y(x), xs;S) = 0

This constraint expresses that future predictions across the two
groups should be comparable, regardless if this was the case
in the original data or not. Notice that this constraint does not
depend on the target. As such, if the (unlabeled) test instances
are already known at training time, we could enforce this
constraint directly on the test instances.

Balanced Residuals: Sometimes we do have a true dif-
ference between two groups that can be reflected in the
predictions, as long as there is no bias in the errors made
by the predictor. This can be controlled by requiring that the
mean residual for both groups is equal:

MDr(y(x), xs;S) = 0

It could hence be acceptable that predictions in one group are
consistently higher than in the other group, as long as this was
the case in the original data, and the effect is not exaggerated.

We start by showing two analytical solutions in which the
constraints are strictly satisfied by the model. After showing
the solution for building a model for one partition, we extend
it to multiple partitions. We end the section with a relaxed
version where the degree to which the constraints are satisfied
is added as a penalty term.

A. Strict Equal Means Constraint

The goal is to learn the coefficients w of a linear function
w · x such that the SSE on S is minimized conditioned to
the strict constraint that the mean difference between the
predictions on S↑ and S↓ is 0. That is:

minimize
∑

(xi,ti)∈S

(w · xi − ti)
2

subject to

∑
(xi,ti)∈S↑ w · xi

N↑
S

=

∑
(xi,ti)∈S↓ w · xi

N↓
S

.

We will use d to denote

∑
(xi,ti)∈S↑ xi

N
↑

S

−

∑
(xi,ti)∈S↓ xi

N
↓

S

;

i.e., d is the difference between the mean vector of S↑ and
the mean vector of S↓. The condition for the mean difference
then becomes: w · d = 0.

We solve this minimization problem using Lagrange mul-
tipliers. We use the following Lagrangian for the constrained
minimization problem:

L :=
∑

(xi,ti)∈S

(w · xi − ti)
2 + 2λw · d

We take partial derivatives w.r.t. the coefficients wj :

∂L

∂wj

=
∑

(xi,ti)∈S

2(w · xi − ti)xij + 2λdj

= 2

⎛
⎝ ∑

(xi,ti)∈S

xixij

⎞
⎠ ·w − 2

∑
(xi,ti)∈S

tixij + 2λdj

Equating to 0 gives that for all j,
⎛
⎝ ∑

(xi,ti)∈S

xixij

⎞
⎠ ·w =

∑
(xi,ti)∈S

tixij − λdj

Hence, XT
Xw = X

T
t− λd,

and thus, w = (XT
X)−1

X
T
t− λ(XT

X)−1
d.

Together with the equality w · d = 0, we can solve for λ:

λ = 2

(
(XT

X)−1
X

T
t
)
· d

((XTX)−1d) · d

Reinserting this in the formula for w, we get:

w = (XT
X)−1

X
T
t−

d
T(XT

X)−1
X

T
t

dT(XTX)−1 · d
(XT

X)−1
d

Example 4: Consider again the wages dataset of Table I.
If we apply the Equal Means constraint, the optimal linear
regression model becomes:

7×G + 3.3× S + 1.3×W + 0.16× HC − 1.1 (5)

In comparison to the model in Eq. 1, the gender attribute is
used to give a “bonus” to the females in the dataset. The
predictions (rounded) for this new model are:

# 1 2 3 4 5 6 7 8 9 10
score 61 61 54 38 51 65 61 49 45 45

The residuals are:

# 1 2 3 4 5 6 7 8 9 10
score −5 −5 −6 −6 −5 5 6 7 5 5

The measures for the classifier are as follows:

prediction residual

MD 0 -11
AUC 0.48 0

Not surprisingly, the mean difference for the predictions is 0,
and for the residuals it is −11. AUC follows the trend.

B. Strict Balanced Residual Constraint

We follow a similar approach as in last subsection. The
constraint for balanced residuals, however, is slightly different:

w · d =

∑
(xi,ti)∈S↑ ti

N↑
S

−

∑
(xi,ti)∈S↓ ti

N↓
S

.

