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ABSTRACT 
Large quantities of network traffic flow data are generated 
on university campus networks. These data contain 
information on the sources and destinations of individual 
flows encoded as IP addresses. The cluster analysis of 
such data can reveal useful knowledge for web cache 
designing, user profiling, and network resource 
management. However, popular clustering algorithms 
such as k-means and DBSCAN are not directly applicable 
to datasets containing IP addresses. Moreover, such 
generic algorithms can yield results that are difficult to 
interpret.  
 This paper presents the cluster analysis of network 
traffic flows using a hybrid clustering algorithm. The 
algorithm integrates the longest prefix matching concept 
of TCP/IP traffic routing and the nearest neighbor 
algorithm. The similarity between IP addresses is 
determined by the longest prefix match. Similar IP 
addresses are then grouped together by an adapted version 
of the nearest neighbor algorithm. The algorithm provides 
automatic clustering that does not require input 
parameters such as the desired number of clusters and 
similarity threshold value. Furthermore, the algorithm 
yields ‘natural’ clusters consistent with the characteristics 
and usage of IP addresses. The test results are verified 
using nslookup. About 90% of the clusters were correctly 
identified by the algorithm. 
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1. Introduction 
 
Clustering is a key technique for analyzing large amounts 
of data. It partitions the data into groups such that the data 
objects within a group are more similar to each other than 
to the data objects in other groups. Clustering algorithms 
require the definition of a similarity measure for 
comparing data objects. Furthermore, they typically 
require simplifying heuristics on search to speed up the 
process. Popular clustering algorithms, such as the k-
means and DBSCAN algorithms [1, 2], use generic 

similarity measures and search heuristics. As such, they 
cannot take advantage of domain-specific knowledge to 
improve the quality and efficiency of clustering.  
 The analysis of IP addresses contained within 
network traffic flows can yield useful traffic regularities 
that can help in network engineering. Clustering is a 
useful technique for segmenting network traffic flows on 
the basis of IP addresses. However, the popular clustering 
algorithms are not applicable directly to IP addresses 
based datasets. Moreover, the results of such clusterings 
tend to be less meaningful from a network engineering 
perspective because the unique characteristics of IP 
addresses are not considered in the clustering.  
 This paper presents the cluster analysis of traffic 
flows measured on a campus network based on their 
source and destination IP addresses using a new hybrid 
clustering algorithm. The algorithm integrates the longest 
prefix matching concept with the nearest neighbor 
clustering algorithm to provide automatic and meaningful 
clustering of IP addresses based datasets. The algorithm 
determines the similarity between two IP addresses by 
their longest prefix match value.  Subsequently, an 
adaptation of the nearest neighbor algorithm is used to 
group similar addresses. The results are verified using 
traceroute and nslookup utilities.  
 The rest of the paper is arranged as follows: Section 2 
presents an overview of the measurement setup. Section 3 
describes some current algorithms for clustering IP 
address data. The hybrid algorithm for clustering IP 
addresses based datasets is described in section 4. The 
results of applying the algorithm are presented in section 
5, and the concluding remarks are given in Section 6. 
 
 
2. Traffic Flow Measurement Setup 
 
Network traffic measurement has many applications and 
is typically done by monitoring network traffic flows [3]. 
The network traffic flows dataset used in this work is 
collected from Lahore University of Management 
Sciences (LUMS) which operates a campus-wide local 
area network (LAN) with approximately 1800 users. 
 Figure 1 shows the layout of the campus network. 
The computers in the student labs, administrative and 
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faculty offices, and an executive program center are 
interconnected via switched Ethernet LAN. Since students 
are the majority users of the network, we focus on 
measuring and analyzing traffic flows generated by 
students only. Students access the network through 
computers in Lab 1, Lab 2, Lab 3, E-Lab and Student 
Hostels (Figure 1). Using the measurement setup, we have 
collected network flows data generated by students from 
Lab 2, Lab 3 and Student Hostels for a period of one 
month.  
 The measurement setup consists of NeTraMet [4] 
which is the open source implementation of the 
measurement architecture recommended by the Realtime 
Traffic Flow Measurement (RTFM) working group [5] of 
the Internet Engineering Task Force (IETF). NeTraMet 
has a configurable  packet-matching engine, which can be 
programmed according to measurement specific needs. 
We collected information on all flows where each flow is 
defined by {source IP, destination IP, source port, 
destination port, bytes sent, bytes received, start time, 
duration}. 
 
 
3. Clustering and IP Addresses 
 
Clustering is a fundamental problem in various fields for 
which numerous algorithms have been proposed over the 
years. These algorithms typically employ heuristics to 
guide the search to an approximate solution that is 
otherwise NP-hard to solve exactly. There has been 
renewed interest in clustering algorithms in recent years 
with the goal of discovering useful regularities in large 
and complex data [1, 2]. In this section popular clustering 

algorithms and their applicability to IP addresses based 
datasets is reviewed.  
 
