

CLUSTER ANALYSIS OF TRAFFIC FLOWS ON A CAMPUS NETWORK

Asim Karim1, Irfan Ahmad2, Syed Imran Jami3, and Mansoor Sarwar2

1Dept. of Computer Science 2School of Science and Technology 3Dept. of Computer Science
Lahore University of Management Sciences University of Management and Technology NUCES (FAST)
Opp. Sector U, DHA, Lahore 54792 52-L, Gulberg III, Lahore 54600 Shah Latif Town, Karachi
Pakistan Pakistan Pakistan
akarim@lums.edu.pk {irfank, sarwar}@umt.edu.pk imranjami2000@yahoo.com

ABSTRACT
Large quantities of network traffic flow data are generated
on university campus networks. These data contain
information on the sources and destinations of individual
flows encoded as IP addresses. The cluster analysis of
such data can reveal useful knowledge for web cache
designing, user profiling, and network resource
management. However, popular clustering algorithms
such as k-means and DBSCAN are not directly applicable
to datasets containing IP addresses. Moreover, such
generic algorithms can yield results that are difficult to
interpret.
 This paper presents the cluster analysis of network
traffic flows using a hybrid clustering algorithm. The
algorithm integrates the longest prefix matching concept
of TCP/IP traffic routing and the nearest neighbor
algorithm. The similarity between IP addresses is
determined by the longest prefix match. Similar IP
addresses are then grouped together by an adapted version
of the nearest neighbor algorithm. The algorithm provides
automatic clustering that does not require input
parameters such as the desired number of clusters and
similarity threshold value. Furthermore, the algorithm
yields ‘natural’ clusters consistent with the characteristics
and usage of IP addresses. The test results are verified
using nslookup. About 90% of the clusters were correctly
identified by the algorithm.

KEY WORDS
Data Mining, Clustering, Network Traffic Analysis, IP
Addresses

1. Introduction

Clustering is a key technique for analyzing large amounts
of data. It partitions the data into groups such that the data
objects within a group are more similar to each other than
to the data objects in other groups. Clustering algorithms
require the definition of a similarity measure for
comparing data objects. Furthermore, they typically
require simplifying heuristics on search to speed up the
process. Popular clustering algorithms, such as the k-
means and DBSCAN algorithms [1, 2], use generic

similarity measures and search heuristics. As such, they
cannot take advantage of domain-specific knowledge to
improve the quality and efficiency of clustering.
 The analysis of IP addresses contained within
network traffic flows can yield useful traffic regularities
that can help in network engineering. Clustering is a
useful technique for segmenting network traffic flows on
the basis of IP addresses. However, the popular clustering
algorithms are not applicable directly to IP addresses
based datasets. Moreover, the results of such clusterings
tend to be less meaningful from a network engineering
perspective because the unique characteristics of IP
addresses are not considered in the clustering.
 This paper presents the cluster analysis of traffic
flows measured on a campus network based on their
source and destination IP addresses using a new hybrid
clustering algorithm. The algorithm integrates the longest
prefix matching concept with the nearest neighbor
clustering algorithm to provide automatic and meaningful
clustering of IP addresses based datasets. The algorithm
determines the similarity between two IP addresses by
their longest prefix match value. Subsequently, an
adaptation of the nearest neighbor algorithm is used to
group similar addresses. The results are verified using
traceroute and nslookup utilities.
 The rest of the paper is arranged as follows: Section 2
presents an overview of the measurement setup. Section 3
describes some current algorithms for clustering IP
address data. The hybrid algorithm for clustering IP
addresses based datasets is described in section 4. The
results of applying the algorithm are presented in section
5, and the concluding remarks are given in Section 6.