We will denote the right-hand side of this equality by b. The
constraint thus becomes w · d − b = 0. Using the same
technique as for Equal Means, we obtain:

w = (XT
X)−1

X
T
t−

d
T(XT

X)−1
X

T
t− b

dT(XTX)−1 · d
(XT

X)−1
d

Example 5: Consider again the wages dataset of Table I.
This time, in contrast to the previous example, we do not need
a predictor that assigns equal wages to males and females in
our dataset, but we do need the errors between males and
females to be balanced. This time a model such as in Eq. (5)
is completely unacceptable, as it makes all negative errors on
the males and all positive errors on the females. Therefore,
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now we apply the Balanced Residuals constraint. Under this
constraint, the optimal linear regression model becomes:

−4×G + 3.3× S + 1.3×W + 0.16× HC − 1.1 (6)

This model is exactly the same as the normal linear regression
model in Eq. (1). This is not a coincidence as we will see
later, but true in general when the sensitive attribute partitions
D in two parts, and is used as one of the predictor variables.
If we omit the sensitive attribute gender, we get the following
model:

2.7× S + 2.1×W − 4× HC − 31 (7)

This model has a mean difference of 11, and a difference in
residual of 0, as expected. AUC follows this trend with 72%
for the predictions and 52% for the residuals.

C. Extending to Multiple Partitions and Groups

Recall that in the previous subsections we have dealt with
the case of only one constraint. Usually we will have multiple
constraints:

1) xs may have more than 2 values, and thus there are
more than 2 groups (D↑ and D↓) in the data; that is: D is
partitioned into D1, . . . , Dk by xs. In that case the constraints
for Strict Equal Means become:

w · d12 = 0, w · d13 = 0, . . . , and w · d1k = 0 ,

where d
1i denotes the difference between the mean of group

1 and group i. Similarly, for the Strict Balanced Residual
constraint, we get:

w · d12 = b12, w · d13 = b13, . . . , and w · d1k = b1k .

2) Sometimes it may be useful to build one global model
for the complete dataset, instead of different models for each
stratum. In such a case we may opt to enforce the Strict Equal
Means constraint on all strata at the same time, instead of
building separate models for the different strata. Again this
will result in a set of similar constraints. For instance, suppose
we have two groups D↓ and D↑, and � strata dividing D into
S1, . . . , S�. Let di, i = 1 . . . � denote

d
i :=

∑
(x,t)∈S↑

i

x

|S↑
i |

−

∑
(x,t)∈S↓

i

x

|S↓
i |

.

The Strict Equal Means constraint becomes:

w · d1 = 0, w · d2 = 0, . . . , and w · d� = 0 .

We will show how to optimize for multiple constraints
in general. For all cases described above, the optimization
problem can be casted as follows:

minimize
∑

(xi,ti)∈D

(xT
i w − ti)

2

subject to Δ
T
w = δ.

Δ is the matrix containing the d
ij’s or dj as columns, and

δ is a vector containing the constant factors bij , or 0.

Again we can use the same technique via Lagrange multi-
pliers. The Lagrangian for the multiple constraints is:

L :=
∑

(xi,ti)∈D

(xT
i w − ti)

2 + 2λT(ΔT
w − δ)

Equating the gradient with respect to w to 0, and solving for
λ gives:

λ = (ΔT(XTX)−1
Δ)−1

(
Δ

T(XTX)−1
X

T
t− δ

)
.

Substituting this into Δ
T
w = δ and solving for w gives the

following final formula for w:

w = (XT
X)−1

[
X

T
t−

Δ(ΔT(XTX)−1
Δ)−1(ΔT(XTX)−1

X
T
t− δ)

]

D. Relaxing the Constraints

In the previous two subsections we have required in our
analytical deductions that the constraints should be satisfied
exactly. This, however, can lead to degenerate solutions when
the number of constraints increases too much. Therefore, in
this section we study a somewhat more standard approach in
which we incorporate the constraints directly into the objective
function as penalty terms. For the “equal means” constraint
the objective to be minimized, using the notations introduced
before in this section, becomes:

obj :=
∑

(xi,ti)∈S

(w · xi − ti)
2 + α(w · d)2 , (8)

where α is a weighing factor controlling the influence of the
penalty term. This formula can be optimized by taking partial
derivatives for wj :

∂obj

∂wj

= 2
∑

(xi,ti)∈D

(w · xi − ti)xij + 2α(w · d)dj

= 2w ·

⎛
⎝ ∑

(xi,ti)∈S

xixij + αddj

⎞
⎠− 2

∑
(xi,ti)∈S

tixij

Equating all partial derivatives to 0 gives:

w = (XT
X+ αddT)−1(XT

t)

Due to space restrictions we do not show the formulas
for the other cases, as they can be derived using the same
techniques.