3.1 k-Means and k-Medoids Algorithms 
 
A widely used clustering algorithm is the k-means 
algorithm. It identifies a cluster by the mean of the objects 
in it [1, 2]. The similarity between objects is determined 
by the Euclidean distance between them. Consequently, 
the k-means algorithm is directly applicable to numeric 
data only. The k-means algorithms can be applied to IP 
addresses by considering the decimal form of IP addresses 
and taking each octet as a dimension in a 4-dimensional 
space. This approach, however, will yield clusters that are 
inconsistent with the IP address’ class based 
classification. For example, given three IP addresses IP1 
= 128.195.4.115, IP2 = 213.195.4.115, and IP3 = 
128.195.0.1, the k-means algorithm will group addresses 
IP1 and IP2 together, even though they belong to different 
network classes, instead of IP1 and IP3.  
 The k-medoids algorithm [1] has a similar logic to 
that of the k-means algorithm except that it can be applied 
to non-numeric data as well. It identifies a cluster by the 
median object (medoid) of the data objects in it. The 
similarity between objects is determined by metrics such 
as simple matching coefficient and Jaccard coefficient [2]. 
The k-medoids algorithm suffers from the same limitation 
as the k-means algorithm with regards to IP addresses. 
Furthermore, both k-means and k-medoids algorithms 
require the final number of clusters as an input.  
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3.2 Nearest Neighbor Algorithm 
 
The nearest neighbor algorithm [1] is a clustering 
technique that does not require computation of the mean 
or median. It iteratively merges objects into the existing 
clusters that are closest to them. Its original 
implementation requires a threshold value for the 
minimum similarity measure for a cluster. If an object 
does not pass the threshold value (i.e. it is less similar) 
then it is included in a new cluster. Oftentimes the 
maximum number of neighboring objects to be 
considered is taken as a constraint in addition to the 
threshold on the minimum similarity measure. 
 The nearest neighbor algorithm is given in Figure 2. 
Figure 3 illustrates a typical iteration in the algorithm. 
The circles in the figure represent data objects in the 
dataset. The solid circle is an initial cluster (K1). Based 
on the given minimum similarity (maximum Euclidean 
distance) threshold, five clusters are created from nearest 
neighbor object merges. 
 The nearest neighbor algorithm is popularly used for 
clustering [6, 7, 8]. In [6] an adaptive online learning 
system is presented in which the most adequate materials 
for different students is retrieved by identifying clusters of 
these students. More interestingly, the nearest neighbor 
algorithm is  often modified to be more appropriate for a 
given problem domain [7,8]  
 The original nearest neighbor algorithm, however, is 
not directly applicable to IP addresses based datasets. The 
original algorithm proposes a numeric similarity measure 
such as Euclidean distance. As described earlier, the 
Euclidean distance is not a good basis for grouping IP 

addresses. Nonetheless, a variation of the algorithm can 
be implemented on IP addresses based datasets, as 
described in section 4.  

Input: 
 D = {d1, d2, d3, … , dn}   // Dataset 
 A  // Adjacency matrix showing  similarity between 
objects 
 t // threshold on minimum similarity 
Output: 
 K     // Set of clusters 
Nearest Neighbor Algorithm: 
 K1 = {d1}; 
 K = {K1}; 
 k = 1; 
 for i = 2 to n do 
find the dm in some cluster Km in K such that 
similarity(di, dm) is the greatest Figure 3 Illustrating Nearest Neighbor Algorithm 
  if similarity(di, dm)  ≥ t then 
    Km = Km  U di  
  else  

  k = k + 1 
  Kk = {di}    end if 

3.3 Other Algorithms   end for  
In recent years, new clustering algorithms have been 
developed for finding useful knowledge in large and 
complex   datasets. A density-based algorithm in this 
category is DBSCAN [1,2]. DBSCAN does not require 
the number of clusters to be known a priori or the 
composition of the initial clusters. However, it is based on 
the density of the data objects. That is, data objects are 
viewed as points in n-dimensional space and density-
connected points are grouped into clusters. This algorithm 
can only be applied to numerical datasets that can be 
plotted in n-dimensional space. With IP addresses, this is 
not possible since IP addresses are not defined like the 
ordinary numbers. 

Figure 2 Nearest Neighbor Algorithm 

 Evolutionary approaches like genetics algorithms can 
also be used for clustering [9]. Such algorithms perform a 
global search in the candidate solution space, and they 
tend to cope better with attribute interaction. It has been 
shown that evolutionary algorithms for clustering 
outperform the k-means algorithm and tend to increase as 
the number of clusters is increased [10, 11]. But it has 
been well proven that evolutionary algorithms are one or 
two orders of magnitude slower than conventional 
techniques [9], so it is unwise to use this approach for IP 
addresses based datasets. 
 
3.4 Longest Prefix Matching 
 
Longest prefix matching is employed for efficient routing 
table lookups during TCP/IP communications [12]. Figure 
4 illustrates the concept of longest prefix matching. The 
figure shows two 16-bit strings. Starting from the left, the 
two strings match bit-by-bit until bit 10. Thus, the longest 
prefix match is 10. 
 The concept of longest prefix matching has been used 
to cluster IP addresses in the networks community, as 
described by several researchers [3, 13 14, 15]. However, 
these works do not present a general algorithm 



for clustering datasets having IP address attributes. 