2. Traffic Flow Measurement Setup

Network traffic measurement has many applications and
is typically done by monitoring network traffic flows [3].
The network traffic flows dataset used in this work is
collected from Lahore University of Management
Sciences (LUMS) which operates a campus-wide local
area network (LAN) with approximately 1800 users.
 Figure 1 shows the layout of the campus network.
The computers in the student labs, administrative and

mailto:akarim@lums.edu.pk
mailto:sarwar}@umt.edu.pk

Switched
Ethernet

Executive Program
Center

Switched
Ethernet

Internet

Switched
Ethernet

Switched
Ethernet Switched

Ethernet
Labs 2 and 3

Lab 1

Backbone Switch
Library

Student Hostels

Switched
Ethernet

E-Lab

Maskaan Server

 Switch
Gateway Router

Switched
Ethernet

Administrative and
Faculty Wings

faculty offices, and an executive program center are
interconnected via switched Ethernet LAN. Since students
are the majority users of the network, we focus on
measuring and analyzing traffic flows generated by
students only. Students access the network through
computers in Lab 1, Lab 2, Lab 3, E-Lab and Student
Hostels (Figure 1). Using the measurement setup, we have
collected network flows data generated by students from
Lab 2, Lab 3 and Student Hostels for a period of one
month.
 The measurement setup consists of NeTraMet [4]
which is the open source implementation of the
measurement architecture recommended by the Realtime
Traffic Flow Measurement (RTFM) working group [5] of
the Internet Engineering Task Force (IETF). NeTraMet
has a configurable packet-matching engine, which can be
programmed according to measurement specific needs.
We collected information on all flows where each flow is
defined by {source IP, destination IP, source port,
destination port, bytes sent, bytes received, start time,
duration}.

3. Clustering and IP Addresses

Clustering is a fundamental problem in various fields for
which numerous algorithms have been proposed over the
years. These algorithms typically employ heuristics to
guide the search to an approximate solution that is
otherwise NP-hard to solve exactly. There has been
renewed interest in clustering algorithms in recent years
with the goal of discovering useful regularities in large
and complex data [1, 2]. In this section popular clustering

algorithms and their applicability to IP addresses based
datasets is reviewed.

3.1 k-Means and k-Medoids Algorithms

A widely used clustering algorithm is the k-means
algorithm. It identifies a cluster by the mean of the objects
in it [1, 2]. The similarity between objects is determined
by the Euclidean distance between them. Consequently,
the k-means algorithm is directly applicable to numeric
data only. The k-means algorithms can be applied to IP
addresses by considering the decimal form of IP addresses
and taking each octet as a dimension in a 4-dimensional
space. This approach, however, will yield clusters that are
inconsistent with the IP address’ class based
classification. For example, given three IP addresses IP1
= 128.195.4.115, IP2 = 213.195.4.115, and IP3 =
128.195.0.1, the k-means algorithm will group addresses
IP1 and IP2 together, even though they belong to different
network classes, instead of IP1 and IP3.
 The k-medoids algorithm [1] has a similar logic to
that of the k-means algorithm except that it can be applied
to non-numeric data as well. It identifies a cluster by the
median object (medoid) of the data objects in it. The
similarity between objects is determined by metrics such
as simple matching coefficient and Jaccard coefficient [2].
The k-medoids algorithm suffers from the same limitation
as the k-means algorithm with regards to IP addresses.
Furthermore, both k-means and k-medoids algorithms
require the final number of clusters as an input.

Figure 0: Layout of Campus NetworkFigure 1 Layout of Campus Network

3.2 Nearest Neighbor Algorithm

The nearest neighbor algorithm [1] is a clustering
technique that does not require computation of the mean
or median. It iteratively merges objects into the existing
clusters that are closest to them. Its original
implementation requires a threshold value for the
minimum similarity measure for a cluster. If an object
does not pass the threshold value (i.e. it is less similar)
then it is included in a new cluster. Oftentimes the
maximum number of neighboring objects to be
considered is taken as a constraint in addition to the
threshold on the minimum similarity measure.
 The nearest neighbor algorithm is given in Figure 2.
Figure 3 illustrates a typical iteration in the algorithm.
The circles in the figure represent data objects in the
dataset. The solid circle is an initial cluster (K1). Based
on the given minimum similarity (maximum Euclidean
distance) threshold, five clusters are created from nearest
neighbor object merges.
 The nearest neighbor algorithm is popularly used for
clustering [6, 7, 8]. In [6] an adaptive online learning
system is presented in which the most adequate materials
for different students is retrieved by identifying clusters of
these students. More interestingly, the nearest neighbor
algorithm is often modified to be more appropriate for a
given problem domain [7,8]
 The original nearest neighbor algorithm, however, is
not directly applicable to IP addresses based datasets. The
original algorithm proposes a numeric similarity measure
such as Euclidean distance. As described earlier, the
Euclidean distance is not a good basis for grouping IP

addresses. Nonetheless, a variation of the algorithm can
be implemented on IP addresses based datasets, as
described in section 4.