E. Relations Between the Approaches

The following theorem relates the different settings of
learning linear models with and without constraints to each
other. These relations, however, only hold when the sensitive
attribute xs splits the data in no more than two parts, and is a
predictive variable of the prediction model. The theorem can be
seen as a sanity check showing that in cases with full control
over the sensitive attribute in our models, the optimal solutions
under constraints can be obtained with intuitive adaptations to
unconstrained optimal models.

Theorem 1: Given a dataset D and a sensitive attribute xs

that divides the dataset into two partitions D↑ and D↓. We
assume D has full column rank.

Let w, wEM and wBR, be the optimal linear mod-
els w.r.t. SSE under, respectively, no constraint, the equal
means constraint, and the balanced residuals constraint, and
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let w
approx,α
EM and w

approx,α
BR be the optimal linear models

w.r.t. the approximate equal means and balanced residuals
optimization problems of Subsection V-D. Then the following
relations hold:

(1) w and wEM only differ in the constant term (w0) and
the coefficient for xs;

(2) w = wBR;

(3) w
approx,0
EM = w

approx,0
BR = w;

(4) limα→∞ w
approx,α
EM = wEM ; and

(5) limα→∞ w
approx,α
BR = wBR.

Proof: We first prove (2). This statement comes down
to showing that the optimal linear model without constraints
already has a mean residual of 0 in both D↑ (xs = 1) and D↓

(xs = 0): Suppose the average residual on D↑ is m↑ and on
D↓ is m↓. Let w

∗ be the following weight vector: take the
weight vector w and subtract m↓ from the intercept, and add
m↓−m↑ to the coefficient for xs. This will shift the predictions
for D↑ by −m↑ and those for D↓ by −m↓, making the mean
residual in both groups 0. In this way the SSE will decrease
by (N↑m↑)2+(N↓m↓)2. Since w was optimal this sum must
be 0 which is only possible if m↓ = m↑ = 0.

For (1), we will apply a similar construction with shifting
the regression lines. Suppose that the mean residual for the
weight vector wEM is ε↑ for D↑, and ε↓ for D↓. Construct
w

∗
EM by shifting wEM to reduce the residuals in both groups

to 0 as above. The mean difference in outcome for w∗
EM will

increase, due to this shift, to ε↑−ε↓, and the SSE will decrease
by (N↑ε↑)2+(N↓ε↓)2. Since the residual of w∗

EM is 0 in both
D↑ and D↓, the mean outcome for D↑ (resp. D↓) by w

∗
EM

is equal to the mean target value for D↑ (resp. D↓). Hence,
we also have that ε↑ − ε↓ equals the difference between the
mean target value in D↑ and the mean target value in D↓.
Suppose that the mean difference between the groups of the
outcomes by the optimal unconstrained model with weights w
is δ. Since w has a mean residual of 0, δ must be equal to the
difference between the mean target value for D↑ and the mean
target value for D↓. Hence, δ = ε↑ − ε↓. Construct the weight
vector w′ such that the instances in D↑ are shifted by shift1 :=

−δ (N↓)2

(N↑)2+(N↓)2
, and those in D↓ by shift2 = −δ (N↑)2

(N↑)2+(N↓)2
.