Figure 4 Longest Prefix Matching 
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Rather, they describe the use of longest prefix matching to 
guide the grouping of IP addresses for specific tasks such 
network routing and server replications.  As such, their 
approaches are interactive and not general and automatic.  
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ddresses as A 
1 = {IP1}  

 do 
Pj (j = i+1 to n) with maximum LPM(IPi, IPj) 

me other cluster Km 

 IPi // Remove IPi from cluster Kc 
luster Km  

 for next cluster 

re 5 Algorithm for Clustering IP Addresses 
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based datasets that integrates judiciously the use of 
predefined IP address classes, the longest prefix matching 
concept for TCP/IP network traffic routing, and an 
adaptation of the nearest neighbor algorithm. The overall 
algorithm is a two level hierarchical technique that 
clusters large sets of IP address objects automatically 
without requiring inputs such as number of clusters 
desired or similarity thresholds. The final clusters 
obtained are based on unique characteristics of IP 
addresses, and hence, provide information that can be 
used for network engineering. 
 The algorithm for clustering IP addresses is 
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created on the basis of IP address classes. This represents 
the level 1 clustering yielding four clusters, one for each 
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each class. First, the longest prefix match among the IP 
addresses is calculated and stored in an adjacency matrix. 
Then, each IP address is considered in turn and its cluster 
is created with all IP addresses with which it has the 
longest prefix match. This is the nearest neighbor 
approach where a cluster is created based on the nearest 
(or most similar) neighbors. However, unlike in the 
original nearest neighbor algorithm (Figure 2), a new 
cluster is created for every IP address with the IP 
addresses with which it has the longest prefix match. As 
such, IP addresses may be relocated from one cluster to 
another whenever their longest prefix match is greater 
with another IP address. In this way, clusters are modified 
iteratively as each IP address is considered based on the 
longest prefix match, a natural measure of similarity for 
IP addresses. 
 Notice that
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a low longest prefix match but they may still belong to the 
same IP address class, and hence, cluster. Also, note that 
the computational complexity of the algorithm is O(n2/2) 
which is better than O(n2) for the original nearest 
neighbor algorithm. 
 To illustrate the algorithm, consider the 10 different  
destination IP addresses taken from traffic flows on the 
campus network sh
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Input: 
D = {IP1, IP2, IP3, ….. , IPn)  // IP addresses 

Output:
K  // Set of clusters 
  
Algorithm
Level 1: Cluster on t
(o
 
Cluster 1 contains class A addresses (D1={IP1,…,IP
Cluster 2 c
C
Cluster 4 contains outliers having class D and E 

addresses (D4={IP1,…,IPn4) 
 
Level 2: Cluster within each class 

 the following for each level 1
a
 
Create Adjacency Matrix showing Longest Prefix 
Matching (LPM) among IP A
K
K= {K1} 
c = 1  // cluster number 
for i = 1 to n
 for all I
   Kc = Kc U IPi 
  if IPj is in so
   if LPM (Kc < Km) 
    Kc = Kc ∩
    Km = Km U IPi // Add IPi in c
   else 
    Km = Km ∩ IPi // Remove IPi from cluster Km
    Kc = Kc U IPi     // Add IPi in cluster Kc 
   end if 
  end if 
 end for 
 c = c + 1       //
end for 
end do 

Figu

b ng to class B (i.e. level 1 clustering has already been 
done). The longest prefix match among these IP addresses 
b ng to class B (i.e. level 1 clustering has already been 
done). The longest prefix match among these IP addresses 



is  
jacency matrix is symmetric. Thus, the lower triangular 

portion is set to zero. Moreover, the diagonal values of the lues of the 

No. Decimal     32-bit binary  
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 given in the adjacency matrix shown in Figure 6. The
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matrix are set to zero (the longest prefix match of an IP 
address with itself) since this value is not required. 
Starting from the first row of the adjacency matrix, a 
cluster is created containing that addresses and all 
addresses with which it has the longest prefix match. The 
final clusters obtained are shown in shown in Figure 7. 
 The ten IP addresses are grouped into 6 clusters. The 
correctness of the clusters is verified by using the 
traceroute (traceroute) and domain name looku
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(n ookup) utilities. Cluster 1 IP addresses belong to 
University of Wisconsin, cluster 4’s belongs to University 
of Virginia, cluster 5’s belong to Brown University, and 
cluster 6’s belong to University of Hawaii and University 
of Illinois. IP addresses of cluster 2 and 3 are unresolved 
by nslookup and tracert. Among the clusters obtained, 
only one cluster (cluster 6) has incompatible addresses.  
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because they are not available to users. This class of 
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yields 2610 clusters, which corresponds to 24.8% of the 
size of the original dataset. 
 The results are verified by using traceroute and 
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