Input:
 D = {d1, d2, d3, … , dn} // Dataset
 A // Adjacency matrix showing similarity between
objects
 t // threshold on minimum similarity
Output:
 K // Set of clusters
Nearest Neighbor Algorithm:
 K1 = {d1};
 K = {K1};
 k = 1;
 for i = 2 to n do
find the dm in some cluster Km in K such that
similarity(di, dm) is the greatest Figure 3 Illustrating Nearest Neighbor Algorithm
 if similarity(di, dm) ≥ t then
 Km = Km U di
 else

 k = k + 1
 Kk = {di} end if

3.3 Other Algorithms end for
In recent years, new clustering algorithms have been
developed for finding useful knowledge in large and
complex datasets. A density-based algorithm in this
category is DBSCAN [1,2]. DBSCAN does not require
the number of clusters to be known a priori or the
composition of the initial clusters. However, it is based on
the density of the data objects. That is, data objects are
viewed as points in n-dimensional space and density-
connected points are grouped into clusters. This algorithm
can only be applied to numerical datasets that can be
plotted in n-dimensional space. With IP addresses, this is
not possible since IP addresses are not defined like the
ordinary numbers.

Figure 2 Nearest Neighbor Algorithm

 Evolutionary approaches like genetics algorithms can
also be used for clustering [9]. Such algorithms perform a
global search in the candidate solution space, and they
tend to cope better with attribute interaction. It has been
shown that evolutionary algorithms for clustering
outperform the k-means algorithm and tend to increase as
the number of clusters is increased [10, 11]. But it has
been well proven that evolutionary algorithms are one or
two orders of magnitude slower than conventional
techniques [9], so it is unwise to use this approach for IP
addresses based datasets.

3.4 Longest Prefix Matching

Longest prefix matching is employed for efficient routing
table lookups during TCP/IP communications [12]. Figure
4 illustrates the concept of longest prefix matching. The
figure shows two 16-bit strings. Starting from the left, the
two strings match bit-by-bit until bit 10. Thus, the longest
prefix match is 10.
 The concept of longest prefix matching has been used
to cluster IP addresses in the networks community, as
described by several researchers [3, 13 14, 15]. However,
these works do not present a general algorithm

for clustering datasets having IP address attributes.

Figure 4 Longest Prefix Matching

 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0

Rather, they describe the use of longest prefix matching to
guide the grouping of IP addresses for specific tasks such
network routing and server replications. As such, their
approaches are interactive and not general and automatic.

4. Hybrid Algorithm for Clustering IP

e present a hybrid algorithm for clustering IP addresses

shown in
igu

ng involves the IP addresses within

 the hybrid algorithm does not require the
input of a threshold value for the similarity, as required in
the original nearest neighbor algorithm (Figure 2). This

own in Table 1. These addresses
elo

shown in
igu

ng involves the IP addresses within

 the hybrid algorithm does not require the
input of a threshold value for the similarity, as required in
the original nearest neighbor algorithm (Figure 2). This

own in Table 1. These addresses
elo

make a
threshold value has no meani n the context of longest
prefix match and IP addresses; two IP addresses may have

make a
threshold value has no meani n the context of longest
prefix match and IP addresses; two IP addresses may have

:
he basis of IP address classes

ptional)

n1)
ontains class B addresses (D2={IP1,… IPn2)

luster 3 contains class C addresses (D3={IP1,…,IPn3)

do cluster (notation
ssumes level 1 is skipped)

ddresses as A
1 = {IP1}

 do
Pj (j = i+1 to n) with maximum LPM(IPi, IPj)

me other cluster Km

 IPi // Remove IPi from cluster Kc
luster Km

 for next cluster

re 5 Algorithm for Clustering IP Addresses

Addresses

W
based datasets that integrates judiciously the use of
predefined IP address classes, the longest prefix matching
concept for TCP/IP network traffic routing, and an
adaptation of the nearest neighbor algorithm. The overall
algorithm is a two level hierarchical technique that
clusters large sets of IP address objects automatically
without requiring inputs such as number of clusters
desired or similarity thresholds. The final clusters
obtained are based on unique characteristics of IP
addresses, and hence, provide information that can be
used for network engineering.
 The algorithm for clustering IP addresses is