The model based on vector w′ will have equal means in both
groups, since the sum of these two shifts is −δ, compensating
for the mean difference δ of w. The SSE of w′ is

SSE (w) + (shift1N
↑)2 + (shift2N

↓)2

= SSE (w) + (shift1N
↑)2 + ((−δ − shift1)N

↓)2 (9)

Since w is the optimal weight vector for the unconstrained
optimization problem, and wEM the optimal vector for the
equal means constraint, we get the following equations:

SSE (w) ≤ SSE (w∗
EM )

= SSE (wEM )− (N↑ε↑)2 − (N↓ε↓)2

SSE (wEM ) ≤ SSE (w′)

= SSE (w) + (shift1N
↑)2

+((−δ − shift1)N
↓)2

TABLE II. KEY CHARACTERISTICS OF CRIME AND WINE DATASETS

Crime Wine

N 1994 6497

M 99 11

t Crime Rate Rating

xs Race ∈ {black, non-black} Type ∈ {white, red}

N↑, N↓ 970, 1024 4898, 1599

MDO 0.22 0.94

AUCO 0.80 0.76

Combining the two equations leads to:

(shift1N
↑)2 + ((−δ − shift1)N

↓)2

≥ (N↑ε↑)2 + (N↓ε↓)2

= (N↑ε↑)2 + (N↓(−δ − ε↑))2 .

Since shift1 is the unique minimum of the function (xN↑)2+
((−δ − x)N↓)2, we can conclude from this that shift1 = ε↑

and shift2 = ε↓, and hence SSE (w) = SSE (w∗
EM ). Since D

has full column rank, the optimal weights minimizing the SSE
is unique, and hence w must be equal to w

∗
EM . This concludes

the proof, since w
∗
EM was obtained from wEM by changing

the weights for the constant factor and the coefficient for xs

only.

The proofs of (3), (4), and (5) are straightforward and have
been omitted due to space restrictions.

VI. EXPERIMENTS AND RESULTS

We evaluate the proposed techniques for controlling at-
tribute effects in linear regression models using two real
datasets. These datasets reflect different application settings
and problem domains. The first dataset, Communities and
Crime (Crime), is suitable for discrimination-aware regression
where a learned regression model is required to not dis-
criminate among communities of different races. The second
dataset, Wine Quality (Wine), is appropriate for batch effect
control where ratings for red and white wine are required to
be normalized. We discuss our techniques for each dataset in
the following sections.

A. Communities and Crime

The Communities and Crime (Crime) dataset1 contains
socio-economic information of communities and their crime
rates. The goal with this dataset is to learn a model for the
crime rate given communities’ socio-economic information.
Moreover, to prevent discrimination, it is required by law
that predictions are not discriminatory between favored and
deprived communities based on the majority race of the
communities.

For our experiments, we preprocess the dataset by re-
moving attributes with many missing values. We create two
groups of the dataset: one group comprises of communities
with a majority black population while the other group contains
communities with a majority non-black population. All the
attributes are standardized to zero mean and unit variance.
In the end, the Crime dataset contains 1994 instances (970
and 1024 instances, respectively, for black and non-black

1http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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TABLE III. CONSOLIDATED OVERALL DATASET RESULTS FOR CRIME AND WINE DATASETS

Crime Wine

MDR AUCR MDO AUCO RMSE MDR AUCR MDO AUCO RMSE

Data − − 0.22 0.80 − − − − 0.94 0.76 −
OLS-S -0.02 0.49 0.20 0.81 0.14 -0.05 0.48 0.90 0.89 0.83

SEM-S -0.21 0.16 0.01 0.50 0.20 -0.94 0.19 0.00 0.51 0.93

SBR-S 0.00 0.52 0.22 0.82 0.14 0.00 0.50 0.94 0.90 0.83

SEM-MP -0.05 0.41 0.17 0.76 0.14 -0.46 0.35 0.48 0.82 0.94

OLS-M -0.01 0.49 0.21 0.80 0.15 -0.04 0.48 0.90 0.89 0.83

SEM-M -0.04 0.43 0.18 0.75 0.16 -0.14 0.44 0.80 0.85 0.83

SBR-M 0.00 0.51 0.22 0.81 0.15 0.00 0.50 0.94 0.90 0.83

(a) (b) (c)
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Fig. 1. Experimental results for the Crimes dataset: (a) Mean outcome difference in different strata, (b) Mean residual difference in different strata, (c) Mean
residual difference in different strata, (d) RMSE in different strata, (e) Mean difference versus RMSE curve for regularized least squares

communities) described by 99 attributes. Table II shows key
characteristics of the Crime dataset.

1) Discrimination Analysis: The Crime dataset shows a
strong dependency between the target (Crime Rate) and the
sensitive attribute (Race). Communities with a majority black
population have a mean crime rate of 0.35 in comparison to
a mean crime rate of 0.13 for communities with a majority
non-black population (MDo = 0.22 and AUC o = 0.80).
However, part of this dependency can be explained by some
of the attributes like female divorce percentage and number of
illegal immigrants. Such explanatory or confounding attributes
can be identified by dependency analysis whereby attributes
that are highly correlated to both the target and the sensitive
attribute represent potential confounders. Domain background
knowledge may be required to filter out attributes that do not
contain any objective information for the target.

For our experiments, we identify and utilize four ex-
planatory attributes. Propensity score analysis with quintile
stratification reveals that the Crime Rate-Race dependency
within each stratum is significantly lower than that in the

entire dataset. Figures 1 (a) and 1 (b) show mean outcome
difference (MDo) and AUC value for outcome-sensitive at-
tribute (AUCo) in each stratum of the dataset (the dashed
lines). The average MDo and AUC o values over all strata
is 0.07 and 0.66, respectively. Thus, part of the dependency
or discrimination (i.e. 0.80 − 0.66 = 0.14 in AUC value) is
explainable by the differences in distribution of the explanatory
attributes in the two groups. A regression model that elimi-
nates all dependency between Crime Rate and Race can be
challenged as unfair and will lead to reverse discrimination in
the predictions.

2) Discrimination Control: Here, we present and discuss
the results of our attribute effect control techniques when
applied to the Crime dataset. All results are obtained from 10-
fold cross-validation of the dataset. Furthermore, as required
by discrimination law in many regions, the sensitive attribute
is not used in the prediction models.

Figure 1 (a), (b), (c), and (d) shows respectively stratum-
wise mean outcome difference (MDo), AUC value for out-
come and sensitive attribute (AUC o), mean residual difference
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(MDr), and root mean square error (RMSE ) for techniques
based on stratification. All techniques, but Strict Equal Means
in Multiple Partitions (SEM-MP), involve a separate regression
model for each stratum. Single and multiple strata versions of
techniques are differentiated by a ’-S’ or a ’-M’ at the end of
the technique’s acronym (SEM-MP has a single model version
only).

These results show the effectiveness of the equal outcome
mean constraint in ensuring that prediction-sensitive attribute
dependency in each stratum is reduced to zero (Figures 1 (a)
and 1 (b)). The SEM-M and SEM-MP techniques provide good
control as compared to the ordinary least squares technique
(OLS-M). It is worth emphasizing that SEM-M and SEM-
MP remove the unexplained discrimination only rather than
removing all dependency between Crime Rate predictions and
Race.

It is interesting to note that the RMSE s of the different
techniques (Figure 1 (d)) are not significantly different in
each stratum. Normally, it is expected that RMSE is higher
when enforcing constraints in addition to requiring squared
error minimization. However, this behavior is not very obvious
on this dataset. The SEM-MP technique has a lower RMSE
because it is a single model for the entire dataset rather than
different models for each stratum.

The SBR-M technique provides greater control over the
residual in the two groups (Figure 1 (d)) but does not reduce
discrimination significantly and often performs similarly to
the OLS-M technique. Figure 1 (c) also shows how the
residuals are impacted when SEM-M and SEM-MP try to
balance the predictions in the two groups. The discrimination
effect is stronger in the higher strata where probability of
black community instances is higher, indicating that greater
correction is needed in these strata.

Table III gives the performance of the various techniques
when calculated over the entire dataset. These techniques
include both single models (like OLS-S, SEM-S, and SEM-
MP) and per-stratum models (like SEM-M). The OLS-S tech-
nique represents the standard discrimination-ignorant linear
model which is observed to magnify discrimination slightly.
The SEM-S removes all dependency in the entire dataset,
irrespective of whether it is explainable or not, but pays in
terms of higher RMSE . Notice that the AUC o values of
SEM-M and SEM-MP are 0.76 and 0.75, respectively, even
though these techniques reduce the unexplainable dependency
in each stratum to near-zero. This is because of the explanatory
attributes’ influence on the target in the overall dataset (i.e. the
overall dataset is not balanced w.r.t. these attributes).