o level hierarchical technique that
clusters large sets of IP address objects automatically
without requiring inputs such as number of clusters
desired or similarity thresholds. The final clusters
obtained are based on unique characteristics of IP
addresses, and hence, provide information that can be
used for network engineering.
 The algorithm for clustering IP addresses is
F re 5 and described subsequently. First, clusters are
created on the basis of IP address classes. This represents
the level 1 clustering yielding four clusters, one for each
class (class A, B, C, and D and E). Level 1 clustering may
be skipped; however, its use will improve the
computational performance of the algorithm and yield
better final clusters.
 Level 2 clusteri

F re 5 and described subsequently. First, clusters are
created on the basis of IP address classes. This represents
the level 1 clustering yielding four clusters, one for each
class (class A, B, C, and D and E). Level 1 clustering may
be skipped; however, its use will improve the
computational performance of the algorithm and yield
better final clusters.
 Level 2 clusteri
each class. First, the longest prefix match among the IP
addresses is calculated and stored in an adjacency matrix.
Then, each IP address is considered in turn and its cluster
is created with all IP addresses with which it has the
longest prefix match. This is the nearest neighbor
approach where a cluster is created based on the nearest
(or most similar) neighbors. However, unlike in the
original nearest neighbor algorithm (Figure 2), a new
cluster is created for every IP address with the IP
addresses with which it has the longest prefix match. As
such, IP addresses may be relocated from one cluster to
another whenever their longest prefix match is greater
with another IP address. In this way, clusters are modified
iteratively as each IP address is considered based on the
longest prefix match, a natural measure of similarity for
IP addresses.
 Notice that

each class. First, the longest prefix match among the IP
addresses is calculated and stored in an adjacency matrix.
Then, each IP address is considered in turn and its cluster
is created with all IP addresses with which it has the
longest prefix match. This is the nearest neighbor
approach where a cluster is created based on the nearest
(or most similar) neighbors. However, unlike in the
original nearest neighbor algorithm (Figure 2), a new
cluster is created for every IP address with the IP
addresses with which it has the longest prefix match. As
such, IP addresses may be relocated from one cluster to
another whenever their longest prefix match is greater
with another IP address. In this way, clusters are modified
iteratively as each IP address is considered based on the
longest prefix match, a natural measure of similarity for
IP addresses.
 Notice that

s the algorithm automatic. More importantly, s the algorithm automatic. More importantly,
ng ing i

a low longest prefix match but they may still belong to the
same IP address class, and hence, cluster. Also, note that
the computational complexity of the algorithm is O(n2/2)
which is better than O(n2) for the original nearest
neighbor algorithm.
 To illustrate the algorithm, consider the 10 different
destination IP addresses taken from traffic flows on the
campus network sh

a low longest prefix match but they may still belong to the
same IP address class, and hence, cluster. Also, note that
the computational complexity of the algorithm is O(n2/2)
which is better than O(n2) for the original nearest
neighbor algorithm.
 To illustrate the algorithm, consider the 10 different
destination IP addresses taken from traffic flows on the
campus network sh

Input:
D = {IP1, IP2, IP3, ….. , IPn) // IP addresses

Output:
K // Set of clusters

Algorithm
Level 1: Cluster on t
(o

Cluster 1 contains class A addresses (D1={IP1,…,IP
Cluster 2 c
C
Cluster 4 contains outliers having class D and E

addresses (D4={IP1,…,IPn4)

Level 2: Cluster within each class

 the following for each level 1
a

Create Adjacency Matrix showing Longest Prefix
Matching (LPM) among IP A
K
K= {K1}
c = 1 // cluster number
for i = 1 to n
 for all I
 Kc = Kc U IPi
 if IPj is in so
 if LPM (Kc < Km)
 Kc = Kc ∩
 Km = Km U IPi // Add IPi in c
 else
 Km = Km ∩ IPi // Remove IPi from cluster Km
 Kc = Kc U IPi // Add IPi in cluster Kc
 end if
 end if
 end for
 c = c + 1 //
end for
end do

Figu

b ng to class B (i.e. level 1 clustering has already been
done). The longest prefix match among these IP addresses
b ng to class B (i.e. level 1 clustering has already been
done). The longest prefix match among these IP addresses

is
jacency matrix is symmetric. Thus, the lower triangular

portion is set to zero. Moreover, the diagonal values of the lues of the

No. Decimal 32-bit binary

 '10000000011010001011000010000100'

1010010000011100001011'

1110011110100011101001'

1110011111001110100101'

110010001101010001001'

011110001011000010111'

1000001001101000011'

1000010000001101110'

1010111001110110101111'

1101111010110011111'

 given in the adjacency matrix shown in Figure 6. The
ad

matrix are set to zero (the longest prefix match of an IP
address with itself) since this value is not required.
Starting from the first row of the adjacency matrix, a
cluster is created containing that addresses and all
addresses with which it has the longest prefix match. The
final clusters obtained are shown in shown in Figure 7.
 The ten IP addresses are grouped into 6 clusters. The
correctness of the clusters is verified by using the
traceroute (traceroute) and domain name looku

matrix are set to zero (the longest prefix match of an IP
address with itself) since this value is not required.
Starting from the first row of the adjacency matrix, a
cluster is created containing that addresses and all
addresses with which it has the longest prefix match. The
final clusters obtained are shown in shown in Figure 7.
 The ten IP addresses are grouped into 6 clusters. The
correctness of the clusters is verified by using the
traceroute (traceroute) and domain name looku

Table 1 Sample IP Addresses from a Campus Network

p
sl

on Destination IP Addresses

flow etwork. This
ataset is clustered based on the destination IP address of

distinct destination IP addresses.

 were found to be correct

asets are then placed in
e

 8 8 8

p
sl

on Destination IP Addresses

flow etwork. This
ataset is clustered based on the destination IP address of

distinct destination IP addresses.

 were found to be correct

asets are then placed in
e

 8 8 8

(n ookup) utilities. Cluster 1 IP addresses belong to
University of Wisconsin, cluster 4’s belongs to University
of Virginia, cluster 5’s belong to Brown University, and
cluster 6’s belong to University of Hawaii and University
of Illinois. IP addresses of cluster 2 and 3 are unresolved
by nslookup and tracert. Among the clusters obtained,
only one cluster (cluster 6) has incompatible addresses.

5. Cluster Analysis of Traffic Flows Based

(n ookup) utilities. Cluster 1 IP addresses belong to
University of Wisconsin, cluster 4’s belongs to University
of Virginia, cluster 5’s belong to Brown University, and
cluster 6’s belong to University of Hawaii and University
of Illinois. IP addresses of cluster 2 and 3 are unresolved
by nslookup and tracert. Among the clusters obtained,
only one cluster (cluster 6) has incompatible addresses.

5. Cluster Analysis of Traffic Flows Based

The algorithm is applied to a 7 day subset of the traffic

s dataset collected on our campus n
The algorithm is applied to a 7 day subset of the traffic

s dataset collected on our campus n
dd
each flow. Duplicate traffic flows with the same
destination IP addresses are removed since they do not
represent useful information for the analysis done here.
The pruned dataset contained 10,525 traffic flows with

Adjacency matrix
0 15 11 11 11 8 8 8 8 8
0 0 11 11 11 8 8

each flow. Duplicate traffic flows with the same
destination IP addresses are removed since they do not
represent useful information for the analysis done here.
The pruned dataset contained 10,525 traffic flows with

Adjacency matrix
0 15 11 11 11 8 8 8 8 8
0 0 11 11 11 8 8

1. '128.104.176.132'

 The results of clustering the dataset are given in
Table 2. Lev s 4 clusters
corresponding to the IP address classes A, B, C, and D
and E. The IP addresses in classes D and E are considered

0 0 0 19 16 8 8 8 8 8
0 0 0 0 16 8 8 8 8 8
0 0 0 0 0 8 8 8 8 8
0 0 0 0 0 0 11 11 10 10
0 0 0 0 0 0 0 18 10 10
0 0 0 0 0 0 0 0 10 10
0 0 0 0 0 0 0 0 0 13
0 0 0 0 0 0 0 0 0 0

Figure 6 A

 The results of clustering the dataset are given in
Table 2. Lev s 4 clusters
corresponding to the IP address classes A, B, C, and D
and E. The IP addresses in classes D and E are considered