To obtain a better control over the discrimination in linear
regression models, a regularized approach can be adopted.
Figure 1 (e) shows the MDo and RMSE plot for different
values of the regularization parameter α. The ordinary least
squares solution is given by the right most point of the curve
where α = 0. The value of α can be selected based on the
desired level of discrimination over a validation dataset.
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Fig. 2. Experimental results for the Wine Quality dataset: (a) Mean outcome
difference in different strata, (b) Mean residual difference in different strata,
(c) Mean residual difference in different strata, (d) RMSE in different strata

B. Wine Quality

The Wine Quality (Wine) dataset2 contains descriptions of
red and white wines and their ratings. The wines are described
by physical characteristics (such as alcohol content), while the
ratings range from 1 to 10. The goal with this dataset is to
predict the rating of a wine given its characteristics irrespective
of whether it belongs to the red or white wine type. In fact,
since the models for the two types of wine are not known
and normalized predictions are required without knowledge of
type, a rating-normalized linear regression model (without the
type attribute) is desired.

The original dataset has a small mean rating difference
between the two types of wines. For our experiments, we
increase the rating of 70% (randomly selected) white wines
by one (with constraint that ratings cannot be greater than 10).
The mean rating difference of this modified dataset is 0.94 with
the corresponding AUC value of 0.76. The key characteristics
of this dataset are given in Table II.

1) Normalized Rating Predictions: We apply our attribute
effect control techniques to learn linear regression models that
make rating predictions without bias for red or white wine. All
results are based on 10-fold cross-validation of the dataset, and
wine type is not used in prediction models.

First, we identify the attributes that can potentially explain
the dependency between the ratings and types of wine. We
select two attributes (volatile acidity and chlorides) as the
confounding attributes that need to be adjusted for in the
prediction models. Both these attributes have strong correlation
with rating and wine type. Propensity score analysis with
stratification reveals that the dependency between rating and
wine type varies somewhat across the different strata (unlike
in the Crime dataset). Thus, wine type effect control over local
regions is more appropriate for this dataset.

2http://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Second, we apply our various attribute effect control tech-
niques for normalized rating predictions. Figures 2 (a), (b), (c),
and (d) show the strata-wise performance of the techniques on
this dataset. These results follow the general trends observed in
the Crime dataset. Both SEM-M and SEM-MP techniques pro-
vide good control over the predictions between the two groups
as compared to OLS-M and SBR-M. Unlike in the Crime
dataset, SEM-M and SEM-MP techniques produce higher
RMSE over the biased dataset. An important observation from
these results is that SBR-M is more appropriate than OLS-
M when attribute effect exaggeration needs to be controlled
without requiring effect reduction.

The results for the entire dataset are given in Table III. It
is observed that the OLS-S technique significantly exaggerates
the ratings difference between the two types of wine. Thus, this
technique is not recommended for normalized rating predic-
tions. The SEM-M technique performs the best producing low
RMSE while maintaining rating normalization within each
stratum. Again, notice that the overall effect in the overall
dataset is not reduced to zero even though effects within strata
are close to zero for the SEM-M and SEM-MP techniques.

VII. CONCLUSION

In this paper, we provided a systematic treatment of
attribute effect in regression problems. We discussed the
nature and motivated the appearance of attribute effects in
regression problems, with specific focus on applications in
discrimination-aware regression. A key contribution of this
work is the introduction of propensity score analysis from
statistics for filtering out explainable effects. This strategy can
handle multiple explanatory attributes in contrast to previously
proposed strategies in the discrimination-aware data mining
community. We also defined two measures for quantifying
attribute effects in regression problems (mean difference and
AUC). We then developed constrained linear regression models
for controlling the effect of an attribute on the predictions.
Analytical solutions were derived that satisfy equal outcome
means and balanced residuals in addition to minimizing the
squared error. These techniques allow easy and principled
applicability of linear models to control attribute effects. We
conducted experiments on two real-world datasets: one dataset
represents a discrimination-aware regression problem and the
other represents a rating normalization problem. The results
show that our techniques are able to achieve perfect control
over the training data and this control generalizes well to test
data.

To the best of our knowledge, this is the first paper
that presents solutions to the discrimination-aware regression
problem. Previous works in discrimination-aware data mining
were mostly restricted to classification problems.
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