0 0 0 19 16 8 8 8 8 8
0 0 0 0 16 8 8 8 8 8
0 0 0 0 0 8 8 8 8 8
0 0 0 0 0 0 11 11 10 10
0 0 0 0 0 0 0 18 10 10
0 0 0 0 0 0 0 0 10 10
0 0 0 0 0 0 0 0 0 13
0 0 0 0 0 0 0 0 0 0

Figure 6 Ad

Cluster 1 '128.104.176.132' ; '128.105.7.11'
Cluster 2 3.165'
Cluster 3
Cluster 4 '128.143.22.23'
Cluster 5 '128.148.19.67'; '128.148.32.110'
Cluster 6 '128.171.157.175';'128.174.245.159'

Figure 7 F

Figure 6 Adjacency Matrix

Figure 7 Final Clusters

2. '128.105.7.11'
 '1000000001
3. '128.121.232.233'
 '1000000001
4. '128.121.243.165'
 '1000000001
5. '128.121.26.137'
 '10000000011
6. '128.143.22.23'
 '10000000100

 '128.121.232.233' ;'128.121.24
 '128.121.26.137'

7. '128.148.19.67'
 '1000000010010
8. '128.148.32.110'
 '1000000010010
9. '128.171.157.175'
 '1000000010
10. '128.174.245.159'
 '1000000010101

el 1 clustering yieldel 1 clustering yield

as outliers (for web cache design, user profiling, etc)
because they are not available to users. This class of
addresses is not clustered further. Level 2 clustering
yields 2610 clusters, which corresponds to 24.8% of the
size of the original dataset.
 The results are verified by using traceroute and
domain name lookup (nslookup) utilities [16]. This
procedure identified 1556 clusters (about 60%). Among
these 1556 clusters, 1400

as outliers (for web cache design, user profiling, etc)
because they are not available to users. This class of
addresses is not clustered further. Level 2 clustering
yields 2610 clusters, which corresponds to 24.8% of the
size of the original dataset.
 The results are verified by using traceroute and
domain name lookup (nslookup) utilities [16]. This
procedure identified 1556 clusters (about 60%). Among
these 1556 clusters, 1400
clusters representing natural groups of IP addresses. Thus,
90% of the clusters were correct. The problem of not
being able to resolve IP addresses and to verify clusters is
also faced by other researchers [14]. In [14] only 50% of
the addresses were resolved using nslookup. Nevertheless,
our algorithm exhibits a large correct clustering
percentage considering the diverse use of IP addresses in
today’s network communication.
 The robustness of the algorithm is evaluated by
changing the order in which the dataset is read. The
results given above are for in-order consideration of the
objects in the dataset. Similar dat

clusters representing natural groups of IP addresses. Thus,
90% of the clusters were correct. The problem of not
being able to resolve IP addresses and to verify clusters is
also faced by other researchers [14]. In [14] only 50% of
the addresses were resolved using nslookup. Nevertheless,
our algorithm exhibits a large correct clustering
percentage considering the diverse use of IP addresses in
today’s network communication.
 The robustness of the algorithm is evaluated by
changing the order in which the dataset is read. The
results given above are for in-order consideration of the
objects in the dataset. Similar dat
rev rse order and in random order to test the dependence
of algorithm on the order in which the objects are
considered. In our simulation, it is found that the
algorithm is unaffected by different orderings and yields
practically the same results to that obtained from in-order
consideration. This observation shows that the algorithm
can identify significant traffic flow clusters under any
sequence ordering.

rev rse order and in random order to test the dependence
of algorithm on the order in which the objects are
considered. In our simulation, it is found that the
algorithm is unaffected by different orderings and yields
practically the same results to that obtained from in-order
consideration. This observation shows that the algorithm
can identify significant traffic flow clusters under any
sequence ordering.

6. Conclusion

Le
No. of clusters =

uster/Class
s B Class C Others

1302 799 2261 6163

L usteri
N lusters = 0

o. of clusters identified = 1556
 = 1400

 Class
Class C
1350

N ters ide 1556
N valid cluste 400

his paper presents the cluster analysis of network traffic
stination IP addresses of each flow.

he clustering is performed using a hybrid clustering

user/traffic profiling, and network resource
n

cknowledgment

his work was supported by a research assistant grant
 Management Sciences.

] M. H. Dunham, Data mining: introductory and
pics (Pearson Education, 2003).
M. Kamber, Data mining – concepts and

[5]

A
Table 2 Cluster Analysis of Traffic Flows Based on

Des

tination IP Addresses T
from Lahore University of

vel 1 Clustering
 4

References

No. of Flows in Cl

 Class A Clas
[1

advanced to
2] J. Han and [evel 2 Cl ng

techniques (Morgan Kaufmann, 2001).
[3] C. Estan and G. Varghese, New directions in traffic

o. of c 261
N

measurement and accounting, Proc. ACM SIGCOMM
Internet Measurement Workshop, 2001,

No. of valid clusters
No. of Clusters in Each

[4] N. Brownlee, NeTraMet, http://www2.auckland.
ac.nz/net/Accounting/ntm.Release.note.html, 2003.
IETF, IETF Realtime Flow Measurement WG,

Class A Class B
780 480

http://www2.auckland.ac.nz/net/Internet/rtfm/, 1999.
[6] B. Shih, W. Lee, The application of nearest neighbor o. of clus ntified =

o. of rs = 1 algorithm on creating an adaptive online learning
system, 31st ASEE/IEEE Frontiers in Education
Conference, Reno, NV, 2001.

[7] H. Samet, K-nearest neighbor finding using the
MaxNearestDist estimator, Dept. of Computer
Science, Univ. of Maryland, http://www.cs.umd.edu/

T ~hjs/slides/iciap2003.pdf, 2003.
[8] D. Tunkelang, Making the nearest neighbor

meaningful, Proc. SIAM Int. Conf. on Data Mining,
2002. .

flows based on the de
T
algorithm that integrates judiciously the longest prefix
matching concept from the networking domain with the
nearest neighbor clustering algorithm to provide an
effective automatic way of grouping IP addresses based
datasets. The longest prefix match is adopted as the
similarity measure for the clustering. An adaptation of the
nearest neighbor algorithm is used to cluster similar IP
address objects. The algorithm is automatic and does not
require the input of desired number of clusters or
similarity threshold value. The algorithm is applied to a
traffic flows dataset measured on a campus network. The
obtained clusters are verified using traceroute and
nslookup utilities. About 90% of the clusters are correctly
formed by the algorithm. This means that the clusters
represent flows to destinations that belong to the same
domain.
 This work will help network administrators and
designers with useful knowledge for designing web
caches,

[9] A. A. Freitas, Data mining and knowledge discovery
with evolutionary algorithms (Springer, 2002).
 L. Meng, Q. H. Wu and Z. Z. Yong. A faster [10]
clustering algorithm: real world applications of
evolutionary computing, Proc. Evoworkshops, 2000.

[11] K. Krishma and M. N. Murty, Genetic k–means
algorithm, IEEE Transactions on Systems, Man and
Cybernatics - Part B: Cybernetics, 29(3), 1999, 433–
439.

[12] M. Waldvogel, Fast longest prefix matching:
algorithms analysis, and applications, Swiss Federal
Institute of Technology, Zurich, http://marcel.
wanda.ch/Publications/waldvogel00fast.pdf, 2000.
 C. Estan, S. Savage, G. Varghese, Automatically
inferring patterns of resource con

[13]
sumption in

network traffic, Proc. ACM SIGCOMM ’03,
Karlsruhe, Germany,, 2003.

[14] B. Krishnamurthy, J. Wang, On network-aware
clustering of web clients, Proc. ACM SIGCOMM ‘00,
Stockholm, Sweden, 2000.

ma agement. We are currently working on extending our
algorithm to incorporate other attributes such as source
and destination port numbers, starting and ending times,
and number of bytes sent and received. The clustering of
such datasets can provide more interesting patterns for
network engineering.

[15] R. Vaarandi, A data clustering algorithm for mining
patterns from event logs, IEEE Workshop on IP
Operations and Management, 2003.

[16] ARIN, NSlooup Utility, http://ws.arin.net/, 2005.

http://www2.auckland.ac.nz/net/Internet/rtfm/
http://www.cs.umd.edu/
http://marcel. wanda.ch/
http://marcel. wanda.ch/

	ABSTRACT
	KEY WORDS

